The Industry Origins of the US-Japan Productivity Gap

Dale W. Jorgenson (Harvard University)

Koji Nomura (Keio University)

Japan Project Meeting, June 26-27, 2007 Tokyo, Japan

Contents

- Relative Prices
 - Industry PPPs for output and KLEM inputs
 - Bilateral I-O Framework
 - Hybrid Approach based on production-side data and demand-side data
- Economic Growth in the U.S. and Japan
- Level Comparison of ALP and TFP
- Industry Origins of TFP-gap
 - Manufacturing vs Services

Relative Prices Required for Productivity Comparison

- Industry-Level PPPs for
 - 42 US-Japan Common Industry Classification
 - Gross Output: X
 - Capital Service: K and Capital Acquisition: A
 - Labor Service: L
 - Energy: E
 - Materials: M
- Bilateral I-O Framework used for defining PPPs for X, E, M, and A

US-Japan 42 Common Industry Classification

1.Agricu	ltura	Forest	rv/	Fichan	7
i.Agiicu	itui e,	1 01631	. гу,		y

- 2.Coal Mining
- 3. Other Mining
- 4. Construction
- 5.Foods
- 6.Textile
- 7.Apparel
- 8. Woods and Related Products
- 9. Furniture and Fixture
- 10.Paper and Pulp
- 11. Printing and Publishing
- 12.Chemical Products
- 13.Petroleum Refining
- 14.Leather Products

- 15. Stone, Clay, Glass
- 16. Primary Metal
- 17.Metal Products
- 18.Machinery
- 19.Computers
- 20. Communications Equipment
- 21. Electronic Components
- 22. Other Electrical Machinery
- 23.Motor Vehicles
- 24. Other Transportation Equipment
- 25. Precision Instruments
- 26. Misc Manufacturing
- 27.Railroad Transportation
- 28. Water Transportation

- 29. Air Transportation
- 30.Other Trans and Storage
- 31.Communications
- 32. Electricity
- 33. Gas Supply
- 34. Wholesale and Retail
- 35. Finance and Insurance
- 36.Real Estate
- 37.Education
- 38.Research
- 39. Medical Care
- 40. Other Services
- 41. Public Administration
- 42. Household

Various Concepts of Relative Prices on Commodity

- Producer's Prices
 - Domestic Output Price: Pdi
 - Demand Price of Domestic Goods: Pd(H)i and Pd(I)i, where (H) and (I) represent Purchases by Household and Industry, respectively
 - Demand Price of Composite Goods (inc. imports): Pc(H)i,
 Pc(I)i
- Purchaser's Prices
 - Demand Price of Domestic Goods: Ppd(H)i and Ppd(I)i
 - Demand Price of Composite Goods (inc. imports):Ppc(H)i , Ppc(I)i
- PPPs for X, E, M, and A
 - Pdi used for X, Pc(I)i for E and M, and Ppc(I)i for A

Bilateral I-O Framework in Measuring Relative Prices

- I . Construction of Price Model based on Bilateral Input-Output Framework
- II. Describe the Linkages among Relative Prices based on the Price Model
- III. One Data Sources \Rightarrow All Relative Prices (e.g. $\mathbf{P}^{\mathrm{pc}(H)}_{i} \Rightarrow \mathbf{P}^{\mathrm{c}(H)}_{i} \Rightarrow \mathbf{P}^{\mathrm{d}(H)}_{i} = \mathbf{P}^{\mathrm{d}(I)}_{i} \Rightarrow \mathbf{P}^{\mathrm{d}_{i}} \Rightarrow \mathbf{P}^{\mathrm{c}(I)}_{i}$)
- IV. Comparison and Check in the case that multiple estimates will be available for one commodity

Bilateral Input-Output Table between Japan and US

	Inte	Intermediate Demand			emand	Export to		
		JP	US	JP	US	RoW	output	
	JP	$\frac{1}{e} p_{J_i}^d x_{J\!J_{ij}}$	$\frac{1}{e}p_{J_i}^{d}x_{_{JU_i}}$	$\frac{1}{e}p_{J_i}^{\hskip 0.5em d}F_{JJ_i}$	$\frac{1}{e}p_{J_i}^{\scriptscriptstyle d}F_{\scriptscriptstyle JU}$	$\frac{1}{e}p_{J_i}^{d}E_{J\!R_i}$	$\frac{1}{e} p_{J_i}^d X_J$	
	US	$p_{U_i}^d x_{U\!J_{ij}}$	$p_{U_i}^d x_{UU_{ij}}^{}}$	$p_{U_i}^d F_{U\!J_i}$	$p_{U_i}^d F_{UU_i}$	$p_{U_i}^d E_{\mathit{UR}_i}$	$p_{U_i}^{\scriptscriptstyle d} X_{U_i}$	
	reight & surance	$IF_{U\!J_j}$	IF_{JU_j}	$IF_{JU_{j}}^{F}$	$IF_{U\!J_j}^{\ F}$			
	Duty	$CD_{U\!J_j}$	CD_{JU_j}	$CD^F_{JU_j}$	$CD^F_{U\!J_j}$			
	RoW	$p_{RJ_i}^m x_{RJ_{ij}}$	$p_{{\scriptscriptstyle RU}_i}^{\scriptscriptstyle m} x_{{\scriptscriptstyle RU}_{ij}}$	$p_{{\scriptscriptstyle R\!J}_i}^{{\scriptscriptstyle m}} F_{{\scriptscriptstyle R\!J}_i}$	$p_{\scriptscriptstyle RU_i}^{\scriptscriptstyle m} F_{\scriptscriptstyle RU_i}$			
	Duty	$CD_{U\!J_j}$	CD_{JU_j}	$CD^F_{JU_j}$	$CD^F_{U\!J_j}$			
Valu	e added	$V\!A_{J_j}$	$V\!A_{U_j}$					
	output	$1/_{e} p_{J_{j}}^{d} X_{J}$	$p_{U_j}^d X_{\overline{U}_j}$					

Linkage of Relative Prices

- Domestic Price Linkages between Output and Input
 - $\mathbf{P}^{d}_{i}=f^{d}(\mathbf{P}^{d(H)}_{i},\mathbf{P}^{d(I)}_{i})$
 - ←consumption demand share of domestic goods
- Linkages between Domestic Price and Composite Price
 - P^{d(H)}_i=f^H(P^{c(H)}_i), P^{d(I)}_i=f^I(P^{c(I)}_i)

 ←imports share, freight and insurance, duties
- Linkages between Producers Price and Purchasers Price
 - $\mathbf{P}^{\mathrm{pd}(H)}_{i} = f^{\mathrm{dH}}(\mathbf{P}^{\mathrm{d}(H)}_{i}), \mathbf{P}^{\mathrm{pd}(I)}_{i} = f^{\mathrm{dI}}(\mathbf{P}^{\mathrm{d}(I)}_{i})$
 - $\mathbf{P}^{\mathrm{pc}(H)}_{i} = f^{\mathrm{cH}}(\mathbf{P}^{\mathrm{c}(H)}_{i}), \ \mathbf{P}^{\mathrm{pc}(I)}_{i} = f^{\mathrm{cl}}(\mathbf{P}^{\mathrm{c}(I)}_{i})$
 - ←wholesale and retail margin, transportation cost

Data Sources

- Japan-US Bilateral I-O Table in 1990 (METI)
 - 164 commodities
 - Import share & consumption share by commodity
 - Freight & insurance rate by commodity(←supplementary table)
 - □ Duties tax rate by commodity (←supplementary table)
- US Use-Table in 1987 and Japan X-Table in 1990
 - Wholesale and retail margin rate by 164 commodity
 - Transportation margin rate(rail,road,water,air,other) by 164 commodity
- A Multitude of Data Source for Relative Prices
 - → next page

Data for Relative Prices

Sources	Target and Classification	Price Evaluation	Domestic / Imports	
ICP (UN)	FD, ICP basic heading	Purchaser	inc.Import	Ppc(H)
Eurostat-OECD	FD, ICP basic heading	Purchaser	inc.Import	Ppc(H)
Energy Prices & Taxes (IEA)	Coal,raw oil,LNG, electricity,town-gas	Purchaser	Domestic /Import	Ppdi
Consumer Price Comparison Survey (METI)	94 consumer goods & services	Purchaser	inc.Import	P _{pc(H)} i
Intermediate goods Price Comparison Survey (METI)	152Goods & 35service as intermediate inputs	Purchaser (Producer, partly)	inc.Import	Ppc(I) _j
PPP Survey Committee (METI)	About 100 Products	Producer	Domestic	P ^d i
Transportation Service Price (MLIT)	Transportation	Producer	Domestic	P ^d i
Housing,Construction Price (MLIT)	Building&Const.	Producer(Cost)	Domestic	P ^d i
Foods and Restaurant Price(MAFF)	Foods and Restaurant	Purchase	inc.Import	Ppci
Mobile Phone Price (MPT)	Communication	Purchaser	Domestic	P ^{pd} i
Woods Products Price (MAFF)	Woods Products	Purchaser	inc.Import	Ppc(I)

PPP for Capital Inputs

- Common Classification for Asset Category
 - 29 tangible assets
 - 2 intangible assets: mineral exploration and software
 - Inventories
 - Land
- Measurement of PPPs for capital acquisition
 - Based on purchaser's price PPP for composite goods sold to industry
- Measurement of annualization factor
 - Detailed tax system is considered in each country
 - 59 assets in 36 industries in the U.S.
 - 103 assets in 47 industries in Japan

PPP for Labor Inputs

- Common Classification for Labour Category
 - industry: common 38 industries
 - gender: male and female
 - age: 6 groups (-24, 25-34, 35-44, 45-54, 55-64, 65-)
 - class of worker: employee
 - education: four groups(male), three groups(female)
 - Totally, 1596 categories
- See Nomura and Samuels (2003)

Aggregate PPPs for KLEM: 1960-2004

Industry Origins of PPP-for-GDP Gap

PPP for GDP-output based=181.0

in 1990

- PPP for GDP-expenditure based=189.2 (OECD)
- Exchanger rate=144.8

Economic Growth in the U.S. and Japan

	33.3					-		
	1960-73	1973-90	1990-95	95-2000	2000-04	1960-2004		
United States								
Value Added	3.90	2.83	2.35	4.12	2.56	3.21		
Capital Input	1.81	1.59	1.19	2.14	1.46	1.66		
IT Capital	0.21	0.41	0.49	0.97	0.63	0.44		
Non-IT Capital	1.60	1.18	0.70	1.16	0.83	1.22		
Labor Input	1.29	1.08	0.81	1.29	-0.17	1.02		
Total Factor Productivity	0.81	0.17	0.35	0.69	1.27	0.54		
Agriculture	0.00	0.13	0.03	0.07	0.10	0.07		
IT-manufacturing	0.09	0.20	0.27	0.48	0.04	0.19		
Motor Vehicle	0.02	0.00	-0.01	0.02	0.06	0.01		
Other manufacturing	0.52	-0.02	0.11	0.21	0.04	0.19		
Communications	0.01	0.06	-0.01	-0.04	0.07	0.03		
Trade	0.17	0.15	0.07	0.15	0.51	0.18		
Finance & Insurance	-0.05	0.01	0.04	0.11	0.30	0.03		
Other services	0.04	-0.37	-0.14	-0.30	0.15	-0.17		
		Japan						
Value Added	10.00	4.50	1.31	1.31	1.14	5.10		
Capital Input	4.95	2.19	1.93	1.02	0.72	2.71		
IT Capital	0.22	0.26	0.27	0.32	0.37	0.27		
Non-IT Capital	4.72	1.93	1.66	0.70	0.35	2.44		
Labor Input	1.75	1.12	-0.16	-0.19	-0.15	0.90		
Total Factor Productivity	3.30	1.18	-0.46	0.48	0.57	1.48		
Agriculture	0.20	0.00	0.06	-0.01	-0.04	0.06		
IT-manufacturing	0.17	0.21	0.09	0.42	0.35	0.22		
Motor Vehicle	0.28	0.13	0.00	0.02	0.11	0.14		
Other manufacturing	1.78	0.41	-0.33	0.17	0.08	0.68		
Communications	0.07	0.05	0.07	0.12	0.08	0.07		
Trade	0.94	0.28	0.01	-0.13	-0.03	0.37		
Finance & Insurance	0.23	0.10	-0.22	0.15	0.04	0.10		
Other services	-0.36	0.01	-0.14	-0.26	-0.03	-0.15		

Note: All figures are average annual growth rates. Value added is aggregated from industry GDPs evaluated at the factor cost.

Changes in Contribution of Industry TFP to

Economic Growth: 2000-2004 less 1995-2000

U.S.-Japan Labor Productivity Gap

1960 1973 1980 1990 1995 2000 2004 Labor Productivity 21.2 42.8 52.5 66.6 69.9 69.7 65.7

U.S.-Japan TFP Gap

	1960	1973	1980	1990	1995	2000	2004
Total Factor Productivity	52.4	72.5	75.4	86.1	82.6	81.7	79.5

Industry Origins of TFP Gap in 1990

Industry Origins of TFP Gap in 2004

TFP Level Comparison during 1960-2004 (1)

TFP Level Comparison during 1960-2004 (2)

Conclusion

- Labor Productivity Gap
 - 65.7 in 2004
 - Lower TFP accounts for 57%
 - Lower Non-IT-capital deepening accounts for 37%
- TFP Gap
 - Period of Convergence: 1960-1990
 - Period of Divergence: 1990-2004
 - IT producing Industries during the late 1990s
 - IT using industries after 2000
 - 79.5 in 2004
 - Wholesale and Retail Trade emerged as the largest contributor to this gap, accounting for 25% of the lower TFP of the Japanese economy