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Abstract
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reaction to news belonging to categories with more extreme outliers, or tail events. We
test our theory on a comprehensive database of corporate news that includes news
from 24 different categories, including earnings announcements, product launches,
M&A, business expansions, and client-related news. We find theory-consistent het-
erogeneity in investor reaction to news, with more overreaction in the form of greater
post-announcement return reversals and trading volume for news categories with
more extreme distributions of fundamentals.
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1 Introduction

The presence of both systematic over-and-underreaction in financial markets remains a

major puzzle. On one hand, stock prices can overreact when firms experience high re-

turns, earnings growth (De Bondt and Thaler, 1985; Cutler et al., 1991; Lakonishok et al.,

1994; La Porta, 1996; Bordalo et al., 2019), or spikes in media coverage and sentiment

(Da et al., 2011; Tetlock, 2007; Antweiler and Frank, 2006). On the other hand, stock

prices underreact to other types of information, such as earnings announcements and

profitability (Bernard and Thomas, 1989; Bouchaud et al., 2019; Sloan, 1996). The het-

erogeneity in investor reaction to news raises a key theoretical and empirical question:

what characteristics of news predict whether investors underreact or overreact?

We propose and test a novel predictor of investor over-and-underreaction to news.

Our approach draws from two key features of investor psychology. First, investors re-

act to news by evaluating it based on similar events in the same category. For example,

investors may react to a tech company’s product launch by recalling other past product

launches. Second, the past events that come to mind tend to be salient outliers: investors

are more likely to draw references to the original iPhone launch than any other product

launches. For example, Tesla’s 2016 launch of its Model 3 vehicle was hailed as its “iPhone

moment”.1 These two features of investor reaction to news can reflect cognitive forces,

such as associative recall (Kahana, 2012; Bordalo et al., 2020b), or other forces such as

biased media coverage (Nimark, 2014; Tetlock, 2014). The selective retrieval of salient

past events may distort investor beliefs. These forces imply that whether investors over-

react to a news event depends on which category it belongs to: investors are more likely

to overreact to news belonging to categories with extreme outliers.

Motivated by these features, we build a formal model of investor psychology with

three key components. First, we assume that each news announcement belongs to a news

category. Second, to reflect the importance of tail events in shaping investor reaction

to news, we model the distribution of fundamentals of each news category as a power-

law distribution, or extremal (Gabaix, 2009; Embrechts et al., 2013): while most news

1https://www.ft.com/content/28d27254-12da-11e6-839f-2922947098f0
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of a given category have modest impact on fundamentals, some tail events have major

implications. Third, as we show in the data, news categories differ in their extremeness:

while some categories are more extreme (fatter-tailed) – their top 1% news have much

greater impact than their median news – others are less so. Differences in the tail will be

the key driver of investor under-and-overreaction across news categories.

We combine these assumptions with diagnostic expectations (DE) (Bordalo et al.,

2018), a model of belief formation based on Kahneman and Tversky’s representative-

ness heuristic. DE capture the insight that agents overweight in their beliefs states of

the world that have become more likely in light of news.2 When applied to a family of

distribution with varying tails, DE exaggerate the degree to which tail events have be-

come objectively more or less likely after a news event. When the news is from a more

extreme news category, diagnostic expectations of fundamentals overreact and overshoot

the rational benchmark. Conversely, news from a less extreme news category is more rep-

resentative of non-tail outcomes and generates underreaction. The model predicts differ-

ences in investor biases across news categories, not within category differences: within

each category, the model predicts a constant amount of over-or-underreaction. We close

our model by introducing diagnostic and rational investors into a stylized asset pric-

ing model, where rational arbitrageurs are slow to enter the market and correct prices.

Our model predicts greater return reversals and disagreement-driven trading volume for

news in more extreme news categories.

In the second part of the paper, we take our theoretical predictions to the data. For

news categories, we draw from a comprehensive database of corporate news events in the

US from 2011 to 2018, which span a wide range of news categories, including earnings

announcements, leadership changes, business expansions, and mergers and acquisitions.

Consistent with our model, we document that the distribution of fundamentals for each

news category is well-fit by a power-law distribution. Furthermore, we document statis-

tically and economically significant variation in extremeness, i.e., how fat the tails are,

across news categories. While news categories such as leadership changes, mergers and

2Diagnostic expectations have been used to model exuberance in credit booms, overreaction in macroe-
conomic forecasts (Bordalo et al., 2020a), and closest to our setting, the overvaluation of firms with high
long-term growth prospects (Bordalo et al., 2019).
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acquisitions (M&As), and lawsuits have more extreme fundamental distributions, cate-

gories such as earnings announcements, guidances, and client announcements tend to

be less extreme. Lastly, most news categories have fatter tails than the unconditional

distribution of stock returns.

After documenting cross-category differences in extremeness, we test our core pre-

diction that there is greater overreaction to news from more extreme news categories.

For each news category, we measure whether announcement-day returns are positively or

negatively predictive of the subsequent 90 day returns. We find that while stock prices

exhibit significant post-announcement drift following earnings announcements, they also

exhibit post-announcement reversals of comparable magnitude for other news categories.

Consistent with our core hypothesis, we find a strong link between the extremeness of the

news category and post-announcement drifts and reversals. We estimate that news from

the most extreme categories exhibit reversals of up to -23% of their announcement-day

returns, while the news from the least extreme categories experience drifts of up to 7%

of announcement-day returns.

We also test additional predictions of our model regarding trading volume and expec-

tations. We find that holding fixed fundamentals, news from more extreme categories

have greater trading volume: conditional on a 10% announcement-day return, we esti-

mate that the daily turnover increases by 32% from the least to the most extreme news

categories. Turning to expectations, we measure category-level differences in how in-

vestor expectations respond to news using analysts’ earnings per share (EPS) forecasts

as a proxy for investor beliefs (Bordalo et al., 2020a). We estimate Coibion and Gorod-

nichenko (2015) regressions of forecast errors on forecast revisions and find suggestive

evidence that analyst forecasts react more sensitively to news in more extreme categories.

We conduct a series of robustness exercises to assess the validity of our main findings.

We show that our results are robust to using alternative measures of extremeness based

on earnings growth or longer-horizon returns, using alternative announcement windows,

accounting for potential overlaps in news, computing extremeness only using past data,

and using different statistical inference methods. We also find that our results are robust

to sample selection and hold consistently in different sets of news categories, as well as
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excluding both small news and outliers. Lastly, we discuss and test possible alternative

explanations for our results, such as the informativeness of news (Bordalo et al., 2023b;

Augenblick et al., 2021; Ba et al., 2022), media coverage, familiarity, and other news

characteristics like the sign and magnitude of the news.

Our paper contributes to the extensive theoretical (Barberis et al., 1998; Hong and

Stein, 1999; Daniel et al., 1998) and empirical (De Bondt and Thaler, 1985; Lakonishok

et al., 1994; La Porta, 1996; Daniel and Titman, 2006; Bernard and Thomas, 1989; Bordalo

et al., 2019) literature studying investor over-and-underreaction. In particular, our work

is part of a growing literature that seeks to find determinants of over-and-underreaction,

such as time horizon (Giglio and Kelly, 2018; d’Arienzo, 2020; Wang, 2019; Gormsen and

Lazarus, 2023), persistence (Bordalo et al., 2020a; Afrouzi et al., 2023), tangibility (Daniel

and Titman, 2006), media sentiment (Tetlock, 2007; Engelberg et al., 2012), and contrast

effects (Hartzmark and Shue, 2018). Our focus on informational characteristics brings our

paper closer to the recent work by Augenblick et al. (2021) and Ba et al. (2022), which

experimentally documents greater overreaction to less informative signals, possibly in

complex environments. While these papers focus on characteristics of the individual

news, our theory and measure explain over-and-underreaction at the category-level: in

particular, we find that properties of the broader news category – how extreme the tail is

– shape investor reaction to all news of that category.

Our work also relates to the large empirical literature on how investors react to news

(Barber and Odean, 2008; Huberman and Regev, 2001; Tetlock, 2007; Antweiler and

Frank, 2006; Engelberg and Parsons, 2011; Da et al., 2011; Neuhierl et al., 2013; Fedyk,

2018), which documents how news events and media coverage can lead to spikes in in-

vestor attention and short-term reversals. The literature has highlighted the role of large

returns, causal impact of media (Engelberg and Parsons, 2011), and prominence in cov-

erage (Huberman and Regev, 2001; Fedyk, 2018) as possible drivers of the salience of

news. We contribute by theoretically investigating what informational characteristics of

news make it salient, focusing on an event’s association to past significant tail events. We

show that this generates systematic differences in over-and-underreaction across news

categories, which can be quantitatively captured by measurements of the tail.
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Lastly, our model of investor psychology builds on the literature that brings psycho-

logical foundations to information processing in financial settings. The fundamental

premise of our model – investors react to news by drawing associations with other simi-

lar events – resonates with theoretical and empirical work on associative recall (Wachter

and Kahana, 2019; Bordalo et al., 2023b; Enke et al., 2020; Charles, 2022). Furthermore,

our findings relate to the crucial role played by rare tail events in expectation formation,

both in the lab as well as financial and macroeconomic settings (Tversky and Kahneman,

1992; Kozlowski et al., 2020; Malmendier and Nagel, 2011; Bordalo et al., 2022; Barberis,

2013). We contribute by translating these broad psychological insights into a concrete

quantitative predictor of investor over-and-underreaction, and systematically testing it

on a comprehensive database of corporate news.

The rest of the paper is organized as follows. Section 2 presents the model, and Section

3 describes the data. Section 4 tests the core prediction of our model. We find significant

differences in the extremeness of each news categories, and show that short-term return

reversals are concentrated in the more extreme categories. Section 5 discusses possible

alternative explanations for our findings, and Section 6 concludes.

2 Extreme news categories and reaction to news

In this section, we present a simple model of investor reaction to different categories of

corporate news (e.g. product launches vs earnings announcements). The model is based

on two core assumptions that we later validate in the data. First, for each news category,

the distribution of fundamentals follows a power-law distribution: each news category

contains outlier news events. Second, we assume each category differs in how extreme its

outliers are. While some categories are fat-tailed – its top 1% events have much greater

impact than its median event – others are less so. When combined with diagnostic expec-

tations (DE), our model shows that differences in the tail generate category-level differ-

ences in investor over-and-underreaction: the more extreme a news category, the greater

the average overreaction to its constituent events.
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2.1 Model: set-up

Fundamentals and news categories There is a stock in zero net supply with initial fun-

damentals F0 > 0. Let v be the future growth of fundamentals, with Ff inal = exp(v) · F0.

At t = 0, v is unknown and has a symmetric distribution:

πd(v) =


π0(v) for |v| < v0,d

C · |v|−(ζ−1
d +1) for |v| > v0,d .

(1)

Relative to standard specifications, the only difference is that we assume that the uncon-

ditional distribution of v is power law with index ζ−1
d . While we primarily make this

assumption for analytical tractability, this assumption is consistent with the data: the

unconditional distribution of stock returns, even outside of news-announcement days, is

fat-tailed (Gabaix et al., 2003; Plerou et al., 1999; Oh and Wachter, 2018).3

At t = 1, a news announcement in news category C ∈ C occurs, where C is the set of all

news categories. Conditional on news in category C, v follows a power-law distribution:

πC(v) =
ζ−1
C
2
·
v
ζ−1
C

0,C

|v|ζ
−1
C +1

for |v| ≥ v0,C.
4 (2)

The distribution of fundamentals of category C is specified by two parameters: v0,C ≥ v0,d ,

the scale parameter, and 0 < ζC < 1, the tail parameter, which governs the extremeness

of the distribution. Equation (2) captures the two core assumptions of our model. First,

the distribution of fundamentals of a news category is extreme.5 Second, the degree of

extremeness, reflected by the tail parameter ζC, varies across each news category C ∈ C.

3While we focus on the symmetric case for simplicity, it is known that unconditional stock returns have a
negative skew (Kelly and Jiang, 2014). Appendix A.5 considers an extension where one allows the reference
distribution to also exhibit asymmetric tails (with the left tail potentially being fatter-tailed).

4To ensure that equations 1 and 2 are mutually compatible, we assume that the unconditional proba-
bility of an announcement in any news category is arbitrarily small. We also assume that the tails of each
announcement ζC are known to investors: in particular, we do not model investors learning about the tail
from the realization of v, as is done in (Kozlowski et al., 2020).

5The extremal distribution literature has a precise way of categorizing non-extreme (such as log-normal,
normal, exponential) distributions and extreme distributions (such as power-law, Student-t, Cauchy, etc)
distributions. The limit of max{x1,x2, ...xn}, suitably normalized, converges to the Gumbel distribution for
thin-tailed distributions, and the Frechet distribution for heavy-tailed distributions. For more details, see
Embrechts et al. (2013).
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The greater the ζC, the farther the difference between the tail and modal outcomes of

category C: for example, the quantile ratio q1,10, the ratio between the top 1% and the top

10% news, increases in ζC.6

Investor psychology Upon announcement, each investor j learns of the news category

C. She also receives an idiosyncratic signal sj of fundamentals v, which reflect differences

in how each investor interprets the news announcement (Kandel and Pearson, 1995). We

assume that sj is drawn from the conjugate distribution sj = v · uj , uj ∼ Unif [0,1], with

v > 0: the negative case follows analogously.7 The rational posterior of v conditional on

(C, sj) is:

πC(v|sj) = (ζ−1
C + 1) ·

v
ζ−1
C +1

1,C

vζ
−1
C +2

for v ≥ v1,C = max{sj ,v0,C}. (3)

To generate over-and-underreaction, we depart from rational expectations and assume

that investors form diagnostic expectations (DE) of fundamentals given news (Bordalo

et al., 2018). DE formalize the psychology of representativeness (Tversky and Kahneman,

1983), where individuals exaggerate states of the world that have become disproportion-

ately likely in light of news.8 The diagnostic distribution of fundamentals is given by:

πθC (v|sj) ∝ πC(v|sj) ·
(
πC(v|sj)

πd(v|sj = 0)

)θ
. (4)

6The quantile ratio is given by q1,10 = 10ζC . Skewness, another popular measure of the tail, is also
monotonically increasing in ζC , as long as ζC is sufficiently small so that third moments are defined. While
we assume eq. (2) in a reduced-form manner, one can microfound eq. (2) as a stationary outcome of a
stochastic dividend growth process, where variation in ζC is endogenized by differences in the expected
growth rate and volatility associated with each news category. For details, see Gabaix (2016).

7One can generalize to π(sj |v) = γ · sγ−1
j v−γ . While the idiosyncratic signal assumption is not neces-

sary for our return predictability result, it is necessary to generate disagreement-driven trading volume,
which we also test empirically. Furthermore, while this specification assumes that there is no ambiguity in
whether a particular news event is positive or negative, one can easily extend the model to allow for am-
biguity in the news, with each news category having potentially different tails in the positive and negative
direction. Appendix A.5 discusses the implications of such an extension, and in particular shows that the
key comparative statics of our model holds even when allowing for ambiguity.

8More broadly, the representativeness heuristic refers to the psychological tendency to overrepresent
representative attributes of a class, where “an attribute is representative ... if ... the relative frequency of
this attribute is much higher in that class than in a reference class” (Tversky and Kahneman, 1983). In other
words, agents overestimate the frequency of trait t that is representative of group G relative to a reference
group −G. Bordalo et al. (2018) apply the heuristic to reaction to news by setting G as the arrival of new
information and −G as the no-news counterfactual, where the realized signal is equal to its expected value.
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The likelihood ratio
πC(v|sj )
πd(v|sj=0)

is higher for realizations of v that have become more likely

in light of news relative to the no-news benchmark.9 The parameter θ reflects the degree

to which representative outcomes are overweighted, with θ = 0 nesting the rational case.

The following assumption is necessary to ensure that the diagnostic distribution has a

well-defined mean for all categories in C:

Assumption 1. Let ζm = maxC∈CζC. We assume that ζm > ζd , and the diagnostic parame-

ter θ is sufficiently small such that θ < ζ−1
m −1

ζ−1
d −ζ

−1
m

.

Asset markets There are two types of investors: diagnostic and rational. All investors

have asset demand that is linear in their subjective expected log returns:

DDEj (sj ,p) = κ ·
(
Eθj [log(Ff inal)]− log(p)

)
, DREj (sj ,p) = κ ·

(
Ej[log(Ff inal)]− log(p)

)
.10 (5)

At t = 0, all beliefs are at the prior: Eθj [log(Ff inal)] = Eratj [log(Ff inal)] = log(F0), with

p0 = log(F0). With the arrival of news at t = 1, we assume that initially only a unit

mass of diagnostic investors trade the asset, with p1 adjusting to clear the market:∫
DDEj (sj ,p1)di = 0. Variation in sj across investors generates disagreement and trading.

As is standard, we define the total (t = 1) trading volume to be V ol = 1
2

(∫
|Dj(sj ,p)|dsj

)
.

At t = 2, rational arbitrageurs of mass K enter the market.11 The late entry of ra-

tional arbitrageurs reflects slow-moving arbitrage (Duffie, 2010), where prices initially

9Our specification exactly follows that in Bordalo et al. (2018, 2020a), where the no-news benchmark is
given by the unconditional distribution πd with sj equal to its ex ante expected value. One can also consider
an alternative where the no-news benchmark is the prior, with no difference in the qualitative predictions.

10In particular, we assume that investors do not learn about v from prices. Furthermore, we also assume
that the extremeness of each news category, ζC , is known to all investors: investors do not infer about the
underlying extremeness of a news category from the signal sj .

11One can easily extend our model to the case where there are also K1 rational traders at t = 1, and
K2 > K1 rational traders at t = 2: the slow entry of rational arbitrageurs at t = 2 reflects the sluggishness
of arbitrage capital. We are also assuming that that diagnostic agents are myopically optimizing their
expected returns, not accounting for the future entry of rational investors. One can relax this simplifying
assumption by modeling diagnostic investors as short-lived one-period investors who are trying to sell to
period 2 investors. In other words, their demand can be re-written as:

DDEj (sj ,p1) = κ ·
(
Eθ[log(p2)|C, sj ]− log(p1)

)
.

Given that p2 settles to rational expectations, the diagnostic expectations of p2 behaves similarly to the
diagnostic expectations of v directly, with no change in the qualitative conclusions.
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dislocated by news-driven behavioral demand (Barber and Odean, 2008) are gradually

corrected by arbitrageurs. For simplicity, we assume K � 1, which implies asset prices

settle at t = 2 to the average rational valuation.

2.2 Model solution: expectations, prices, and volume

Biased expectations by news category For each news category C, we solve for investor

expectations, returns at t = 1,2, and the trading volume at t = 1. We begin by character-

izing how a diagnostic investor reacts to her signal sj for an announcement in category C.

Combining equations (1), (2), and (4) yields the following.

Proposition 1 (DE with tails). The diagnostic expectations of v is given by:

Eθ[v|C, sj] = ψ(ζC,ζd ,θ) ·E[v|C, sj] =
1 + ζC +θ

(
1− ζCζd

)
1 + ζC + (1 + ζC) ·θ

(
1− ζCζd

) ·E[v|C, sj], (6)

where E[v|C, sj] is the rational expectation. The distortion termψ(ζE ,ζd ,θ) is increasing in

ζC, with expectations overshooting the rational benchmark (ψ > 1) if and only if ζC > ζd .

All proofs are relegated to Appendix A. Figure 1 illustrates how DE distorts the ex-

pectations of fundamentals. In the left panel, the fundamentals associated with news

category C1 is more extreme than the ex ante distribution of fundamentals (ζC1
> ζd). The

rational posterior of v, shown in the solid black curve, has a fatter tail than the reference

distribution, shown in the dotted curve. In this case, diagnostic expectations, shown in

the red curve, exaggerate the prevalence of extreme outcomes, causing the posterior mean

to overshoot. This echoes the intuition of Bordalo et al. (2019) – in response to news that

increases the right tail of long-term growth prospects, investors exaggerate the proba-

bility that the company will become “the next Google.” In contrast, the fundamentals

of news category C2 in the right panel are less extreme than the reference distribution.

In that case, extreme outcomes become less likely in light of news. Diagnostic investors

instead reason that the news is instead representative of non-tail outcomes, and underre-

act. Note that the contrast in Figure 1 is at the news category level: our theory produces

differences in investor biases across different categories. Within a given category, Propo-
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Figure 1: Diagnostic expectations and the under-overreaction

Note: Figures 1a and 1b show the DE distortions of subjective fundamentals for more
and less extreme event-types, respectively. The solid red and blue curves plot the density
functions of the distributions of subjective fundamentals under diagnostic expectations.
The solid black curves plot the density functions under the rational distributions. The
dotted black curves plot the reference distributions. The solid black vertical lines plot
the expectation of fundamentals for the rational agents. The solid red and blue vertical
lines plot the subjective expectations of fundamentals for the diagnostic agents.

sition 1 implies a constant amount of over-or-underreaction for both large and small news

announcements. In other words, the heterogeneity in biases in our model is driven by a

news event’s association with tail events in the same category, not its mechanical size.

One can translate Proposition 1 into forecast error predictability (Coibion and Gorod-

nichenko, 2015; Bordalo et al., 2020a), assuming each analyst is also diagnostic and has

the same information as an investor. At t = 1, the forecaster revises her expectations re-

garding the growth rate from its ex ante mean 0 to Eθj,t[v|C, sj]. Proposition 1 implies that

forecaster i’s forecast error, FEj,1 = v −Eθj,1[v|C, sj], is predictable by her forecast revision,

FRj,1 = Eθj,1[v|C, sj]. The coefficient βCGC from the regression, FEj,1 = α + βCGC FRj,1 + εj , is

positive if forecasters systematically underreact to announcements in category C, negative

if they overreact, and zero under rational expectations.
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Corollary 1. βCGC decreases in ζC , and is negative if and only if ζC > ζd .

Corollary 1 shows that βCGC decreases in ζC : there is greater overreaction, as indi-

cated by a more negative forecast error predictability coefficient, for more extreme news

categories. Corollary 1 corresponds directly to the following empirical prediction.

Prediction 1. Forecast errors are more negatively predicted by forecast revisions (greater

overreaction) for more extreme news categories.

Return predictability by news category Imposing market clearing at t = 1 and 2, we

obtain Proposition 2, which relates our results to returns and trading volume.

Proposition 2 (Returns and volume). Denote ζ−1
C,θ ≡ ζ

−1
C +θ

(
ζ−1
C − ζ

−1
d

)
, and ηC(v) ≡ v2

0,C+v
2

2v .

Period 1 and 2 returns rt = log(pt)− log(pt−1), t ∈ {1,2} satisfy

r2 = βretC · r1, βretC ≡
ζC − ζC,θ
1 + ζC,θ

. (7)

The volume at t = 1 (announcement-day) is given by V ol = 1
2κ · (1 + ζC,θ) · (1− ηC(v))2 .

βretC captures the predictive relationship between period 1 returns, the announcement-

day returns, and period 2 returns, the post-announcement returns.If βretC < 0, there is

overreaction in asset prices to news events of category C: a fraction |βretC | of initial re-

turns is reversed. Conversely, if βretC > 0, there is underreaction and drift. Corollary 2

summarizes the comparative statics of βretC and volume with respect to ζC.

Corollary 2. The drift-reversal coefficient βretC decreases in ζC and the diagnostic parameter

θ. News categories whose distribution of fundamentals are more extreme than the reference

distribution (ζC > ζd) are associated with reversals (βretC < 0), and those that are less extreme

(ζC < ζd) are associated with drift (βretC > 0). Holding v fixed, trading volume increases in ζC.

The predictions of Corollary 2 are visualized in Figure 2: there is more overreaction, or

greater short-term reversals, for more extreme news categories. The post-announcement

return r2 is generated by the gradual entry of rational investors, not the long-run rev-

elation of fundamentals. Furthermore, as depicted by Figure 2b, our theory also has
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Figure 2: DE predictions: over- and under-reaction, volume, and extremeness

Note: Figure 2a plots the theoretical relationship between return drift/reversal and the
extremeness of the distribution of fundamentals. The dashed vertical line (ζd) corre-
sponds to the extremeness of the distribution of fundamentals for the reference distribu-
tion. The dashed horizontal line corresponds to a drift/reversal coefficient βretC of zero.
Figure 2b plots the theoretical relationship between trading volume and the extremeness
of the distribution of fundamentals. Volume is defined as half of absolute asset holdings
at t = 1, holding fixed fundamentals.

implications for trading volume. Holding fixed fundamentals v, as the underlying dis-

tribution grows more extreme, diagnostic agents trade more aggressively based on their

private signals, leading to greater trading volume. To summarize, Corollary 2 implies the

following empirical predictions.

Prediction 2. News categories of more extreme fundamental distribution are associated

with greater short-term post-announcement reversals.

Prediction 3. News categories of more extreme fundamental distribution are associated

with greater announcement day trading, holding fixed the fundamentals of the news.

Measuring ζC Our model makes a final prediction relevant for measuring ζC. Directly

measuring the long-run impact of news on fundamentals can be challenging. Corollary 3

imply that one can measure ζC by instead through the distribution of short-term returns.
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Corollary 3. More extreme categories also have a more extreme distribution of r1.

Prediction 4. Across news categories, the extremeness of the distribution of fundamen-

tals is positively correlated with the extremeness of the distribution of short-term returns.

To summarize, our model combines tail events with diagnostic expectations to explain

how investors react to different categories of news. Prediction 1 captures the insight that

the bias for each news category can be predicted by measuring its tail: the fatter the tail,

the greater the overreaction. Predictions 2 and 3 translate these expectational distortions

to results on return predictability and trading volume. Lastly, Prediction 4 gives guidance

on how to estimate the extremeness of each news category. We now take our model to the

data, using a comprehensive database of corporate news announcements.

3 Data

We use two main datasets for news events and stock returns. First, we compile our list

of corporate news announcements from the Capital IQ Key Developments dataset. Capi-

tal IQ tracks major corporate news events such as earnings announcements, product and

client announcements, lawsuits and legal issues, leadership changes, and mergers and ac-

quisitions, but excludes macroeconomic news announcements such as interest rates and

unemployment rates that may affect aggregate stock returns. Second, we obtain daily

stock returns and trading volume from CRSP. Our sample consists of news announce-

ments made by all US companies listed on a major US stock exchange (NASDAQ, NYSE,

and AMEX) between 2011 and 2018. For each news announcement in Capital IQ made

by a given firm on a given date, we match the announcement to stock returns and trading

volume on the day of the announcement and of the subsequent post-announcement pe-

riod.12 To mitigate the effects of market microstructure on our results, we exclude small

stocks (less than $2 billion in market capitalization).13 To measure the intensity of news

12We match all news announcements made after trading hours to the next trading day.
13We show in robustness exercises that our results hold in small stocks as well. We exclude them because

as noted by the market microstructure literature, short-term price reversals can occur due to liquidity
concerns: at extremely short time scales, bid ask bounces generate negative return autocorrelation. Even
at longer time scales, there may be transient price pressure as market makers demand compensation for
liquidity while trading against uninformed flow (Kyle, 1985; Campbell et al., 1993; Nagel, 2012).
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coverage, we also use data from RavenPack, a financial news and analytics data provider.

We conduct our analysis on a baseline sample of news categories that directly affect

the fundamental value of the firms. We first restrict our sample to news categories that

occurred at least 1,000 times across all US companies in our sample, which we list in Table

A7. To focus on news categories that directly affect the fundamental values of the firm,

we further exclude (1) administrative filings such as announcements of earnings dates

or name changes, (2) trading activities such as index exclusion, and (3) debt and equity

issuances and repurchases including IPOs and SEOs.14 To ensure that sample selection

choices are not driving our results, we repeat our analyses in Section 4.3 using the full

set of news categories, as well alternative selection criteria, such as including small-cap

stocks and considering different subsets of news categories.

Summary statistics Table 1 reports the summary statistics of the announcements in our

sample. In general, corporate announcement days are characterized by significant price

movements and trading behavior. The unconditional means across most categories are

largely centered around zero with a small but notable positive mean. Announcement

days are also generally associated with large absolute returns: the standard deviation of

returns on announcement days for almost all categories exceed 2.1%, the average daily

return volatility of stocks in our sample. Announcement days are also characterized by

high trading volume, with average daily volume on news days exceeding the average daily

volume on no-news days for most news categories. Overall, the data suggest that news

announcement days are characterized by higher return volatility and trading volume,

consistent with prior work (Solomon, 2012; Neuhierl et al., 2013; Engelberg et al., 2018).

4 Overreaction in extreme news categories

In this section, we present our core empirical findings. We begin with our estimation

of the extremeness of each news category. Consistent with the core assumption of our

model, we find that the distribution of fundamentals of each news category is well-

14We exclude IPOs to avoid conflating IPO announcement-day returns with the IPO premium.
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approximated by a power law distribution, with significant variation in extremeness

across categories. We then test our core prediction that there is greater overreaction, or

short-term reversals, for news in a more extreme category. We support our main finding

with several robustness tests to address potential concerns such as announcement tim-

ing, overlapping news, and accounting for the magnitude of the news. Finally, we test

the additional predictions of our model and find that more extreme news categories are

associated with greater trading volume and negative forecast error predictability.

4.1 Extremeness of news categories

Measuring extremeness Our model is based on two core assumptions. First, the dis-

tribution of fundamentals of each news category C is fat-tailed, or extreme. Second, the

extremeness of the distribution (ζC) differs systematically for each news category. We

validate these assumptions by measuring the realized distribution of fundamentals for

each news category. For each category C in our dataset, we collect the set of announce-

ments {ni,t,C}, where ni,t,C refers to an announcement of category C for firm i at time t.

Measuring category C’s extremeness requires two choices. First, for each ni,t,C, we need

a measure of the event’s impact on firm value, i.e. v̂(ni,t,C). Second, once we construct

the set VC = {v̂(ni,t,C)}, we need a measure of the extremeness of its empirical distribution,

ζ̂(VC).

Main specification In our main specification, we use announcement-day returns as a

proxy for the news’ impact on fundamentals: v̂(ni,t,C) = ri,t. The benefit of this approach

is that announcement-day returns can be more reliably attributed to the news than longer

term measures. Prediction 4 also implies that ζC can be measured by the tails of ri,t as well

as directly from v, which we later validate. For each category C, we fit a power law dis-

tribution to the tail of absolute announcement-day returns: taking the top 10% absolute

announcement returns, we estimate the log rank-value regression (Gabaix, 2016):

log(Ranki,t,C) = ξC − ζ̂−1
C log(|ri,t,C |), |ri,t,C | > |rC,90|. (8)
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The relationship is negative by construction. The regression coefficient ζ̂−1
C captures how

much an increase in absolute returns corresponds to a move up in the percentile rank.

If the distribution is power-law with F(x) = 1 − (x/xmin)−k, the relationship is exact with

ζ̂−1
C = k.
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Figure 3: Estimating extremeness: ζC

Note: Figure 3a plots the estimates corresponding to eq. (8) for M&A events (red), earn-
ings events (blue), and a simulated normally-distributed return distribution (black). The
x-axis shows the normalized log value of absolute announcement-day returns, while the
y-axis shows the normalized log rank. The solid lines plot the linear best fit correspond-
ing to eq. (8). Figure 3b plots the extremeness ζC estimates for each category correspond-
ing to eq. (8). 95% confidence intervals are computed following Gabaix and Ibragimov
(2011).

Figure 3a plots the relationship for two news categories, earnings (in blue) and M&A

announcements (in red), and for a simulated normal distribution (in black) with a similar

standard deviation. The raw data points are plotted as points and the linear regression

estimates following eq. (8) are plotted in solid lines. Figure 3a shows that the tails of

the distributions from both news categories are far better fit by power-law distributions

than by a normal distribution, whose corresponding curve decays faster than any linear

fit. While the plot only shows two categories, the conclusion holds generally: the R2 as-

sociated with the linear fit is close to 1 (above 98%) for all news categories in our sample,
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compared to an R2 of 86% for the simulated normal distribution. Overall, the distribu-

tion of fundamentals for all news categories are described well by a power-law, with the

tail parameters precisely estimated and not driven by a small number of data points. Ta-

ble 2a reports the estimates of category extremeness (ζ column) and their standard errors

(ζ s.e. column): the median standard error across all news categories is 0.01.

Furthermore, there is significant variation in extremeness across news categories. Fig-

ure 3b plots the ζC estimates for each category and their 95% confidence intervals, com-

puted following Gabaix and Ibragimov (2011). The coefficient estimates suggest signifi-

cant variation in the extremeness of fundamentals across news categories, with ζC ranging

from 0.32 to 0.57. 20 categories (15 statistically significantly) are more extreme than the

no news distribution, i.e., the reference distribution in our model, and 4 categories (2 sta-

tistically significantly) are less extreme.15 To give a sense of the economic magnitudes of

these differences, one can translate these results into the magnitude of tail returns. The

average announcement-day return greater than 5 percentage points (p.p.) is 8.1 p.p. for

earnings calls and 9.5 p.p., or 16.0% greater, for CFO changes. To summarize, we find

economically and statistically significant differences in the extremeness of the fundamen-

tals across news categories.

Consistency of tail measures: Prediction 4 We also consider alternative measures of

ζC. First, we consider alternative measures of fundamentals. Instead of announcement-

day returns, we consider longer-term (100-day) returns and earnings growth over k years:

v̂(ei,t,C)
EP S,k = EP Si,t−1+k,C/EP Si,t−1,C − 1, (9)

where 1 ≤ k ≤ 5 and EP Si,t is the year t earnings-per-share reported by firm i. We restrict

our sample for firms whose earnings per share in year t − 1 are at least 10 cents. We then

compute the power-law coefficients using these alternative measures of fundamentals.

Consistent with Prediction 4, we find that all of our measures are highly correlated at

15We also compute standard errors using a simple bootstrap. Both approaches yield similar standard
errors. We test the significance of the difference in ζC between each news category and the no news distri-
bution assuming the two samples are independent, as they are drawn from distinct days by definition.
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the news category level: Table A1 reports the pairwise correlation of our measures of ζC.

Second, we also consider alternative measures of extremeness, such as skew or quantile

ratios. For power law distributions, all of these measures correspond one-for-one with

the tail index, although higher-order moments may be unreliably measured for extreme

distributions. Consistent with the precision of the power-law estimates, Figure A3 of the

Online Appendix shows that all tail measures are highly correlated.

What extremeness rules out On the other hand, extremeness is not captured by other

intuitive measures, such as variance or the frequency of large news. What extremeness

captures is the relative difference between tail outcomes and typical news within the

category, not the average magnitude or unconditional frequency of large news. Earn-

ings announcements provide an illustrative example. While earnings tend to have large

announcement-day returns, it is among the least extreme categories, as an outstanding

earnings announcement does not result in a much larger impact than other positive earn-

ings announcements. We compare the predictive power of extremeness to these alterna-

tive measures in Section 5.2.

4.2 Overreaction to extreme news categories

Drift and reversals Given our measure of category extremeness, we now test our key

hypothesis that there is greater overreaction for news in more extreme categories. Our

measure of over-and-underreaction in asset prices is given by whether announcement-day

returns (r1) positively or negatively predict post-announcement returns (r2). Proposition

2 implies the following relationship between the two:

r2 = βretC (ζC,θ,ζd) · r1, (10)

where
∂βretC
∂ζC

< 0: more reversals to news belonging in more extreme categories. βretC corre-

sponds empirically to βC of the following autocorrelation regression:

ri,t+1,t+k = α + βC · ri,t + εi,t, (11)
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where we pool all occurrences of events in C that occur on day t for firm i. ri,t is the

announcement-day return (corresponding to t = 1 in the model) and ri,t+1,t+k is the k-day

cumulative post-announcement returns (t = 2 in the model).16 If βC = 1, then half of

the price movements for news in category C are realized on the announcement day on

average, with a predictable drift of equal proportion over the next k days. If βC = −0.5,

then half of announcement-day returns would be reversed on average, so the initial price

impact would be twice as responsive as the rational benchmark.

Variation in drifts and reversals across news categories Before we test our main hy-

pothesis, we first document the heterogeneity in drift and reversals across our news cate-

gories. In our baseline specification, we set k = 90 days, similar to the horizon considered

by the post-earnings announcement drift (PEAD) literature.17 To test whether there are

significant category-level differences in βC, we estimate the following regression using

news announcements across all 24 news categories in our sample:

ri,t+1,t+k,C = α +
∑
C∈C

βC · 1(NewsC) · ri,t,C +µC + εi,t,C, (12)

where each observation is a category C news announcement by firm i on date t.

1(NewsC) is a dummy variable for whether the announcement belongs to news category

C, ri,t+1,t+k,C is the cumulative k-trading days post-announcement returns, and ri,t,C is the

announcement-day return. To ensure our estimates are not driven by outliers, we win-

sorize announcements for each category at the 1% level. Standard errors are two-way

clustered at the firm and day levels.

We wish to test whether there is heterogeneity in post-announcement drifts and re-

versals across news categories C, βC. We conduct two F-tests corresponding to the null

hypotheses that all βC are (a) equal to 0, and (b) equal to each other. Table 2b reports the

results. We find that F = 2.55 for (a) and 1.79 for (b), which rejects both null hypotheses

16Concretely, ri,t is the return of firm i from the close of date t − 1 to the close of date t. ri,t+1,t+k is the
return of firm i from the close of date t to the close of date t + k.

17In Section 4.3, we conduct robustness checks by varying the horizons by setting k = 30 and 60, and we
also repeat our analysis using both stock returns benchmarked relative to S&P 500 returns and without
benchmarking.
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with p < 0.01, indicating that there is significant heterogeneity in βC across categories. To

further illustrate the variation in the data, Table 2a shows the category-level estimates of

βC of our news categories. Consistent with the literature on post-earnings announcement

drift (Bernard and Thomas, 1989), we find drift for earnings announcements. On the

other hand, we find reversals of comparable magnitudes for other news categories, such

as leadership changes, mergers and acquisitions, and client-related announcements.18

Reversals for extreme categories: testing Prediction 2 We now formally test our core

prediction: greater overreaction and reversals for news in more extreme categories. We

estimate the following linear regression on our sample of all news announcements:

ri,t+1,t+k,C = α + β · ri,t,C +γ · ζC,t × ri,t,C + εi,t,C, (13)

where observations are at the news announcement level. ri,t,C is the announcement-day

return and ri,t+1,t+k,C is the k-day cumulative post-announcement returns. ζC,t is the ex-

tremeness of category C as of time t.19 Standard errors are two-way clustered at the firm

and day level. The coefficient of interest is γ , which captures how post-announcement

drifts or reversals vary in category extremeness. A negative γ implies that news from

more extreme categories, i.e. a larger ζC,t, are associated with greater reversals.

Table 3 reports the results corresponding to equation (13), where we set k = 90. Col-

umn (1) reports our baseline estimate. Column (2) uses returns benchmarked against the

S&P 500. Column (3) is a predictive regression that uses only announcements over the

past five years to compute extremeness for each announcement. Column (4) uses both

S&P 500-benchmarked returns and the past five-year extremeness. For each specifica-

tion, we estimate a negative and statistically significant γ coefficient, consistent with our

18Post-announcement drifts and reversals can alternatively be measured by the returns of a long-short
portfolio sorted on announcement-day returns. In Appendix B, we construct these long-short portfolios and
confirm that their returns are positively correlated with βC’s. We also find that the economic magnitude of
reversals and drift across news categories are comparable: a long-short portfolio for news categories with
drift gains 61 basis points (bps) over 90 days, while the same strategy for news categories with reversals
loses 111 bps.

19We estimate two versions of ζC,t , one over the entire sample period, which uses data after time t, and
another using a trailing window of five years. The latter specification ensures that our results are truly
predictive and do not use returns from events in the future.
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(a) βC vs ζC (b) γ over time

Figure 4: Extreme categories and reversals

Note: Figure 4a plots the relationship between extremeness and post-announcement
drift/reversal βretC for each news category C. Extremeness is the inverse power-law in-
dex ζC estimated following equation (8). Drift/Reversal Beta is the post-announcement
drift or reversal coefficients βretC estimated following equation (11). The dotted horizon-
tal line indicates where drift/reversal βretC = 0. The dotted vertical line indicates where
ζC = 0.35, which is the extremeness of the No News distribution. Figure 4b plots the esti-
mated γ over different post-announcement horizons from k = 2 to k = 90, with the γ for
each horizon k being estimated following equation (13). The blue vertical lines plot the
95% confidence intervals for each coefficient estimate.

core prediction that more extreme news categories are more overreacted to. Quantita-

tively, the variation in extremeness of a news category predicts post-announcement stock

price movements ranging from drifts of 7% (95% confidence interval (CI) of [-1%, 15%])

to reversals of -23% (95% CI of [-39%, -6%]).

To visualize our result, Figure 4a plots the drift/reversal coefficients βC against ex-

tremeness ζC at the category level. The figure is the empirical analog to the theo-

retical prediction in Figure 2a. Consistent with the formal regression results, there

is a negative relationship between extremeness ζC and the drift-reversal coefficient βC:

more extreme categories have more reversals, while less extreme categories have drift

(ρ = −0.66, p < 0.01). Figure 4b plots our estimate of γ as we range the horizon from

2 to 90 days. We find that our estimate of γ is robustly negative, with the bulk of the
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cross-category predictability realized by 40 days.20

Underreaction While our estimates imply that our measure predict reversals for the

most extreme news categories and drifts for the least extreme, they also imply a small but

insignificant degree of drift (3%) for stocks with no events (ζ̂d = 0.35) (95% confidence

interval of [-4%, 11%]). This suggests although there is strong evidence for the cross-

category prediction of our theory (more overreaction for more extreme news categories),

there may also be slightly more drift in the data than is predicted by our model. This

may be due to many forces, such as inattention (DellaVigna and Pollet, 2009), complexity

(Engelberg, 2008), capital frictions (Duffie, 2010), or other forces that dampen short-term

price reaction to news. While the focus of our paper is to explain the cross-category

variation in reaction to news, these forces may modulate the overall level of the bias.

4.3 Robustness

We next test the robustness of our main result. Table 4 summarizes all the robustness

exercises and reports the corresponding estimates of our main coefficient of interest γ .

We summarize the exercises below and describe them fully in Appendix B.

Alternative measures of ζC We first show that our results are robust to how we mea-

sure category extremeness. One concern with our main announcement-day returns-based

measure is that it may reflect mispricings or fluctuations that may be driven by liquidity

or time-varying risk aversion. We address this by constructing alternative extremeness

measures based on realized earnings growth, which are not driven by market fluctua-

tions, and longer-horizon returns (from the announcement day to 100 days after). The

results are summarized in rows 2 and 3 of Table 4, with our baseline estimate replicated

in row 1. Consistent with our earlier findings that our tail measures are highly correlated,

we find that our estimates continue to hold for both alternative measures.
20The relatively short horizon of return predictability is similar to that of other short-term mispricing; for

example, Duffie (2010) document that index deletion effects are reversed also roughly within a comparable
period. Given that we do not observe disaggregated trading flows, further work is needed to understand
how news-driven mispricings are corrected over time.
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Announcement timing Measurement errors in the announcement dates, leakages, or

delays may bias our measurement of announcement returns. To account for this, in row

4 in Table 4, we report an alternative specification where we define the announcement

window as from 2 days before to 2 days after the announcement date, i.e., the close of

date t − 3 to the close of date t + 2, and the corresponding post-announcement window

as from the close of t + 2 to the close of t + 90. Announcement timing can also be strate-

gic. For example, firms may release bad news on Fridays when investors are distracted

(DellaVigna and Pollet, 2009). In row 5, we add indicator variables for the hour-by-day-

of-the-week that each news announcement was made on (e.g., Friday at 4pm) as both

fixed effects and interacted with announcement-day returns to control for variations in

the post-announcement drift/reversal patterns across announcement times. In row 6 we

repeat our analysis excluding Friday announcements. In all specifications, the coefficient

of interest γ remains similar.

Magnitude and sign of the news Our theoretical and empirical focus is on explaining

cross-category differences in investor reaction to news. In particular, our theory predicts

a uniform degree of over-or-underreaction, βC, for large and small news within the same

category. In practice, investor biases may also depend on the sign and the relative mag-

nitude of news and announcement returns: Hong et al. (2000) show that negative news

is associated with greater drift, while Chan (2003) find that large returns may lead to

reversals. These forces may mechanically generate cross-category differences; if there

are greater reversals to large returns, news categories with larger announcement-day re-

turns may be associated with reversals. To address this concern, we add functions of

announcement-day returns as controls to flexibly capture any unconditional relationship

between announcement-day returns and post-announcement returns : in row 7, we con-

sider a a non-parametric decile function f (ri,t,C) =
∑10
k=1γk · 1(ri,t,C ∈ ∆k), where ∆k is the

k-th decile of all announcement-day returns, and a cubic polynomial in ri,t,C in row 8. In

both cases, we find similar estimates of γ : extreme news categories are associated with

greater overreaction, even after accounting for the magnitude and sign of the news.21

21Figure A4 plots the estimated f (ri,t) for the cubic specification. Consistent with Hong et al. (2000), the
estimated function is upward sloping for negative returns (drift for negative news) and downward sloping
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We also test whether our results hold in subsamples of announcements of different

sizes and valence. Rows 9 and 10 report the results when we exclude announcements in

the lowest 25-th and 50-th percentiles absolute announcement-day returns, respectively,

to ensure that our findings are not due to small and economically insignificant events.

Conversely, to also show that our results are not driven by outliers, rows 11 and 12 ex-

clude outlier events, i.e., those in the top 0.01% and 1% of absolute returns.22 Lastly,

we also split our sample into positive and negative news. Rows 13 and 14 show that our

results are most pronounced among events with positive announcement returns, and are

smaller in magnitude and statistically insignificant for negative news.

Overlapping news Another potential concern is that the predictability for a given news

category can be due to systematic overlap with another category. For example, if there

is continued drift for one news category, a news category that systematically follows that

category may also be mechanically associated with drift. To account for overlaps, we

perform two types of exercises. First, since overlapping announcements are most pro-

nounced for earnings announcements, we exclude news categories whose announcements

occur within five days of earnings announcements more than 50% of the time (row 15).

More stringently, we remove all announcements from firms that had any other news an-

nouncements within the prior 30 days (row 16). Second, instead of excluding announce-

ments, we directly control for the effects of all other news that occurred within the past

90 days on the 90-day post-announcement returns of the current news announcement

(row 17). We estimate the following regression specification:

ri,t+1,t+k,C = α + β0 · ri,t,C +γ · ζC,t × ri,t,C +
∑
C′∈C

90∑
h=1

θC′ ,h · I(i,C′, t − h) · ri,t−h,C′ + εi,t,C, (14)

where I(i,C, t) is an indicator for whether firm i has experienced an announcement of

category C on date t. Eq. (14) augments our main specification by also accounting for the

for positive returns (reversals for positive news). Moreover, for positive events, the estimated function is
concave, suggesting a larger degree of reversals for large positive announcement-day returns.

22While outliers in a category drive investor reaction to news (and implicitly form our predictive mea-
sure), the predictability should hold for all news of that category, even excluding said outliers.
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component of returns that may be due to past news. θC′ ,h accounts for the component

of the return from date t + 1 to t + k that may be due to reactions to news announce-

ments of category C′ that occurred h days prior to the current announcement. Across all

specifications, we find a significant γ of a similar magnitude to our baseline estimates.23

Sample selection We also show that our results are robust to various choices of sam-

ple selection criteria and the inclusion and exclusion of different news categories. As

discussed in Section 3, we select our baseline sample based on two criteria: (1) news

categories that have occurred at least 1,000 times in our sample, and (2) excluding news

categories that we judged to be not directly pertinent to the fundamentals of the company,

including administrative announcements (e.g. news about earnings release date), index

inclusions, and capital structure announcements. To show that our results are robust to

our selection criteria, rows 18 and 19 repeat our analysis including all news categories

that we have excluded, i.e., by undoing both criteria (1) and (2) in row 18 and by using

only criteria (1) in row 19.24 Lastly, row 20 repeats our analysis on small-cap stocks.

Other robustness exercises Table 4 summarizes the remaining robustness exercises.

Rows 21 and 22 report the results under different post-announcement return horizons

(k = 30 and 60). We account for attrition by excluding attrited firms (row 23) and ex-

cluding news categories with above-average attrition rates (row 24), alternative standard

errors that account for overlapping windows in panel data (Driscoll and Kraay, 1998)

(row 25), and compounded estimation errors in using estimated category extremenesses

as regressors (Pagan, 1984; Murphy and Topel, 2002) (row 26). Across these additional

specifications, we find that our results remain economically and statistically similar.

23In Appendix B, we also estimate equation 14 accounting for both news before date t and news after
date t, i.e., h = −90 to 90.

24In Appendix B, we also systematically exclude news categories one-by-one and show that our results
are robust to excluding any particular news category in our main sample.
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4.4 Testing additional predictions: volume and expectations

Extremeness and volume Prediction 3 implies that more extreme news categories are

associated with greater disagreement and trading, holding fixed fundamentals. To test

this prediction, we estimate the relationship between volume and extremeness in our

sample, holding fixed the absolute announcement returns as a proxy for fundamentals:

T urnoveri,t,C = α + β · |ri,t,C |+ δ · |ri,t,C | · ζC +µt +µC + εi,t,C. (15)

Observations are at the announcement level. T urnoveri,t,C is the announcement-day

volume normalized by the total shares outstanding, |ri,t,C | is the absolute value of the

announcement-day return, and ζC is the extremeness of category C. µt and µC are day and

category fixed effects. A positive δ implies that extreme categories are associated with

more trading, holding fixed the magnitude of announcement returns. Table 5 presents

the estimated coefficients. For each specification, we estimate a positive and statistically

significant δ: news from more extreme categories generate greater volume holding fixed

the magnitude of announcement-day returns. An increase in category extremeness from

the least extreme to the most extreme category corresponds to a 32% increase in predicted

turnover, from 5.1% to 6.7%.

To visualize our findings, we estimate for each news category the average turnover

conditional on a 10% announcement-day return using the following specification:

T urnoveri,t,C = αC +
∑
C∈C

TC · 1(NewsC) · |ri,t,C |+ εi,t,C, (16)

with T urnoverC,10 = αC + βC · 10%. Figure 5 plots the relationship between ζC and

T urnoverC,10 and is the empirical counterpart to the theoretical prediction in Figure 2b.

Consistent with the results in Table 5, we find a strong positive relationship: more ex-

treme news categories have greater turnover adjusted for returns (ρ = 0.66, p < 0.01).

Forecast error predictability Having tested Predictions 2 and 3 regarding returns and

trading volume, we use expectations data to test Prediction 1, that forecast errors are
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Figure 5: Volume and Extremeness

Note: Figure 5 plots the relationship between extremeness and conditional average
turnover for a news announcement with a 10% absolute announcement-day return
T urnoverC,10 for each news category C. Extremeness is the inverse power-law index ζC
estimated following equation (8). Turnover for 10% Absolute Return is the conditional
average turnover for a news announcement with a 10% absolute announcement-day re-
turn, T urnoverC,10, estimated following eq. (16).

more negatively predictable by revisions for more extreme news categories. We follow

a similar procedure to Bouchaud et al. (2019) to compute analyst revisions and forecast

errors using I/B/E/S analyst forecasts of earnings.25 Pooling across all analyst forecasts,

we regress forecast errors on forecast revisions (Coibion and Gorodnichenko, 2015), in-

teracted with our category-level extremeness measure ζC:

ForecastErrora,i,t,C = α+βCG ·ForecastRevisiona,i,t,C+γCG ·ζC,t×ForecastRevisiona,i,t,C+εi,t.

(17)

Observations are at the analyst a by announcement level. Equation 17 is the expecta-

tions counterpart to the return predictability regression (eq. (13)). γCG < 0 implies that

forecast revisions more negatively predict forecast errors – revisions are more likely to

25First, to remove stale forecasts, we only use forecasts that were issued 90 days or less before the an-
nouncement and revised 45 days or less after the announcement. Second, we winsorize the forecasts at the
10% level to remove anomalous forecasts. Third, we focus on forecasts made for two years ahead, although
the results are qualitatively similar if we use different forecast horizons. Finally, we normalize each forecast
by the price of the stock at the time of the forecasts.
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overshoot the rational benchmark – for more extreme categories. Table 6 reports the re-

sults. Standard errors are two-way clustered at the analyst and firm levels. Column (1)

reports the baseline estimates, and columns (2) and (3) report estimates with analyst and

firm fixed effects, respectively. We find suggestive evidence that forecast errors are more

negatively correlated with forecast revisions for more extreme news categories. The re-

sults become statistically insignificant with the inclusion of firm fixed effects, potentially

because a large driver of the variation in the data is differences in news across firms.

5 Discussion

Our core findings of greater overreaction to news in extreme categories relate to a large

body of work on investor psychology. In this section, we connect our results to the broader

literature and test for alternative explanations for our findings.

5.1 Relation to existing work

Psychology of tail events The key message of our model – that retrieval of past tail

events shapes reaction to news – is consistent with a rich literature in psychology and eco-

nomics. On one hand, people overweight tail outcomes, especially in settings where they

are either explicitly described or top of mind. In the lab, participants place greater weight

on rare outcomes with explicit probabilities, with potentially salient payoffs (Tversky and

Kahneman, 1973; Kahneman, 2011; Bordalo et al., 2022). Barberis and Huang (2008) sim-

ilarly finds that investors are willing to pay more for stocks with lottery characteristics.

In all cases, tail events have a major impact on beliefs. On the other hand, people are also

known to neglect tail outcomes in different contexts (Barberis, 2013). Hertwig and Erev

(2009) strikingly find that when experimental participants sample draws from a random

lottery (instead of being explicitly described their probabilities), they tend to neglect ex-

perienced tail outcomes, a phenomenon the authors coin as the experience-description

gap. Taken jointly, these findings suggest that whether tail events are overweighted de-
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pends on broader contextual forces that influence the availability of these events.26

We contribute to this literature by focusing on the role of news as a potential cue for

tail events. The key intuition is that news belonging to extreme categories act as stronger

cues for tail events, thereby triggering overreaction. Moreover, the exact degree to which

a category is representative of tail events can be measured in the data, which generates

a quantitative predictor of investor biases. While far from a complete measure of what

comes to an investor’s mind, our tail measure is able to capture a significant variation of

the cross-category differences in reaction to news, as we test in Section 5.2.

Rational learning Our paper also relates to the literature in which agents rationally

learn from tail events: when agents are uncertain about the parameters of the data gen-

erating process (Hansen, 2007), tail events can have a large impact on beliefs (Kozlowski

et al., 2020). Relative to this literature, our focus is on how tail events across in a given cat-

egory affect agents’ reaction to all news, not just tail events, of the same category. More-

over, our work focuses on investor over-and-underreaction, manifested in predictable

returns or forecast errors, not just the persistent impact of tail outcomes on beliefs.27

Other applications of DE Our paper is part of a growing list of papers that have applied

diagnostic expectations to financial and macroeconomic settings. Theoretically, most ap-

plications of DE have highlighted overreaction and excess sensitivity of beliefs (Bordalo

et al., 2018, 2019; Bianchi et al., 2024; L’Huillier et al., 2023). Our main theoretical in-

novation is to show that by applying diagnostic expectations to a family of distributions

where the tail may vary, one can obtain over-and-underreaction based on the distribu-

tional characteristics of the news: if the news is representative of tail outcomes, both

the consensus and the individual expectations may overreact. Conversely, if the news

26In the field, investors and consumers may neglect tail risk, especially during boom times (Gennaioli
et al., 2015). Bordalo et al. (2023b) explicitly model such contextual dependence and find that rare out-
comes are oversampled when explicitly cued by the description of the hypothesis.

27When one combines learning with convexity, one can also generate biases: for example, if forecast
outcomes are convex functions of a given variable, an uncertainty shock over the variable may lead to biased
estimates (Orlik and Veldkamp, 2014; Pástor and Veronesi, 2009). We document, however, predictability
in not just returns, but also forecasted earnings, which is less subject to convexity concerns. Moreover, to
address the concern that our predictability is due to the fact that some news categories are associated with
greater uncertainty, we also directly control for the informativeness of the news in Section 5.2.
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category is sufficiently thin-tailed, news is representative of non-tail outcomes, and ex-

pectations underreact.28

5.2 Alternative explanations

We next examine whether alternative explanations could generate our findings. For each

alternative explanation we consider, we develop a candidate explanatory variable that

proxies for the explanation, and then test the explanatory power of our main measure

against these competing variables.

Informativeness One alternative explanation is that category extremeness may instead

reflect differences in the informativeness of the news. Tetlock (2014) highlights that

attention-grabbing yet “uninformative media content” generates overreaction while “in-

formative content” generates underreaction.29 If news in extreme categories are typically

less informative, this can be an alternative explanation of our findings: for example, an

earnings announcement may be much more informative than a CEO firing. We measure

the informativeness of a news category from the degree to which prices become more

informative of fundamentals post-announcement using the methodology of Dávila and

Parlatore (2018) to identify price informativeness. Specifically, for each category C, we

pool the announcements to compute κpC,p10 and κpC,f 10, which are the price informative-

ness measures 10 days before and after the announcement. Our measure of the informa-

tiveness of C is given by κC ≡ κ
p
C,f 10 − κ

p
C,p10: if a news category is more informative, it

should be reflected in higher price informativeness following the news. We report the

details of the methodology in Appendix C.

28While Bordalo et al. (2020a) show that DE can be consistent with underreaction in consensus forecasts,
it still predicts overreaction in individual forecasts. Consistent with our findings, Bordalo et al. (2019) also
show that firms with high long-term-growth expectations have fatter right tails and predict future disap-
pointment, although they do not explicitly model fatter-tailed fundamentals or account for the variation of
news in different categories.

29Solomon (2012) similarly documents that soft and less informative information can be spun in a posi-
tive way, leading to investor overreaction. Griffin and Tversky (1992) and Augenblick et al. (2021) provide
experimental evidence that individuals overreact to less informative signals.
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Media Investors may react differently to news announcements that are extensively cov-

ered by the media. First, media may have a direct causal impact on reaction to news

and trading (Engelberg and Parsons, 2011). Alternatively, media coverage of a news an-

nouncement can be a measure of its salience (Tetlock, 2014; Bybee et al., 2023). For each

news category, we compute MediaC as an alternative explanatory variable, which is the

average number of news articles written about news announcements in category C.

Sign and magnitude of news at the category level While we show in Section 4.3 that

our main findings hold controlling for the size and sign of the news at the announcement

level, we now consider the size of the news as a potential competing measure: on aver-

age, some news categories may generate larger returns or absolute returns, which may

explain the category-level differences we find. For each C, we compute the mean and

standard deviation of announcement returns, µC, SDC, and the mean of the five largest

announcements, LargestC, as alternative explanatory variables.

Other news characteristics Investors may also react differently to news that they are

more accustomed to. We proxy for familiarity by the number of occurrences of category

C divided by 100,000 (NC). Our findings may also reflect the difference between antici-

pated and unanticipated news: investors may have more time to prepare for the former.

We add a variable, 1(Scheduled)C, for categories that occur on pre-announced schedules

(operating results, earnings, guidances, dividends, earnings calls, and annual meetings).

5.2.1 Testing alternative explanations

We test for whether our results are robust to the inclusion of each of these alternative

explanatory variables using the following empirical specification:

ri,t+1,t+k,C = α + β · ri,t,C +γ · ζC · ri,t,C +φ ·XC · ri,t,C + εi,t, (18)

where observations are at the announcement level and XC is one of the alternative ex-

planatory variables above. Table 7 reports the corresponding estimates. Across each of
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the alternative explanations, we find that extremeness remains a statistically and eco-

nomically significant predictor of post-announcement drifts or reversals.

Figure 6: Comparison of explanatory power

Note: Figure 6 plots the category-level correlation coefficients between the category’s
post-announcement drift or reversal coefficient βC and either extremeness or other al-
ternative explanatory variables (Hypothesis). *** p<0.01, ** p<0.05, * p<0.10.

Lastly, we compare the cross-category explanatory power of our measure relative to

these alternative measures. Specifically, for each news category, we correlate the under-

overreaction coefficient, βC with each alternative variable XC from eq. (18). Figure 6 plots

the category-level correlation coefficients for extremeness and other alternative mea-

sures. Our measure of extremeness most strongly predicts cross-category variation in βC

(ρ = −0.66), which substantially exceeds that of other alternative measures. Among the

list of competing variables, 1(Scheduled)C, which has the next highest degree of correla-

tion, may capture the fact that part of the variation comes from earnings announcements

having drift while non-earnings announcements tend to have reversals. Other explana-

tory variables have relatively little correlation with drifts and reversals.
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6 Conclusion

Our theory and empirics are motivated by the following intuition: if tail events play a ma-

jor role in shaping investor beliefs, whether an investor underreacts or overreacts to news

depends on how she associates it with past tail events. If investors react to news by draw-

ing references to other news of the same category, our model predicts that the objective

distribution of tail events within each category is predictive of over-and-underreaction:

the fatter the tails, the greater the overreaction to news of that category. When applied

to a comprehensive database of corporate news, our measure predicts the cross-section of

over-and-underreaction across different news categories.

We view our current approach as a cautious first step in measuring how investors draw

associations between different events. In reality, the category of a news announcement is

just one of many features that drive associations between news announcements (Tversky,

1977; Bordalo et al., 2023a). For example, the magnitude and perceived significance of

the news, as well as characteristics of the company beyond the announcement itself, such

as its past performance, industry, and leadership, surely influence which announcements

come to mind for investors. Discovering which features of a news announcement are

salient, by leveraging text, surveys, and other richer data, is an important next step in un-

derstanding how investors react to news and ultimately how information is incorporated

into asset prices.
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7 Tables
Table 1: News Category Summary Statistics

Category N Mean MeanAbs StDev P50 Turnover
Alliance 3326 0.15 1.29 2.19 0.09 0.97
Annual Meeting 6259 0.04 1.18 1.76 0.05 1.03
Board Changes 22173 0.06 1.35 2.14 0.08 1.08
CEO Change 1132 0.03 2.12 3.75 0.02 1.88
CFO Change 1429 -0.07 1.66 3.20 0.05 1.44
Client 20990 0.10 1.26 1.98 0.10 0.95
Credit Watch 1323 0.28 2.38 4.00 0.10 2.19
Dividend 1093 0.14 2.37 3.59 0.19 1.85
Downsize 2904 -0.00 1.58 2.76 0.03 1.42
Earnings 23573 0.13 2.59 4.01 0.12 1.97
Earnings Call 15912 0.26 3.00 4.40 0.23 2.20
Expansion 10326 0.06 1.35 2.19 0.06 1.19
Guidance Confirm 19528 0.08 2.66 4.16 0.11 2.12
Guidance Lower 1172 -1.54 3.47 5.64 -0.64 2.53
Guidance Raised 2791 0.90 2.71 4.09 0.56 1.93
Lawsuit 5669 0.03 1.36 2.27 0.04 1.26
M&A Closing 11294 0.10 1.29 1.98 0.08 1.01
M&A Rumor 3622 0.43 1.75 3.21 0.13 1.41
M&A Transaction 5143 0.33 1.71 3.01 0.16 1.32
No Events 2801102 0.07 1.26 2.12 0.07 0.99
Op. Result 1456 0.00 2.37 3.38 0.00 1.95
Product 23500 0.13 1.38 2.56 0.08 1.03
Seek Investment 7900 0.15 2.01 3.22 0.09 1.43
Structure Change 2596 0.10 1.30 2.10 0.14 1.16
Writeoff 3103 0.03 2.49 3.91 0.07 1.90

Note: Table 1 reports the summary statistics of announcement-day stock returns and
trading volume for each news category in our dataset. Observations are at the news an-
nouncement level from January 1, 2011 to December 31, 2018, inclusive. The sample is
all firms listed on the major US stock exchanges with at least $2 billion in market cap-
italization. N is the number of observations. Mean is the mean, Mean of Abs. is the
mean of the absolute value, StDev is the standard deviation, and P50 is the median, of
announcement-day returns, respectively. Mean, Mean of Abs., StDev, and P50 are all re-
turns measured in percentage points. Turnover is the announcement-day trading volume
defined as the number of shares traded times the share price divided by the total market
capitalization times 100.
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Table 2: Category-level Heterogeneity

Category ζ ζ s.e. β β s.e.
Alliance 0.42 0.007 -0.13 0.23
Annual Meeting 0.37 0.008 0.19 0.20
Board Changes 0.43 0.004 -0.07 0.08
CEO Change 0.52 0.025 -0.42 0.19
CFO Change 0.52 0.014 -0.31 0.31
Client 0.39 0.006 -0.18 0.09
Credit Watch 0.46 0.015 0.04 0.20
Dividend 0.37 0.018 -0.05 0.13
Downsize 0.43 0.012 0.12 0.20
Earnings 0.33 0.007 0.07 0.04
Earnings Call 0.32 0.008 0.06 0.04
Expansion 0.38 0.008 -0.09 0.10
Guidance Confirm 0.34 0.008 0.12 0.04
Guidance Lower 0.36 0.031 -0.09 0.12
Guidance Raised 0.35 0.023 0.06 0.09
Lawsuit 0.47 0.006 0.12 0.15
M&A Closing 0.38 0.006 0.08 0.12
M&A Rumor 0.57 0.005 -0.26 0.15
M&A Transaction 0.44 0.009 -0.25 0.11
Op. Result 0.32 0.031 0.21 0.24
Product 0.41 0.002 0.03 0.09
Seek Investment 0.37 0.011 0.12 0.07
Structure Change 0.43 0.015 -0.26 0.27
Writeoff 0.39 0.022 0.13 0.11
(a) Category-Level Extremeness and Drift/Reversal

Hypothesis (1) (2) (3) (4)

Jointly equal 1.79 3.35 1.77 1.87
p-value 0.0042 <0.0001 0.0053 0.0021
Jointly equal to 0 2.55 1.84 1.72 2.92
p-value <0.0001 0.0030 0.0072 <0.0001
Industry FEs X X
Return Controls X X

(b) Testing for heterogeneity

Note: Table 2a reports the extremeness ζC and βC , the drift/reversal estimates, for each news category. ζ
is the extremeness, i.e., inverse power-law index estimated using eq. (8). ζ s.e. is the standard error for ζC
and is computed following Gabaix and Ibragimov (2011). βC is the post-announcement drift/reversal beta
estimated using eq. (11). βC s.e. is the standard error for βC , two-way clustered at the firm and day levels.
Table 2b reports the F-statistics for eq. (12). Jointly equal is the hypothesis that all βC’s are equal. Jointly
equal to 0 is the hypothesis that all βC’s are equal to 0. Industry FEs are industry fixed effects and interaction
terms of dummy variables for each industry with the announcement-day return. Return Controls are cubic
polynomials of the announcement-day returns.
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Table 3: Reversals and Extremeness

(1) (2) (3) (4)

Announcement-Day Return 0.61∗∗∗ 0.54∗∗∗ 0.77∗∗∗ 0.64∗∗∗

(0.18) (0.17) (0.25) (0.23)

Announcement-Day Return × Extremeness −1.63∗∗∗ −1.38∗∗∗ −2.07∗∗∗ −1.70∗∗∗

(0.50) (0.44) (0.68) (0.62)

Constant 0.02∗∗∗ −0.01∗∗∗ 0.01∗∗∗ −0.01∗∗∗

(0.003) (0.002) (0.003) (0.002)

Time-Varying Tails No No Yes Yes
Return Benchmark No Yes No Yes
Observations 197,498 197,498 110,748 110,748

Note: Table 3 reports the estimates corresponding to eq. (13). Observations are at the
news announcement level from January 1, 2011 to December 31, 2018. The dependent
variable is the cumulative post-announcement return from day 1 to day 90 after the an-
nouncement. Announcement-Day Return is the stock return of the firm on the day of the
announcement and is measured in percentage points. Extremeness is the inverse power-
law index ζC estimated following equation (8). Time-Varying Tails indicates whether
Extremeness is computed over a rolling past five-year window (Yes) or over the entire
sample (No). Return Benchmark indicates whether the Announcement-Day Return and
dependent variable are excess returns relative to the S&P 500 (Yes) or raw returns (No).
Standard errors are two-way clustered at the firm and day levels. *** p<0.01, ** p<0.05, *
p<0.10.
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Table 4: Summary of Robustness Exercises

Specification Coefficient SE Observations

1 Baseline -1.63 0.5 197498
2 Earnings growth extremeness -1.22 0.43 197498
3 Long-run return extremeness -1.32 0.62 197498
4 2-day announcement window -2.71 0.32 197498
5 Hour by day of week controls -1.62 0.5 197498
6 Exclude Friday announcements -1.85 0.54 174900
7 Non-parametric return controls (deciles) -1.68 0.5 197498
8 Non-parametric return controls (polynomial) -1.46 0.52 197498
9 Exclude smallest 25% of news -1.61 0.5 148126
10 Exclude smallest 50% of news -1.68 0.51 98750
11 Exclude top 0.01% of news -1.39 0.52 197300
12 Exclude top 1% of news -1.56 0.64 195522
13 Positive news only -2.16 0.82 104783
14 Negative news only -0.57 1.21 92715
15 Exclude earnings-overlapping categories -1.62 0.52 152513
16 Exclude news within 30 days -3.08 0.9 35879
17 Overlapping news controls -1.38 0.44 197498
18 All news categories -1.09 0.46 250852
19 All news categories with 1,000+ occurrences -1.18 0.48 243966
20 Small-cap stocks -1.12 0.39 226986
21 Post-announcement horizon k = 30-day -0.81 0.3 197498
22 Post-announcement horizon k = 60-day -1.18 0.4 197498
23 Exclude attrited firms -1.64 0.5 196463
24 Exclude high-attrition news categories -1.86 0.52 142651
25 Driscoll-Kraay standard errors -1.63 0.51 197498
26 Block bootstrap -0.92 0.33 197498

Note: Table 4 summarizes the robustness exercises for eq. (13). Coefficient is the main γ coefficient esti-
mate. SE is the standard error. Observations is the number of observations in the corresponding estimates
for each row. Row 1 is the baseline estimate. Rows 2 and 3 use alternative measures of extremeness. Row 4
uses ± 2 days as the announcement window. Row 5 includes hour-by-day-of-week controls. Row 6 excludes
Friday announcements. Rows 7 and 8 include decile and cubic polynomial functions of announcement-day
returns as controls. Rows 9-12 exclude the smallest 25% and 50%, and largest 0.01% and 1% of news by
absolute announcement-day returns, respectively. Rows 13 and 14 report estimates on news with positive
and negative announcement-day returns only, respectively. Rows 15 and 16 exclude news categories that
overlap with other news. Row 17 includes controls for overlapping news as in eq. (14). Rows 18 and 19
reports the estimates for all news categories and categories with 1,000+ occurrences. Row 20 reports the
results on small-cap firms. Rows 21 and 22 set the postannouncement horizons k as 30 and 60 days. Row
23 excludes announcements by firms that attrited during our sample. Row 24 excludes news categories
that had above-average attrition rates. Row 25 computes Driscoll and Kraay (1998) standard errors. Row
26 uses a block bootstrap approach (Politis and Romano, 1994) on a full firm-day panel to account for
compounded estimation errors.
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Table 5: Volume and Extremeness

(1) (2) (3) (4)
VARIABLES Turnover Turnover Turnover Turnover

Abs. Announcement-Day Return 0.25*** 0.23*** 0.19** 0.19**
(0.081) (0.079) (0.084) (0.082)

Abs. Announcement-Day Return × Extremeness 0.64*** 0.76*** 0.90*** 0.91***
(0.22) (0.22) (0.23) (0.23)

Constant 0.0053*** 0.0050*** 0.0058*** 0.0058***
(0.00028) (0.00031) (0.00026) (0.00028)

Observations 197,498 197,497 197,498 197,497
R-squared 0.371 0.394 0.395 0.412
Trading Day FEs No Yes No Yes
Return Benchmark No No Yes Yes

Note: Table 5 reports the estimates corresponding to eq. (15). Observations are at the
news announcement level from January 1, 2011 to December 31, 2018. The dependent
variable is the announcement-day turnover, defined as the volume of shares traded times
the share price divided by the market capitalization. Abs. Announcement-Day Return
is the absolute value of the announcement-day return and is measured in percentage
points. Extremeness is the inverse power-law index ζC estimated following eq. (8). Trad-
ing Day FEs indicates whether the specification includes trading day fixed effects. Return
Benchmark indicates whether the Announcement-Day Return and dependent variable
are excess returns relative to the S&P 500 (Yes) or raw returns (No). Standard errors are
two-way clustered at the firm and day levels. *** p<0.01, ** p<0.05, * p<0.10.
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Table 6: Expectations and Extremeness

(1) (2) (3)

Forecast Revision 0.83∗∗∗ 0.71∗∗∗ 0.41∗∗∗

(0.12) (0.11) (0.10)

Forecast Revision × Extremeness −0.80∗∗ −0.78∗∗ −0.43
(0.35) (0.31) (0.28)

Constant −0.002∗∗∗

(0.0002)

Analyst FEs X
Firm FEs X
Observations 949,419 949,419 949,419

Note: Table 6 reports the estimates corresponding to eq. (17). Observations are at the an-
alyst by announcement level from January 1, 2011 to December 31, 2018. The dependent
variable is the analyst forecast error, defined as the realized earnings-per-share (EPS) mi-
nus the analyst forecast, divided by the stock price at the time of the forecast. Forecast
Revision is the change in EPS forecast from before to after the news announcement, di-
vided by the stock price before the announcement. Extremeness is the inverse power-law
index ζC estimated following equation (8). Analyst FEs and Firm FEs are analyst and firm
fixed effect, respectively. Standard errors are two-way clustered at the analyst and firm
levels. *** p<0.01, ** p<0.05, * p<0.10.

44



Table 7: Alternative Explanations

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Announcement-Day Return 0.599∗∗∗ 0.846∗∗∗ 0.770∗∗∗ 0.596∗∗∗ 0.759∗∗∗ 0.691∗∗∗ 0.936∗∗∗ 0.595∗∗∗ 0.619∗∗

(0.180) (0.278) (0.221) (0.182) (0.218) (0.211) (0.287) (0.180) (0.241)
Announcement-Day Return x Extremeness -1.533∗∗∗ -1.922∗∗∗ -1.732∗∗∗ -1.429∗∗∗ -1.818∗∗∗ -1.594∗∗∗ -2.276∗∗∗ -1.488∗∗∗ -1.559∗∗∗

(0.479) (0.565) (0.479) (0.500) (0.540) (0.493) (0.696) (0.552) (0.529)
Announcement-Day Return x Alternative Var. 1.473 -0.032 -2.440 -0.246 -0.095∗ -0.167 -0.102 -0.000 -0.880

(7.270) (0.032) (2.416) (0.168) (0.049) (0.162) (0.065) (0.000) (7.943)
Alternative Hypothesis Mean IQR SD Abs. N Largest Scheduled Media Informativeness

Observations 197498 197498 197498 197498 197498 197498 197498 197498 197498

Note: Table 7 reports the estimates corresponding to eq. (18). Observations are at the news announcement level from
January 1, 2011 to December 31, 2018. The dependent variable is the post-announcement return, i.e., cumulative return
from day 1 to day 90 subsequent to the announcement. Announcement-Day Return is the return of the stock on the day
of the announcement, expressed in percentage points. Extremeness is the inverse power-law index ζC estimated following
equation (8). Alternative Var. is the explanatory regressor for alternative hypotheses, computed at the category level.
Mean is the average announcement-day return. IQR is the interquartile range of the announcement-day return. SD is the
standard deviation of the announcement-day return. Abs. is the absolute value of the announcement-day return. N is
the number of total occurrences of the announcement. Largest is the average of the five largest absolute announcement-
day returns for each news category. Scheduled is an indicator variable for news categories that occur on pre-announced
schedules (operating results, earnings, guidances, dividends, earnings calls, and annual meetings). Media is the average
number of news articles written about the firm on the day of the announcement. Informativeness is the measure of price
informativeness computed following Dávila and Parlatore (2018). Standard errors are two-way clustered at the firm and
day levels. *** p<0.01, ** p<0.05, * p<0.10.
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A Proofs and theoretical extensions

A.1 Proof of Proposition 1

We first compute the rational and diagnostic distribution (and the implied expected

value) of v. Without loss of generality, let us focus on the case where the signal is posi-

tive (s ≥ 0) (the converse case follows in a symmetric manner). Rational posteriors upon

seeing s ≥ 0 are given by the following expression:

πC(v|sj) ∝ v
−(ζ−1
C,pos+2) for v ≥ v1,C ≡max{sj ,v0,C}. (19)

Under diagnostic expectations, this is contrasted with the “no news” distribution,

which consists of the posterior distribution where a) there is no news (so the correct prior

distribution is πd), and the realization of the signal is equal to its ex ante expected value

s = 0). That simply consists of:

πd(v|s = 0) ∝ πd(v) · 1
v

(20)

The diagnostic distribution is thus given by:

πθC (v|sj) ∝ πC(v|sj) ·
(
πC(v|sj)
πd(v|s = 0)

)θ
∝ v−(ζ−1

C +2)+θ(ζ−1
d −ζ

−1
C ) for v ≥ v1,C (21)

One can compute the expected value of the rational and diagnostic posteriors:

EC[v|sj] = (1 + ζC)v1,C

EθC [v|sj] = (1 + ζC,θ)v1,C

(22)

where

ζ−1
C,θ = ζ−1

C +θ(ζ−1
C − ζ

−1
d ). (23)
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Simplifying, ψ, the ratio between diagnostic and rational expectations, is given by:

1 + ζC,θ
1 + ζC

=
1 + (ζ−1

C +θ(ζ−1
C − ζ

−1
d ))−1

1 + ζC
=

1 + ζC +θ(1− ζCζd )

(1 + ζC)(1 +θ(1− ζCζd ))
, (24)

as desired. From the expression, it is immediate that ψ = 1 when ζC = ζd .

To prove the comparative static with respect to ζC, note that the derivative of the above

with respect to ζC has the same sign as:

ζd(ζ2
C + 2ζC − ζd)−θ(ζC − ζd)2 = ζdζC(1 + ζC) + ζd(ζC − ζd)−θ(ζC − ζd)2

= ζdζC
(
1 + ζC + (ζC − ζd)(ζ−1

C +θ(ζ−1
C − ζ

−1
d ))

)
.

(25)

First, if ζC > ζd , the above is clearly positive. Second, if ζC < ζd , recall that we have by

assumption:

ζ−1
C +θ(ζ−1

C − ζ
−1
d ) > 1 (26)

(for the diagnostic posterior to have a well-defined mean). Thus, the following inequality

holds:

ζdζC
(
1 + ζC + (ζC − ζd)(ζ−1

C +θ(ζ−1
C − ζ

−1
d ))

)
> ζdζC (1 + ζC + (ζC − ζd)) > ζdζC(2ζC+1−ζd) > 0,

(27)

where the last inequality is implied by ζd < 1.

A.2 Proof of Corollary 1

Proof. This proceeds immediately from Proposition 1 and the following identity:

βCG =
Cov(FEi,1,FRi,1)
V ar(FRi,1)

=
Cov(v −Eθi,t[v|C, sj],E

θ
i,t[v|C, sj])

V ar[Eθi,t[v|C, sj]]
= 1−ψ−1(ζC ,ζd ,θ), (28)

where the last equation uses the identity that rational forecast errors are unpredictable

given i’s time 1 information set: Cov(v −Erati,t [v|C, sj],Erati,t [v|C, sj]) = 0.
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A.3 Proof of Proposition 2

Deriving the algebraic expressions Market clearing implies that log prices settle to:

log(p1) = log(F0) +
∫
EθC [v|sj]di

log(p2) = log(F0) +
∫
EC[v|sj]di

(29)

respectively. By Proposition 1, the average expectations of v integrated across diagnostic

investors are given by:

∫ v

s=0
EθC [λ|s] · f (s|λ)ds = (1 + ζC,θ) ·

∫ v0,C

0

1
v
· v0,Cds+

∫ v

v0,C

1
v
s · ds

 = (1 + ζC,θ) ·
v2

0,C + v2

2v
.

(30)

By the same token, the analogous expression for rational investors are given by:

(1 + ζC) ·
v2

0,C + v2

2v
. (31)

Thus, from the above expressions, one immediately obtains:

log(p1) = log(F0) + (1 + ζθ,C) · ηC(v), log(p2) = log(F0) + (1 + ζC) · ηC(v), (32)

with period 1 and 2 returns ri = log(pi)− log(pi−1), i ∈ {1,2} satisfying

r2 = βretC · r1, βretC ≡
ζC − ζC,θ
1 + ζC,θ

. (33)

Trading volume at t = 1 in reaction to the news is given by:

V ol =
1
2
κ · (1 + ζθ,C) · (1− ηC(v))2 . (34)

As for volume, note that we can compute the aggregate position of people who are
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long the asset:

V ol =
∫ v

s∗
DDE(s,p1)ds, (35)

where s∗ is the signal such that the subjective expectation of v equals the average expec-

tations. or:

s∗ =
log(p1)− log(F0)

1 + ζC,θ
(36)

Plugging this, we obtain:

V ol = κ
∫ v

s∗
((1 + ζC,θ)s − (log(p1)− log(F0)))

1
v
ds

=
1
2
κ(1 + ζC,θ)(v − s∗)2 =

1
2
κ · (1 + ζC,θ) ·

v2 − v2
0,C

2v

2

.

(37)

Comparative statics The comparative statics with respect to ζC for volume follows im-

mediately from the above expression. Regarding the drift-reversal coefficient βretC , note:

βretC =
ζC − ζC,θ
1 + ζC,θ

=
θ(1− ζCζd )

1 + ζ−1
C +θ(ζ−1

C − ζ
−1
d )

= θ ·
ζC(1−

ζC
ζd

)

1 + ζC +θ(1− ζCζd )
. (38)

From the above expression, βretC < 0 if and only if ζC > ζd . To show the comparative static

with respect to ζC, one can take the derivative of the above expression and find that the

above has the same sign as:

−
(
ζd(ζ2

C + 2ζC − ζd)−θ(ζC − ζd)2
)

= −ζdζC
(
(1 + ζC) + ζ−1

C (ζC − ζd) +θ(ζ−1
C − ζ

−1
d )(ζC − ζd)

)
= −ζdζC

(
(1 + ζC) + (ζ−1

C +θ(ζ−1
C − ζ

−1
d ))(ζC − ζd)

)
.

(39)

The inequality follows in exactly the same way as above: if ζC > ζd , the above term is

clearly negative. If ζC < ζd , the above term is bounded above by:

− ζdζC((1 + ζC) + ζC − ζd) < 0, (40)
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so βretC is decreasing in ζC, as desired.

A.4 Proof of Corollary 3

Proof. The result follows immediately from Proposition 2, and the fact that power-law

distributions are closed under affine transformations: if X ∼ Fpower(v0,ζ
−1), AX + B ∼

Fpower(Av0 +B,ζ−1).

A.5 Model extension: asymmetric tails and ambiguous signals

We extend the model to allow for two additional features. First, we allow the default

distribution to have asymmetric tails: this is to reflect the fact that the distribution of

stock returns (even outside of news events) may have a fatter left-tail. Second, we allow

for ambiguity in the interpretation of a news of a given category: an investor may believe

for instance that a CEO change may be positive or negative news.

A.5.1 Set-up

Asymmetric tails Thus, we consider the default distribution of the form:

πd(v) =


π0(v) for |v| < v0,d

Cpos · |v|−(ζ−1
pos+1) for v > v0,d

Cneg · |v|−(ζ−1
neg+1) for v < −v0,d ,

(41)

where Cpos and Cneg are adjusted such that the mean of v is 0. Similarly, upon the an-

nouncement of an event of category C, the distribution of v is power-law with potentially

asymmetric tails. In this case, however, we do not impose the expectation of v to be 0: a

news of a given category may on average be positive or negative news.

πC(v) =


CC,pos · |v|

−(ζ−1
C,pos+1) for v > v0,C

CC,neg · |v|
−(ζ−1
C,neg+1) for v < −v0,C

(42)
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As before, we assume v0,C > v0,d .

Ambiguous signals As before, we assume a conjugate distribution s0 ∼ Unif [0,v] for

the distribution of noisy signals, but assume that with probability q(|s0|), where q(|s0|) ≤ 1
2 ,

the sign of the signal may be reversed. In other words, we assume:

s = s0 · (−1)X , (43)

where s0 ∼ Unif [0,v] (or Unif [v,0] for v < 0) and X ∼ Bern(q(|s0|)). In particular, we

assume for simplicity that the probability of a sign flip only depends on the magnitude of

the realized signal s0, which nests the case of constant probability. Thus, a positive signal

s may arise from a positive realization of v, or potentially a negative realization, with the

signs reversed. The higher the q, the greater the ambiguity of the signal.

A.5.2 Rational and diagnostic posteriors

Without loss of generality, let us focus on the case where the signal itself is positive (s ≥ 0)

(the converse case follows in a symmetric manner). Rational posteriors upon seeing s ≥ 0

are given by the following expression:

πC(v|sj) ∝


(1− q(|sj |)) ·CC,pos · v

−(ζ−1
C,pos+2) for v ≥ v1,C ≡max{sj ,v0,C}.

q(|sj |) ·CC,neg · |v|
−(ζ−1
C,neg+2) for v < −v1,C

(44)

Thus, unlike the baseline case, upon seeing a positive signal, the investor may interpret

it as good or bad news.

Under diagnostic expectations, this is contrasted with the “no news” distribution,

which consists of the posterior distribution where a) there is no news (so the correct prior

distribution is πd), and the realization of the signal is equal to its ex ante expected value

s = 0). That simply consists of:

πd(v|s = 0) ∝ πd(v) · 1
v

(45)
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The diagnostic distribution is thus given by:

πθC (v|sj) ∝ πC(v|sj) ·
(
πC(v|sj)
πd(v|s = 0)

)θ
∝


((1−q(|sj |))CC,pos)θ+1

Cθpos
v
−(ζ−1
C,pos+2)+θ(ζ−1

pos−ζ−1
C,pos) for v ≥ v1,C

(q(|sj |)CC,neg )θ+1

Cθneg
v
−(ζ−1
C,neg+2)+θ(ζ−1

neg−ζ−1
C,neg ) for v < −v1,C

(46)

One can compute the expected value of the rational and diagnostic posteriors:

EC[v|sj] =
(1− q(|sj |))

CC,pos
ζ−1
C,pos

v
−ζ−1
C,pos

1,C − q(|sj |)
CC,neg
ζ−1
C,neg

v
−ζ−1
C,neg

1,C

(1− q(|sj |))
CC,pos
ζ−1
C,pos+1

v
−(ζ−1
C,pos+1)

1,C + q(|sj |)
CC,neg
ζ−1
C,neg+1

v
−(ζ−1
C,neg+1)

1,C

EθC [v|sj] =
(1− q(|sj |))

CC,pos
ζ−1
C,θ,pos

v
−ζ−1
C,θ,pos

1,C ·Mpos,θ − q(|sj |)
CC,neg
ζ−1
C,θ,neg

v
−ζ−1
C,θ,neg

1,C ·Mneg,θ

(1− q(|sj |))
CC,pos

ζ−1
C,θ,pos+1

v
−(ζ−1
C,θ,pos+1)

1,C ·Mpos,θ + q(|sj |)
CC,neg

ζ−1
C,θ,neg+1

v
−(ζ−1
C,θ,neg+1)

1,C ·Mneg,θ

(47)

where

Mpos,θ =
(

(1− q(|sj |))CC,pos
Cpos

)θ
, Mneg,θ =

(
q(|sj |)CC,neg

Cneg

)θ
ζ−1
C,θ,pos = ζ−1

C,pos +θ(ζ−1
C,pos − ζ

−1
pos), ζ

−1
C,θ,neg = ζ−1

C,neg +θ(ζ−1
C,neg − ζ

−1
neg)

(48)

A.5.3 Comparative statics: ambiguous signals

Let us first consider the minimum departure from the main model, where the signal

itself can be ambiguous: q(|sj |) , 0. Otherwise, assume that the distributions are symmet-

ric: both the default distribution and the news category distribution has symmetric tails

(Cpos = Cneg , ζpos = ζneg , CC,pos = CC,neg , ζC,pos = ζC,neg). In that case, one obtains that the

core result in the main theory continues to hold:

Proposition 3. Under the symmetric case, for any specification of signal ambiguity q(|sj |),

the distortion introduced by diagnostic expectations takes the following form:

EθC [v|sj] =
1 + ζC,θ
1 + ζC

·

(1−q(|sj |))θ+1−q(|sj |)θ+1

(1−q(|sj |)θ+1+q(|sj |)θ+1

1− 2q(|sj |)
EC[v|sj]. (49)
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As is the unambiguous case, the degree of overreaction is increasing for more extreme

distributions (ζC ↑) and the diagnosticity parameter θ.

Proof. The proof follows immediately from the earlier comparative static proof and the

fact that the second multiplicative term of the RHS is independent of ζC.

Relative to the unambiguous case, for q(sj) ≤ 1
2 , the second term is greater than 1:

there is a general force for greater overreaction independent of ζC. The intuition is sim-

ple: under ambiguous signals, a positive realization of s is more diagnostic of positive

outcomes of fundamentals than negative outcomes. This implies that in response to a

positive signal, the diagnostic investor is overly optimistic, which further boosts the de-

gree of overreaction. Even under this extension, however, our core prediction remains

unchanged: greater overreaction for more extreme categories.

A.5.4 Comparative statics: asymmetric tails

Next, consider the other variation: we temporarily shut off signal ambiguity (q = 0), and

allow for both the reference distribution and the news category tails to be asymmetric. In

that case, one obtains the following result:

Proposition 4. The distortion introduced by diagnostic expectations takes the following

form:

EθC [v|sj] =


1+ζC,θ,pos
1+ζC,pos

EC[v|sj] for sj > 0

1+ζC,θ,neg
1+ζC,neg

EC[v|sj] for sj < 0.
(50)

The degree of overreaction for each case is increasing in the relative extremeness

ζC,pos/ζpos and ζC,neg /ζneg .

In particular, the above proposition makes it clear that if the default distribution ex-

hibits a left skew (because of, for instance, broad stock market downturns that are inde-

pendent of any corporate news events), this implies a greater degree of underreaction for

negative news events than positive news events. Intuitively, even if a news event makes

a negative tail outcome likely, it is not disproportionately likely relative to what the in-

vestor already expects from a default reference distribution.
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B Robustness Exercises

B.1 Sorted portfolios

A classic alternative measure of over-or-underreaction to news is given by returns to

sorted portfolios. For each news category, one can form a version of a sorted portfolio

based on announcement-day returns. Pooling across all announcements in category C, we

divide the announcements into deciles by announcement-day returns. We denote:

rCsorted,k ≡ (r̄10
C,k − r̄

1
C,k), (51)

where r̄ iC,k are average k-day post-announcement returns of announcements in the i-th

decile of announcement-day returns pooling all announcements in C.

Similarly, one can pool all announcements in news category C ∈ C
+, the news cat-

egories for which we have obtained a positive drift-reversal coefficient, and announce-

ments in news category C ∈ C−, the news categories for which we have obtained a negative

drift-reversal coefficient, to form two sorted portfolios:

r+
sorted,k ≡ (r̄10

+,k − r̄
1
+,k), r

−
sorted,k ≡ (r̄10

−,k − r̄
1
−,k), (52)

where r̄ i+,k , r̄
i
−,k are average k-day post-announcement returns of announcements in the

i-th decile of announcement-day returns pooling all announcements in C
+ and C

−.

These returns are not returns to a sorted portfolio in a strict sense, as the news an-

nouncements do not occur on the same date. However, it is meant to be an exercise to

illustrate the economic magnitude of return predictability across categories. Figure A2

plots both the relationship between βC and rCsorted,k as well as the cumulative returns for

r+
sorted,k and r−sorted,k. We find that our drift reversal coefficients correspond tightly to the

returns of the equivalent sorted portfolio, and that the economic magnitude of drifts and

reversals that we find are comparable: a long-short portfolio for news categories with

drift gains 61 basis points (bps) over 90 days, while the same strategy for news categories

with reversals loses 111 bps in the same period.
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B.2 Robustness in measuring extremeness

We show that our measurement of category extremeness, ζC, is robust to various specifi-

cations. First, and consistent with Prediction 4, Table A1 reports the pairwise correlation

between the tail measures, where we use the announcement-day return (our main spec-

ification), 100-day cumulative returns (which should be a less biased estimate of funda-

mentals), and k year realized earnings growth, for k = 1,2,3,4,5. We find a high level

of correlation between all of the tail measures at the news category level. In particu-

lar, as shown in Figure A3, the extremeness computed using announcement returns and

realized earnings growth (at horizon k = 2 for the figure) are tightly correlated.

After establishing Prediction 4, we now re-run our main analysis with our alternative

measures of category extremeness. Our main specification, using tails estimated from

announcement-day returns, is subject to two concerns. First, announcement-day returns

can be biased estimates of true fundamentals, and may be affected by other factors, such

as time-varying investor risk aversion or market microstructure. Second, if the mispricing

driven by investor overreaction itself has fat-tails, one may potentially have a reverse

causality concern: categories that are associated with greater overreaction then may have

fatter-tailed distribution of announcement-day returns, without any differences in the

tails of the underlying fundamentals.

To address both concerns, we repeat our analysis with the category extremeness esti-

mated based on long-run (100-day) returns, as well as realized earnings growth (for firms

with EPS greater than $0.1 at the time of the announcement) for k = 1,2,3,4,5 years. Ta-

ble A2 shows the results. We estimate a similar negative γ coefficient for each of the

alternative measures.

B.3 Accounting for announcement timing

Expanded announcement window We also account for potential issues around the

announcement timing. The first issue is whether there may be measurement errors

in the true announcement timing. Alternatively, some announcements may have pre-

announcement leakages, with some investors being aware of the announcement before

10



the measured announcement timing. To address these issues, we use an expanded an-

nouncement window, of ±2 days before and after the news announcement date, as alter-

native definitions of the announcement returns. Specifically, for a news announcement

recorded on date t (either during trading hours on date t or after trading hours on date

t − 1), we consider the announcement window from the close on date t − 3 to the close on

date t+2. Concretely, the expanded announcement windows modify our main regression

to:

ri,t+3,t+k,C = α + β0 · ri,t−2,t+2,C +γ · ζC,t × ri,t−2,t+2,C + εi,t,C. (53)

Observations are at the announcement level. The expanded announcement window is

reflected in the announcement return being ri,t−2,t+3,C, i.e., the return from the close of

date t−3 to the close of date t+2. We also modify the dependent variable to be rc,t+3,t+k,C,

which is the cumulative post-announcement return from the close on date t+2 to the close

on date t + k. As in the case of main regression in the draft, γ , the coefficient of interest,

captures the correlation between the future drift/reversal and the extremeness of each

news category. Table A3a reports the results corresponding to eq. (53), also including a

version where we use a ±1 day expanded window: our estimates of γ remain negative

and economically and statistically significant.

Strategic timing Another potential source of bias is that firms may strategically choose

when to release their announcements. To control for strategic announcements, we employ

two sets of empirical strategies: (1) we control for the release timing of the announce-

ments, and (2) exclude potentially strategically-released news announcements.

First, we directly control for the release time of the announcement by including in-

dicators for the (1) hour of the day (e.g., 2pm ET), (2) day of week (e.g., Tuesday), and

(3) the interaction of hour of the day by day of week (e.g., Tuesday 2pm ET) in our main

empirical specification as follows:

ri,t+1,t+k,C = α +
∑
d∈D

βd · ri,t,C · 1(Time = d) +γ · ζC,t × ri,t,C +µd + εi,t,C. (54)

which is our main specification with two changes. First, we include a set of interaction
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terms of indicators for whether the announcement time was at a particular hour of day by

day of week 1(Time = d) multiplied by the announcement-day return ri,t,C. This accounts

for any variation in post-announcement drift or reversals due to different release times,

such as if investors pay less attention on Friday afternoons (and hence be associated with

greater drift). Second, we include fixed effects for the hour of day by day of week, µd ,

which account for differences in the levels of the returns of the news at different release

times, for example if firms strategically release more negative news on Friday afternoons.

Second, the literature on strategic releases of announcement timings finds that strate-

gic releases are primarily concentrated on Friday evenings (Michaely et al., 2016). As

such, we also test whether our main result holds among announcements that are less

likely to be affected by managers’ strategic release decisions. We conduct our analysis by

excluding three sets of news: (1) announcements made on Fridays, (2) announcements

made on Friday evenings, and (3) announcements made by firms that most frequently (in

the top decile) release on Friday evenings.

Tables A3b and A3c report the results. Table A3b shows that our results are largely

unchanged excluding after-hours announcements. Columns (1) through (3) of Table A3c

report the results controlling for the release time of the news, and Columns (4)-(6) report

the results excluding the three sets of announcements likely to be associated with strate-

gic releases. In all specifications, our main coefficient of interest γ remains qualitatively

and quantitatively unchanged.

B.4 Accounting for the size and sign of the news

Flexibly controlling for announcement returns In this section, we control for other

characteristics of the news that may influence investor reaction. First, investors may

generally overreact to large news, or perhaps large movements in prices may just au-

tomatically lead to reversals (Chan, 2003). Second, investors may also react differently

to positive vs negative news (Hong et al., 2000). To account for any relationship between

announcement returns and post-announcement returns unrelated to the news category,
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we add as controls non-linear functions of announcement-day returns:

ri,t+1,t+k,C = α + β0 · ri,t,C +γ · ζC,t × ri,t,C + f (ri,t,C) + εi,t,C. (55)

where f (ri,t,C) is either (a) a cubic polynomial or (b) f (ri,t) =
∑10
d=1γd · 1(ri,t ∈ ∆d),

where 1(ri,t ∈ ∆d) is an indicator variable for whether ri,t is in the d-th decile of all

announcement-day returns. Table A4 reports the results, with the polynomial control

in column (1) and the decile control in column (2), showing that the results are again

consistent regardless of the exact specification used. Figure A4 plots the estimated func-

tion f for the cubic polynomial specification. We find suggestive evidence that consistent

with the literature, there tends to be more short-term drift for negative news (and rever-

sals for positive news). Restricted to positive news, the estimated function is also weakly

concave, suggesting a greater degree of reversals to large announcement-day return.

Where are our results concentrated? While we have shown that our results are robust

controlling for any non-linear relationship between announcement returns and future re-

turns, we also explore where our findings are concentrated in the data. First, one concern

may be that our analysis may be dominantly driven by reaction to small, inconsequential

news announcements. In Table A5a, we repeat our analysis sequentially removing news

announcements with the smallest 25%, 50%, and 75% of absolute announcement-day

returns. Our results continue to hold robustly across each subsample, with suggestive

evidence that the category extremeness is most strongly predictive for announcements

with large announcement-day returns.

Conversely, another concern may be that our results are driven by outliers. To re-

iterate, even if the main predictor of category extremeness is derived from the distribu-

tion of its tail events, our theory and empirics predict biases for all news of that given

category. To ensure that our results hold for the broad sample, Table A5b repeats our

analysis excluding the top 0.01%, 0.05%, 0.1%, 0.5%, and 1% of news events; we still

estimate our category extremeness based partially on these events (ζC), but exclude them

from the sample in our main return predictability regression. We similarly find that our
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results are robust to excluding outlier events.

Lastly, we also repeat our entire analysis by separating positive and negative news

events. Table A5c reports the results. We find that our findings are most pronounced

for positive news, and the same direction, but smaller in magnitude and statistically in-

significant amongst negative news.

B.5 Accounting for overlapping announcements

In this section, we address the potential concern that the predictability for a given news

category can be due to systematic overlap with another category. Suppose that a news

category C′ is systematically preceded by an announcement from category C. Then, the

return predictability of category C′ can reflect instead return predictability of C. For

example, if there is continued drift for one news category, a news category that systemat-

ically follows that category may also be mechanically associated with drift.

We address this concern in two ways. First, we exclude announcements for which

overlap may be a concern: there may be a closely preceding announcement. In our most

stringent criterion, we remove all announcements that had any other news occur to the

firm in the 30 days prior to the announcement. This approach is more demanding on

the data and results in a smaller sample of 35,000 announcements. Alternatively, given

that earnings announcements are the most regular announcements, and hence the most

likely to generate systematic overlap with other news categories, we exclude all news

categories that co-occur with earnings announcements more than 50% of the time. Table

A6a reports the results for both exercises. In both cases, we find that our main result

that more extreme categories of news have more post-announcement reversals, holds, as

indicated by the negative coefficient estimate on γ .

Second, instead of removing samples for which overlaps can be a concern, we in-

stead directly account for any return predictability driven by the presence of past news

announcements. This approach allows us to use all news announcements and the full

extent of the data. Formally, we estimate on the full data set the following regression:
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ri,t+1,t+k,C = α + β0 · ri,t,C +γ · ζC,t × ri,t,C +
∑
C′∈C

90∑
h=1

θC′ ,h · I(i,C′, t − h) · ri,t−h,C′ + εi,t,C, (56)

where I(i,C, t) is an indicator for whether firm i has experienced an announcement of

category C on date t. Equation 56 augments our main specification by also accounting for

the component of returns that may be due to past news. θC′ ,h accounts for the component

of the return predictability due to news announcements of category C′ that occurred h

days prior to the current announcement.

While our main specification controls for the impact of past news events, we also

consider the case where we estimate equation 56 controlling for future news events:

h = −90,−89, ...,−1,1,2, ...90. This is to address concerns that part of the return pre-

dictability may be driven by ri,t,C anticipating the arrival of future news (for example,

a bad earnings announcement can be predictive of future CEO firings). In that case, the

regression is no longer predictive: γ instead measures the degree of predictability hold-

ing fixed the realization of future news, with a negative γ suggesting greater reversals

even after controlling for the arrival of future announcements. Table A6b reports the

estimates for our standard specification (only using past events), accounting for future

announcements, and both. Across all specifications, we find a significant γ of a similar

magnitude to our baseline estimates.

B.6 Sample selection

Table A7 lists all of the news categories that have occurred at least 1000 times in our sam-

ple, as well as our criteria for including a given news category in our final sample. We

have excluded news categories that we judged to be not directly pertinent to the funda-

mentals of the company. These include purely administrative announcements (e.g. news

about earnings release date), index inclusion announcements, as well as capital structure

announcements, such as announcing buybacks transactions and their closing.

There are two types of concerns about our sample selection. First may be that our

results are not robust to category exclusion: for example, our results may depend on a
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particular influential category. Alternatively, one may disagree with a particular news

category in our final sample. To ensure that our results are robust to the exclusion of any

particular news category, we report the correlation between the category level extreme-

ness ζC and the drift-reversal coefficient βC, where we exclude one of each news category

in our sample. Table A8 reports the results: the category extremeness and drift-reversal

coefficients are tightly correlated across all subsamples.

Second, another concern may be that we have unfairly excluded certain news cate-

gories. For example, announcements of dividends, buybacks, IPOs, SEOs, and other cap-

ital structure news can be informative about fundamentals. Table A9 repeats our analysis

including additional news categories. Our results remain significant as we add back the

major captial structure news that we have excluded, as well as including all news cate-

gories with more than 1000 occurrences, and even all news categories in our sample. The

last result, however, is not particularly informative: the additional announcements form

a negligible fraction of the total sample size.

B.7 Other robustness tests

Small cap stocks We have also previously removed small-cap stocks (stocks with lower

than $2B market capitalization) to account for liquidity issues. We show that our results

do not depend on this choice: Table A10 shows that our results are unchanged even when

including small-cap stocks.

Attrition Another potential concern is that of attrition: certain firms in our sample

may drop out after the announcement. This may induce selection bias in our measure

of announcement returns, especially for negative categories of news (e.g. a downward

guidance event). To ensure that attrition is not confounding our results, we repeat our

analysis on the sample of firms that are non-attrited, i.e. present until the end of the

sample. Furthermore, in case some news categories are more associated with attrition, we

also repeat our analysis dropping all news categories with below-mean rate of attrition

among firms experiencing a news in that category. Table A11a shows that our results are

largely unchanged for these subsamples. Furthermore, given that our long-run earnings
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growth measure may also suffer from attrition results, Table A11b also shows that our

main results continue to hold when we alternatively use 30, 100, and 250 cumulative

returns to estimate category extremeness.

Standard errors Finally, we also use more conservative standard errors. First, given

that our announcement windows may overlap in our sample, our errors can be not only

correlated at the firm and day level (which our clustered errors account for), but also

at the same firm that may have overlapping events. To account for the overlaps in the

windows and autocorrelated errors, we use Driscoll-Kraay standard errors (Driscoll and

Kraay, 1998). Table A12 reports the results: our estimates remain statistically signif-

icant. Another concern is that our results may be subject to compounded estimation

error: our standard errors need to account for errors in our estimates of ζC (Pagan, 1984;

Murphy and Topel, 2002). To address this, we use a block bootstrap procedure (Politis

and Romano, 1994) on a full firm-day panel and estimate the γ coefficient on each boot-

strap sample following equation (13). Figure A5 presents the density plot of the γ esti-

mates from the bootstrap samples. The mean is −0.92 and the empirical 95% interval is

[−1.58,−0.29], which is broadly in line with the estimated γ coefficients reported in Table

3, with the point estimate being smaller but the statistical inference largely unchanged

after accounting for generated regressors.

C Details for measuring price informativeness

Dávila and Parlatore (2018) construct a measure of relative price informativeness based

on the difference in the R2 of the following set of regressions:

Mi,t = α + βE ·Ei,t + εi,t,

Mi,t = α′ + βE,1 ·Ei,t + βE,2 ·Ei,t+1 + ε′i,t,

whereMi,t is the valuation of firm i at time t, Ei,t is realized fundamentals (total earnings)

of firm i at time t, and Ei,t+1 is future fundamentals (total earnings in the subsequent
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year) for firm i at time t. Denote the R2 of each regression as R2
0 and R2

1 respectively.

The measure of relative price informativeness is then given by: τ = R2
1−R

2
0

1−R2
1

. Intuitively,

the more informative prices are of future fundamentals, a larger part of current prices

should reflect innovations to future earnings, Ei,t+1, and hence a greater R2
1. Lastly, given

the measure τ , it can be transformed into the Kalman gain measure, κ = τ
1+τ .

For our application, we are interested in measuring the informativeness of news from

a given category. For each announcement ni,ta,C (an announcement of category C for firm i

that occurred at date ta), denote Ei,tpre as the EPS (earnings-per-share) of firm i announced

at date tpre, which is the latest annual earnings announcement for firm i that is at least

180 days before ta. Similarly, denote Ei,tpost as the EPS (earnings-per-share) of firm i an-

nounced at date tpost, which is the earliest annual earnings announcement for firm i that

is at least 180 days after ta. The reason we ensure that there are at least 180 days between

ta and the earnings releases is to have a fair comparison between categories that occur

systematically close to earnings announcements and those that do not.

For Mi,t, the valuation of firm i at time t, we define Mi,ta−10 and Mi,ta+10 as the price

per share of firm i 10 days before and after ta. With these measures, we run two versions

of the above price informativeness regression. First, we run:

Mi,ta−10 = α + βpreE ·Ei,tpre + εi,t,

Mi,ta−10 = α′ + βpreE,1 ·Ei,tpre + βpreE,2 ·Ei,tpost + ε′i,t.

Denote R2
0,pre and R2

1,pre as the R2 of the two regression specifications. Then, the price in-

formativeness 10-days before the announcement is given by τpre =
R2

1,pre−R
2
0,pre

1−R2
1,pre

. To measure

the price informativeness 10 days after the announcement, we similarly run:

Mi,ta+10 = α + βpostE ·Ei,tpre + εi,t,

Mi,ta+10 = α′ + βpostE,1 ·Ei,tpre + βpostE,2 ·Ei,tpost + ε′i,t,

where we denote R2
0,post and R2

1,post as the R2 of the two regression specifications. The

price informativeness 10-days after the announcement is given by τpost =
R2

1,post−R
2
0,post

1−R2
1,post

.
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For both regressions, we pool all announcements of category C, winsorize at the 10%

level, and exclude announcements for which we do not have Ei,tpre or Ei,tpost (i.e. earnings

announcements that are at least 180 days away from ta).

Our measure of the informativeness of news in category C is given by how much the

announcements result in an increase in price informativeness:

κC ≡ κC,post −κC,pre,

where κC,post =
τpost

1+τpost
and κC,pre =

τpre
1+τpre

are the transformations of τpost and τpre into the

equivalent Kalman gain. Intuitively, κC reflects the increase in the price informativeness

after announcements of category C: the more informative a news from a given category,

the greater prices should be predictive of future fundamentals after the announcement.
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D Additional Tables and Figures

Figure A1: All robustness tests, summary figure

Note: Figure A1 plots the point estimates and 95% confidence intervals of our main coef-
ficient of interest, γ , across each robustness exercise in Table 4. Row 1 is the baseline esti-
mate. Rows 2 and 3 use alternative measures of extremeness. Row 4 uses ± 2 days as the
announcement window. Row 5 includes hour-by-day-of-week controls. Row 6 excludes
Friday announcements. Rows 7 and 8 include decile and cubic polynomial functions of
announcement-day returns as controls. Rows 9-12 exclude the smallest 25% and 50%,
and largest 0.01% and 1% of news by absolute announcement-day returns, respectively.
Rows 13 and 14 report estimates on news with positive and negative announcement-day
returns only, respectively. Rows 15 and 16 exclude news categories that overlap with
other news. Row 17 includes controls for overlapping news as in eq. (14). Rows 18 and
19 reports the estimates for all news categories and categories with 1,000+ occurrences.
Row 20 reports the results on small-cap firms. Rows 21 and 22 set the post announcement
horizons k as 30 and 60 days. Row 23 excludes announcements by firms that attrited
during our sample. Row 24 excludes news categories that had above-average attrition
rates. Row 25 computes Driscoll and Kraay (1998) standard errors. Row 26 uses a block
bootstrap approach (Politis and Romano, 1994) on a full firm-day panel to account for
compounded estimation errors.
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Figure A2: Magnitude of drift vs reversals: sorted portfolios

Note: Figure A2 plots the cumulative returns to winner-minus-loser strategies for sorted
portfolios created on news categories with drifts (blue), i.e., βretC > 0, and news categories
with reversals (red), i.e., βretC < 0. The stocks are sorted based on the announcement-
day returns into ten equally-sized portfolios. The winner-minus-loser strategy buys the
portfolio with the highest announcement-day returns and shorts the portfolio with the
lowest announcement-day returns. 95% confidence intervals are reported in the vertical
bars corresponding to each point estimate.

21



Figure A3: Measuring extremeness in multiple ways

(a) Tails using EPS growth

(b) Tails vs skew (c) Tails vs quantile ratios

Note: Figure A3 reports the pairwise correlation between our main measure of extreme-
ness based on announcement-day returns and alternative measures: earnings growth in
the 2 years after the announcement in panel (a), the skew of the announcement-day re-
turn distribution in panel (b), and the quantile ratio of the top 1% of the distribution to
the median in panel (c).
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Figure A4: Estimate of the unconditional relationship f (ri,t)

Note: Figure A4 reports the amount of predictable post-announcement drift or reversal
due to the announcement-day return based on the cubic specification in Section 4.3 at an
extremeness measure of ζC = 0.35, corresponding to the No News distribution. Predicted
90-Day Return is The estimated post-announcement drift or reversal for the correspond-
ing Announcement-Day Return, and is expressed as a percent of the Announcement-
Day Return. Announcement-Day Return is the return of the stock on the day of the
announcement, expressed in percentage points. 95% confidence intervals are reported in
the shaded area.
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Figure A5: Accounting for compounded estimation errors using block bootstrap

Note: Figure A5 reports the density of estimates of the main coefficient of interest, γ ,
in eq. (13) using a block bootstrap approach on a full firm-day panel following Politis
and Romano (1994). The density is computed over 100 bootstrap samples. The 95%
confidence interval is reported by the red dotted lines.
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Table A1: Correlation between various tail measures

Announcement-Day Return 1 0.69 0.44 0.62 0.51 0.44 0.49
Long-Run Return 0.69 1 0.25 0.30 0.27 0.21 0.23

Earnings 1yr 0.44 0.25 1 0.60 0.53 0.51 0.63
Earnings 2yr 0.62 0.30 0.60 1 0.87 0.86 0.83
Earnings 3yr 0.51 0.27 0.53 0.87 1 0.98 0.91
Earnings 4yr 0.44 0.21 0.51 0.86 0.98 1 0.93
Earnings 5yr 0.49 0.23 0.63 0.83 0.91 0.93 1

Note: Table A1 reports the pairwise correlation coefficients between different measures
of extremeness. Observations are at the news category level. Announcement-Day Return
is the extremeness of stock returns of each firm on the day of the announcement and is
measured in percentage points for all announcements in each category. Long-Run Return
is the extremeness of stock returns of each firm in the 100 days after the announcement,
including the announcement day, and is measured in percentage points for all announce-
ments in each category. Earnings 1yr to Earnings 5yr are the extremeness of earnings
growths as measured in eq. (9) for all announcements in each category.
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Table A2: Robustness to different tail measures

(1) (2) (3) (4) (5) (6)

Announcement-Day Return 0.45∗∗∗ 0.77∗∗ 0.92∗∗∗ 0.73∗∗ 0.55∗∗ 0.47∗

(0.14) (0.36) (0.32) (0.29) (0.26) (0.24)

Announcement-Day Return × Extremeness −1.32∗∗∗ −0.99∗∗ −1.22∗∗∗ −0.93∗∗ −0.67∗∗ −0.56∗

(0.41) (0.47) (0.43) (0.36) (0.31) (0.29)

Constant 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗

(0.0004) (0.003) (0.003) (0.003) (0.003) (0.003)

Horizon 100 Days 1 Year 2 Year 3 Year 4 Year 5 Year
Measure Returns Earnings Earnings Earnings Earnings Earnings
Observations 197,498 197,498 197,498 197,498 197,498 197,498

Note: Table A2 reports the estimates corresponding to eq. (13), using alternative measures of extremeness. Observations
are at the news announcement level from January 1, 2011 to December 31, 2018. The dependent variable is the cumulative
post-announcement return from day 1 to day 90 after the announcement. Announcement-Day Return is the stock return
of the firm on the day of the announcement and is measured in percentage points. Extremeness is the inverse power-law
index ζC estimated following equation (8). Horizon is the time range over which the extremeness is measured. Measure is
the variable that extremeness is measured on. Standard errors are two-way clustered at the firm and day levels. *** p<0.01,
** p<0.05, * p<0.10.
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Table A3: Accounting for announcement timing

(1) (2)

Announcement-Day Return 0.817∗∗∗ 0.766∗∗∗

(0.130) (0.120)
Announcement-Day Return x Extremeness -2.625∗∗∗ -2.713∗∗∗

(0.347) (0.315)
Event Window (+/-) 1 Day 2 Days

Observations 197498 197498

(a) Expanding announcement window

(1)

Announcement-Day Return 0.573∗∗∗

(0.190)
Announcement-Day Return x Extremeness -1.538∗∗∗

(0.524)
Specification Exclude After-Hours Announcements

Observations 173256

(b) Excluding after-hours announcements

(1) (2) (3) (4) (5) (6)

Announcement-Day Return 0.585∗∗∗ 0.673∗∗∗ 0.716∗∗ 0.695∗∗∗ 0.627∗∗∗ 0.619∗∗∗

(0.184) (0.232) (0.306) (0.198) (0.184) (0.196)
Announcement-Day Return x Extremeness -1.525∗∗∗ -1.651∗∗∗ -1.619∗∗∗ -1.851∗∗∗ -1.695∗∗∗ -1.662∗∗∗

(0.498) (0.486) (0.498) (0.543) (0.505) (0.536)
Specification Hour Day of Week Hour by Day of Week No Fridays No Fridays Evenings No Strategic Announcers

Observations 197498 197498 197498 174900 195014 177858

(c) Including date and hour fixed effects

Note: Tables A3a, A3b, and A3c report the estimates corresponding to eq. (13), for different subsamples. Observations are at the news announcement level from January 1, 2011 to
December 31, 2018. The dependent variable is the cumulative post-announcement return from day 1 to day 90 after the announcement. Announcement-Day Return is the stock return
of the firm on the day of the announcement and is measured in percentage points. Extremeness is the inverse power-law index ζC estimated following equation (8). Event Window
(+/-) indicates the number of days before and the number of days after the announcement that the announcement window is defined over (e.g., 2 days before to 2 days after). Exclude
After-Hours Announcements excludes all announcements made after trading hours. Hour, Day of Week, and Hour by Day of Week report the respective fixed effects and interaction
terms included. No Fridays excludes Friday announcements. No Fridays Evenings excludes Friday after-hour announcements. No Strategic Announcers excludes any firm that ever
made an announcement on a Friday evening. Standard errors are two-way clustered at the firm and day levels. *** p<0.01, ** p<0.05, * p<0.10.
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Table A4: Controlling for the size and sign of the news

(1) (2)

Announcement-Day Return 0.539∗∗∗ 0.610∗∗∗

(0.191) (0.193)
Announcement-Day Return2 -0.431∗∗

(0.202)
Announcement-Day Return3 0.177

(0.166)
1(Return Decile = 1) 0.001

(0.004)
1(Return Decile = 2) 0.006

(0.005)
1(Return Decile = 3) 0.008

(0.005)
1(Return Decile = 4) 0.009∗

(0.005)
1(Return Decile = 5) 0.009

(0.006)
1(Return Decile = 6) 0.009

(0.006)
1(Return Decile = 7) 0.007

(0.006)
1(Return Decile = 8) 0.005

(0.006)
1(Return Decile = 9) 0.001

(0.008)
Announcement-Day Return x Extremeness -1.463∗∗∗ -1.682∗∗∗

(0.524) (0.498)
Specification Cubic Polynomial Deciles

Observations 197498 197498

Note: Table A4 reports the estimates corresponding to eq. (13), with controls for the
size and sign of the news. Observations are at the news announcement level from Jan-
uary 1, 2011 to December 31, 2018. The dependent variable is the cumulative post-
announcement return from day 1 to day 90 after the announcement. Announcement-Day
Return is the stock return of the firm on the day of the announcement and is measured
in percentage points, and Announcement-Day Return2 and Announcement-Day Return3

are the same term squared and cubed, respectively. Extremeness is the inverse power-law
index ζC estimated following equation (8). Cubic Polynomial is a cubic polynomial of
Announcement-Day Return. 1(Return Decile = d) is indicator variables for whether the
Announcement-Day Return is in the d-th decile. Standard errors are two-way clustered
at the firm and day levels. *** p<0.01, ** p<0.05, * p<0.10.
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Table A5: Sample selection for small/big news and positive/negative news

(1) (2) (3)

Announcement-Day Return 0.600∗∗∗ 0.625∗∗∗ 0.635∗∗∗

(0.184) (0.185) (0.185)
Announcement-Day Return x Extremeness -1.612∗∗∗ -1.678∗∗∗ -1.733∗∗∗

(0.503) (0.506) (0.505)
Absolute Announcement-Day Return Greater Than 25-th Percentile 50-th Percentile 75-th Percentile

Observations 148126 98750 49381

(a) Excluding smallest news

(1) (2) (3) (4) (5)

Announcement-Day Return 0.511∗∗∗ 0.544∗∗∗ 0.522∗∗∗ 0.512∗∗ 0.601∗∗∗

(0.178) (0.183) (0.189) (0.213) (0.224)
Announcement-Day Return x Extremeness -1.362∗∗∗ -1.445∗∗∗ -1.392∗∗∗ -1.338∗∗ -1.561∗∗

(0.491) (0.509) (0.525) (0.604) (0.636)
Top Percentile Excluded 0.01 0.05 0.1 0.5 1

Observations 197478 197399 197300 196510 195522

(b) Excluding outliers

(1) (2)

Announcement-Day Return 0.634∗∗ 0.363
(0.304) (0.416)

Announcement-Day Return x Extremeness -2.164∗∗∗ -0.566
(0.819) (1.206)

Subsample Positive News Only Negative News Only

Observations 104783 92715

(c) Positive and negative news

Note: Tables A5a, A5b, and A5c report the estimates corresponding to eq. (13), for different subsamples. Observations are at the news announcement level from January 1, 2011
to December 31, 2018. The dependent variable is the cumulative post-announcement return from day 1 to day 90 after the announcement. Announcement-Day Return is the stock
return of the firm on the day of the announcement and is measured in percentage points. Extremeness is the inverse power-law index ζC estimated following equation (8). Absolute
Announcement-Day Return Greater Than refers to the percentile of absolute announcement-day returns below which the announcements were excluded. Top Percentile Excluded refers
to the percentile of absolute announcement-day returns above which the announcements were excluded. Positive News Only and Negative News Only refer to announcements that had
announcement-day returns greater than 0 and less than 0, respectively. Standard errors are two-way clustered at the firm and day levels. *** p<0.01, ** p<0.05, * p<0.10.
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Table A6: Accounting for overlaps

(1) (2)

Announcement-Day Return 0.588∗∗∗ 1.125∗∗∗

(0.195) (0.324)
Announcement-Day Return x Extremeness -1.618∗∗∗ -3.076∗∗∗

(0.519) (0.899)
Exclude Overlaps With Earnings With Any Events 30-Days Prior

Observations 152513 35879

(a) Excluding overlapping announcements

(1) (2) (3)

Announcement-Day Return 0.511∗∗∗ 0.531∗∗∗ 0.453∗∗∗

(0.167) (0.158) (0.101)
Announcement-Day Return x Extremeness -1.385∗∗∗ -1.430∗∗∗ -1.228∗∗∗

(0.438) (0.419) (0.253)
Overlap Controls Pre-Announcement Post-Announcement Both

Observations 197498 197498 197498

(b) Fully estimated IRF

Note: Tables A6a and A6b report the estimates corresponding to eq. (14), with con-
trols for overlapping news. Observations are at the news announcement level from Jan-
uary 1, 2011 to December 31, 2018. The dependent variable is the cumulative post-
announcement return from day 1 to day 90 after the announcement. Announcement-Day
Return is the stock return of the firm on the day of the announcement and is measured
in percentage points. Extremeness is the inverse power-law index ζC estimated following
equation (8). For Exclude Overlaps, With Earnings refers to the subsample of news cate-
gories that do not co-occur with earnings announcements more than 50% of the time, and
With Any Events 30-Days Prior refers to the subsample of news announcements that did
not have another announcement occur in the 30 days prior. For Overlap Controls, Pre-
Announcement refers to h = −90 to h = −1, Post-Announcement refers to h = 1 to h = 90,
and Both refers to h = −90 to h = 90 following eq. (14). Standard errors are two-way
clustered at the firm and day levels. *** p<0.01, ** p<0.05, * p<0.10.
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Table A7: All news categories, exclusion/inclusion criteria

Category Included Criteria
Op. Result Included
Earnings Included
Sales and Trading Excluded Trading
Annual Meeting Included
Expansion Included
Buyback Transaction Excluded Capital Structure
Buyback Closing Excluded Capital Structure
Structure Change Included
Client Included
Guidance Lower Included
Guidance Confirm Included
Guidance Raised Included
Credit Watch Included
Debt Excluded Capital Structure
Downsize Included
Dividend Included
Earnings Call Included
Earnings Release Date Excluded Administrative
Board Changes Included
CEO Change Included
CFO Change Included
Fixed Income Excluded Capital Structure
Follow-On Equity Excluded Capital Structure
Writeoff Included
Index Constituents Excluded Trading
Lawsuit Included
M&A Rumor Included
M&A Transaction Included
M&A Closing Included
Private Placements Excluded Capital Structure
Product Included
Seek Investment Included
Seeking to Sell Excluded Trading
Shelf Registration Excluded Administrative
Alliance Included

Note: Table A7 reports the news categories types in our dataset and the inclu-
sion/exclusion criteria for each news category. Criteria is the selection criteria applied
to each news category. Section 3 contains more details on the selection criteria and shows
that the results are robust to using different selection criteria.
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Table A8: Robustness to category exclusions

Category Excluded Corr. Coef. p-value

Op. Result -0.63 0.001
Earnings -0.66 0.001
Annual Meeting -0.66 0.001
Expansion -0.67 0.000
Structure Change -0.67 0.000
Client -0.69 0.000
Guidance Lower -0.68 0.000
Guidance Confirm -0.65 0.001
Guidance Raised -0.66 0.001
Credit Watch -0.69 0.000
Downsize -0.69 0.000
Dividend -0.67 0.000
Earnings Call -0.66 0.001
Board Changes -0.66 0.001
CEO Change -0.59 0.003
CFO Change -0.61 0.002
Writeoff -0.67 0.001
Lawsuit -0.73 0.000
M&A Rumor -0.63 0.001
M&A Transaction -0.66 0.001
M&A Closing -0.66 0.001
Product -0.67 0.001
Seek Investment -0.65 0.001
Alliance -0.66 0.001

Note: Table A8 reports the category-level correlation coefficients between post-
announcement drift/reversal and extremeness, excluding each news category one-by-one.
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Table A9: Robustness to category inclusions

News Categories Coefficient SE Observations

Baseline -1.63 0.5 197498
+ Dividends and Buybacks -1.55 0.5 202191
+ IPOs, SEOs, and Debt -1.65 0.5 204441
+ Dividends, Buybacks, IPOs, SEOs, and Debt -1.56 0.5 209134
All News Categories with 1,000+ Occurrences -1.18 0.48 243966
All News Categories -1.09 0.46 250852

Note: Table A9 summarizes the robustness exercises for eq. (13) based on different sam-
ple selection criteria. Coefficient is the main γ coefficient estimate. SE is the standard
error. Observations is the number of observations in the corresponding estimates for
each row. Baseline is our main sample of 24 categories. + Dividends and Buybacks adds
all dividend and buyback related news announcements. + IPOs, SEOs, and Debt adds all
IPOs, SEOs, and debt related news announcements. + Dividends, Buybacks, IPOs, SEOs,
and Debt adds both sets. All News Categories with 1,000+ Occurrences refers to the sam-
ple of all Capital IQ news categories that occurred at least 1,000 times in our sample. All
News Categories refers to the sample of all Capital IQ news categories.
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Table A10: Large-cap vs. small-cap firms

(1) (2) (3)

Announcement-Day Return 0.607∗∗∗ 0.427∗∗∗ 0.475∗∗∗

(0.184) (0.153) (0.133)
Announcement-Day Return x Extremeness -1.634∗∗∗ -1.122∗∗∗ -1.252∗∗∗

(0.503) (0.392) (0.344)
Sample Large-Cap (Original) Small-Cap All Firms

Observations 197498 226986 424484

Note: Table A10 reports the estimates corresponding to eq. (13), for different subsamples.
Observations are at the news announcement level from January 1, 2011 to December 31,
2018. The dependent variable is the cumulative post-announcement return from day 1
to day 90 after the announcement. Announcement-Day Return is the stock return of the
firm on the day of the announcement and is measured in percentage points. Extremeness
is the inverse power-law index ζC estimated following equation (8). Large-Cap refers to
firms with market capitalizations of at least $2 bn at announcement time. Small-Cap
refers to firms with market capitalizations of less than $2 bn at announcement time. All
Firms refers to all firms. Standard errors are two-way clustered at the firm and day levels.
*** p<0.01, ** p<0.05, * p<0.10.
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Table A11: Accounting for attrition

(1) (2)

Announcement-Day Return 0.606∗∗∗ 0.687∗∗∗

(0.184) (0.188)
Announcement-Day Return x Extremeness -1.636∗∗∗ -1.860∗∗∗

(0.502) (0.521)
Specification Non-Attrited Firms Below-Mean Attrition News Categories

Observations 196463 142651

(a) Accounting for non-attrited firms

(1) (2) (3)

Announcement-Day Return 0.601∗∗∗ 0.806∗∗∗ 0.451∗∗

(0.182) (0.242) (0.205)
Announcement-Day Return x Extremeness -1.783∗∗∗ -2.220∗∗∗ -1.321∗∗

(0.546) (0.671) (0.622)
Fundamentals Horizon 30 Days 100 Days 250 Days

Observations 197498 197498 197498

(b) Using alternative horizons

Note: Tables A11a and A11b report the estimates corresponding to eq. (13), for different
subsamples. Observations are at the news announcement level from January 1, 2011
to December 31, 2018. The dependent variable is the cumulative post-announcement
return from day 1 to day 90 after the announcement. Announcement-Day Return is the
stock return of the firm on the day of the announcement and is measured in percentage
points. Extremeness is the inverse power-law index ζC estimated following equation (8).
Non-Attrited Firms refers to the subsample of firms that did not attrite in our sample.
Below-Mean Attrition News Categories refers to the subset of news categories that were
below the mean attrition rate across all news categories. Fundamentals Horizon refers to
the return horizon that extremeness is computed based on. Standard errors are two-way
clustered at the firm and day levels. *** p<0.01, ** p<0.05, * p<0.10.

35



Table A12: Using Driscoll-Kray Standard Errors

(1) (2) (3) (4)

Announcement-Day Return 0.61∗∗∗ 0.54∗∗∗ 0.77∗∗∗ 0.64∗∗∗

(0.20) (0.18) (0.27) (0.24)

Announcement-Day Return × Extremeness −1.63∗∗∗ −1.38∗∗∗ −2.07∗∗∗ −1.70∗∗

(0.53) (0.49) (0.73) (0.66)

Constant 0.02∗∗∗ −0.01∗∗∗ 0.01∗∗ −0.01∗∗∗

(0.01) (0.002) (0.01) (0.003)

Time-Varying Tails No No Yes Yes
Return Benchmark No Yes No Yes
Observations 197,498 197,498 110,748 110,748

Note: Table A12 report the estimates corresponding to eq. (13) using Driscoll and Kraay
(1998) standard errors. Observations are at the news announcement level from Jan-
uary 1, 2011 to December 31, 2018. The dependent variable is the cumulative post-
announcement return from day 1 to day 90 after the announcement. Announcement-Day
Return is the stock return of the firm on the day of the announcement and is measured
in percentage points. Extremeness is the inverse power-law index ζC estimated follow-
ing equation (8). Time-Varying Tails indicates whether Extremeness is computed over a
rolling past five-year window (Yes) or over the entire sample (No). Return Benchmark
indicates whether the Announcement-Day Return and dependent variable are excess re-
turns relative to the S&P 500 (Yes) or raw returns (No). Standard errors are computed
following Driscoll and Kraay (1998). *** p<0.01, ** p<0.05, * p<0.10.
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Table A13: Using Driscoll-Kraay Standard Errors, Volume and Extremeness

(1) (2) (3) (4)
VARIABLES Turnover Turnover Turnover Turnover

Abs. Announcement-Day Return 0.25*** 0.23*** 0.19** 0.19**
(0.074) (0.073) (0.077) (0.076)

Abs. Announcement-Day Return × Extremeness 0.64*** 0.76*** 0.90*** 0.91***
(0.21) (0.21) (0.22) (0.22)

Constant 0.0087*** 0.013*** 0.0089*** 0.014***
(0.00061) (0.00062) (0.00059) (0.00059)

Observations 197,498 197,498 197,498 197,498
R-squared 0.371 0.394 0.395 0.412
Trading Day FEs Yes Yes Yes Yes
Return Benchmark No No Yes Yes

Note: Table A13 reports the estimates corresponding to eq. (15) using Driscoll and
Kraay (1998) standard errors. Observations are at the news announcement level from
January 1, 2011 to December 31, 2018. The dependent variable is the announcement-
day turnover, defined as the volume of shares traded times the share price divided by
the market capitalization. Abs. Announcement-Day Return is the absolute value of the
announcement-day return and is measured in percentage points. Extremeness is the in-
verse power-law index ζC estimated following equation (8). Trading Day FEs indicates
whether the specification includes trading day fixed effects. Return Benchmark indicates
whether the Announcement-Day Return and dependent variable are excess returns rel-
ative to the S&P 500 (Yes) or raw returns (No). Standard errors are computed following
Driscoll and Kraay (1998). *** p<0.01, ** p<0.05, * p<0.10.
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Table A14: Sample headlines for each news category

Event Headline
Alliance ChinaNet-Online Holdings, Inc Announces Strategic Partnership with Wuxi Jingtum Network Technology
Annual Meeting STAAR Surgical Company, Annual General Meeting, Jun 11, 2009
Board Changes Cellectar Biosciences, Inc. Announces Board Changes
CEO Change MYOS Corporation Announces Executive Changes
CFO Change Tetraphase Pharmaceuticals, Inc. Announces Resignation of Kamalam Unninayar as Chief Financial Officer, Effective March 16, 2018
Client Ocean Power Technologies Enters Into First Commercial PB3 Agreement with Mitsui Engineering and Shipbuilding
Credit Watch Issuer Credit Rating: BBB/Watch Neg/– From BBB/Negative/–: Local Currency Rating
Dividend Johnson Controls International plc Approves Quarterly Cash Dividend, Payable on Jan. 6, 2017
Downsize Pier 1 Imports Inc. Plans to Close 16 Stores
Earnings Fonar Corp. Reports Unaudited Consolidated Earnings Results for the Third Quarter and Nine Months Ended March 31, 2009
Earnings Call AtriCure, Inc., Q1 2009 Earnings Call, May-05-2009
Expansion Aemetis, Inc. Completes Construction of Advanced Biodiesel Pre Treatment Unit Required for BP Supply Agreement
Guidance Confirm Pareteum Corporation Provides Revenue Guidance for the Second Quarter Ended June 30, 2017
Guidance Lower Crestwood Revises Earnings Guidance for the Year 2016
Guidance Raised Hartford Financial Services Group Inc. Revises Earnings Guidance for the Year of 2008
Lawsuit Hospitality Properties Trust Announces Settlement of Litigation with TravelCenters of America LLC
M&A Closing Appliance Recycling Centers of America, Inc. (NasdaqCM:ARCI) acquired GeoTraq Inc. for $16 million.
M&A Rumor PZU Eyes AIG Assets
M&A Transaction Differential Brands Group Inc. (NasdaqCM:DFBG) entered into a definitive purchase agreement to acquire majority of North American licensing business of GBG USA, Inc.

for $1.4 billion.
Op. Result Delta Air Lines, Inc. Reports Operating Results for the Quarter Ended December 2014
Product Inovio Biomedical Corporation Influenza Vaccines Demonstrate 100% Protection Against Current Pandemic A/ H1N1 Influenza Viruses in Animal Studies
Seek Investment Insmed Seeks Acquisitions
Structure Change Diffusion Pharmaceuticals Inc. Approves Amendment to Certificate of Incorporation
Writeoff Manitowoc Co. Inc. Announces Impairment Charges for the First Quarter of 2009

Note: Table A14 reports example news headlines for each of the news categories in the dataset.
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