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a b s t r a c t

The purpose of this paper is to present a new approach to econometric modeling of substitution and
technical change. Substitution is determined by observable variables, such as prices of output and inputs
and shares of inputs in the value of output. Our principal innovation is to represent the rate and biases of
technical change by unobservable or latent variables. This representation is considerably more flexible
than the constant time trends employed in the previous literature. An added advantage of the new
representation is that the latent variables can be projected into the future, so that the rate and bias of
technical change can be incorporated into econometric projections.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The index number approach to productivity measurement has
been the work horse of empirical research on the rate of technical
change for half a century.1 This salient concept has generated a
vast literature on productivity measurement, recently surveyed by
Jorgenson (2005). The key idea is to treat the level of technology
as an unobservable or latent variable in a neo-classical production
function. Under appropriate assumptions the rate of technical
change is the residual between the growth rate of output and the
growth rate of inputs. Using index numbers for these growth rates,
the level of technology can be recovered without estimating the
unknown parameters of the production function.
Recently, attention has shifted to the biases of technical

change.2 This shift is motivated by a wide range of applications,
such as changes in the distribution of income, emphasized in the
survey by Acemoglu (2002b), and determinants of energy conser-
vation, highlighted in the survey by Jaffe et al. (2003). However,
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+1 617 495 4660.
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1 For details see Diewert and Morrison (1986).
2 Acemoglu (2002a) presents models of biased technical change and reviews
applications to macroeconomics, development economics, labor economics and
international trade. Acemoglu (2007) surveys more recent developments in the
literature and presents detailed results on relative and absolute biases of technical
change.
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biases of technical change are not directly observable. In this pa-
perwe present a new econometric approach tomeasuring both the
rate and the biases of technical change. Our key contribution is to
represent the rate and biases by unobservable or latent variables.
The standard econometric approach to modeling the rate

and biases of technical change was introduced by Binswanger
(1974a,b) and described in the surveys by Binswanger and Rut-
tan (1978), Jorgenson (1986), and Ruttan (2001). Binswanger’s ap-
proach is to represent price effects by the translog function of the
input prices introduced by Christensen et al. (1973). He represents
the rate and biases of technical change by constant time trends and
fits the unknown parameters by econometric methods. This ap-
proach to modeling technical change is widely employed, for ex-
ample, by Jorgenson and Fraumeni (1983), Jorgenson et al. (1987,
Ch. 7), and, more recently, by Feng and Serletis (2008).
Binswanger’s approach exploits the fact that price effects de-

pend on observable variables, such as the prices of output and in-
puts and the shares of inputs in the value of output. The key to
modeling these effects is to choose a flexible functional form that
admits a variety of substitution patterns.3 Our model of substitu-
tion, like Binswanger’s, is based on the translog price function, giv-
ing the price of output as a function of the prices of inputs. The
measures of substitution are unknown parameters that can be es-
timated from observable data on prices and value shares.

3 Additional details are given by Jorgenson (1986). Barnett and Serletis (2008)
provide a detailed survey of flexible functional forms used in modeling consumer
demand, including parametric, semi-parametric, and non-parametric approaches.
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Our novel contribution is to replace the constant time trends
that describe the rate and biases of technical change in Bin-
swanger’s model by latent or unobservable variables. An impor-
tant advantage of the translog price function in this setting is that
the resulting model is linear in the latent variables. We recover
these variables by applying the Kalman (1960, 1963) filter, a stan-
dard statistical technique in macroeconomics and finance, as well
as many areas of engineering.
An important feature of the Kalman filter is that latent variables

representing the rate and biases of technical change can be
recovered for the sample period. A second and decisive advantage
of the Kalman filter is that the latent variables can be projected into
the future, so that the rate and biases of technical change can be
incorporated into econometric projections.4 The rate of technical
change captures trends in productivity, while biases of technical
change describe changes in the structure of production.
We implement our newapproach formodeling substitution and

technical change for the post-war US economy, 1960–2005. This
period includes substantial changes in the prices of fossil fuels and
the wage rate. Energy crisis periods with dramatic increases in
energy prices alternating with periods of energy price collapse are
particularly valuable for our purposes. By modeling substitution
and technical change econometrically, we are able to decompose
changes in the price of output and the input value shares between
price effects and the effects of technical change. Empirically, these
two sets of effects are comparable in magnitude.
We also decompose the rate of technical change between an

autonomous part, unaffected by price changes, and an induced
part, responsive to price changes. The rate of induced technical
change links the rate and biases of technical change through
the correlation between the input prices and the latent variables
representing biases. Efforts to economize on an input that has
become more expensive or to increase the utilization of an input
that has become cheaper will affect the rate of technical change.
Although modest in size, rates of induced technical change are
generally opposite in sign to rates of autonomous technical change.
In Section 2 we present our econometric model of substitution

and technical change. We augment the translog price function by
introducing latent variables that represent the rate and biases of
technical change. In Section 3we apply an extension of the Kalman
filter to estimate the unknown parameters of the model and
generate the latent variables. In Section 4 we extend the standard
framework for the Kalman filter to include endogenous prices
by introducing instrumental variables. We propose a two-step
procedure based on two-stepMaximumLikelihood Estimation and
derive two diagnostic tests for the validity of the instruments.
In Section 5 we present our empirical results. We find that sub-

stitution and technical change are both important in representing
changes in patterns of production. In particular, biases of techni-
cal change are quantitatively significant for all inputs. The rates of
technical change decompose neatly between a negative rate of in-
duced technical change and a positive rate of autonomous techni-
cal change, which generally predominates. This implies that biased
technical change, a change in technology directed to a particular
input, reduces the rate of technical change. Section 6 concludes.

4 A detailed projection of US economic growth, incorporating projections of the
rate and biases of technical change based on the Kalman filter, is presented by
Jorgenson et al. (2008). The intertemporal general equilibrium model underlying
these projections also incorporates the dynamics of capital accumulation and asset
pricing, so that we do not include these dynamics in the specification of our models
of production.
2. Econometric model

In our data set, production is disaggregated into 35 separate
commodities produced by one or more of the 35 industries mak-
ing up the US economy and listed in Table 1. The industries gen-
erally match two-digit sectors in the North American Industry
Classification System (NAICS). Industries produce a primary prod-
uct andmay produce one or more secondary products. Each indus-
try is modeled by a system of equations that represents possible
substitutions among the inputs of capital, labor, energy and mate-
rials and the rate and biases of technical change.
Our focus on the US economy is motivated by the availability

of a new data set constructed by Jorgenson et al. (2007a). On June
30, 2008, the European Union released similar data sets for the 25
member states prior to the enlargement to include Bulgaria and
Romania on January 1, 2007.5 The Research Institute for Economy,
Trade and Industry in Japan has developed data sets of this type
for mainland China, Japan, Korea, and Taiwan.6 Our new methods
for modeling substitution and technical change can be applied to
these economies and others with similar data sets.
The production function expresses output as a function of

capital, labor,m intermediate inputs, non-competing imports (XN )
and technology (t); for industry j:

Qj = f (Kj, Lj, X1,j, X2,j, . . . , Xm,j, XNj, t), j = 1, 2, . . . , 35. (1)

At the first stage the value of each industry’s output is allocated
to four input groups—capital, labor, energy, and non-energy
materials:

Qj = f (Kj, Lj, Ej,Mj, t). (2)

The second stage allocates the energy and non-energy material
groups to the individual intermediate commodities. This stage is
not discussed further in this paper.7
Assuming constant returns to scale and calculating the cost of

capital as the residual that exhausts the value of output, the value
of output is equal to the value of the four inputs:

PQjtQjt = PKjtKjt + PLjtLjt + PEjtEjt + PMjtMjt . (3)

In representing substitution and technical change, it is more
convenient to work with the dual price function instead of the
production function in (2).8The price function expresses the unit
output price as a function of all the input prices and technology,
PQj = p(PKj, PLj, PEj, PMj, t).
Dropping the industry subscript j for simplicity, we assume that

the price function has the translog form:

ln PQt = α0 +
n∑
i=1

αi ln Pit +
1
2

∑
i,k

βik ln Pit ln Pkt

+

n∑
i=1

ln Pit fit + fpt i, k = {K , L, E,M}. (4)

We refer to the translog price function (4) as the state-space model
of producer behavior. The parameters α0, αi and βik are estimated
separately for each industry. The latent variables fit and fpt are
also estimated separately for each industry, using the Kalman filter

5 See van Ark et al. (2008).
6 See Jorgenson et al. (2007b).
7 In the data set constructed by Jorgenson et al. (2007a) the energy and non-
energy aggregates in (2) are assumed to be homothetically separable within the
production function (1). More details are given by Jorgenson et al. (2005).
8 The dual price function is equivalent to the primal production function in that
all the information expressed in one is recoverable from the other. Further details
are given by Jorgenson (2000).
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Table 1
List of sectors.

Sector number Sector name

1 Agriculture
2 Metal mining
3 Coal mining
4 Petroleum and gas
5 Nonmetallic mining
6 Construction
7 Food products
8 Tobacco products
9 Textile mill products
10 Apparel and textiles
11 Lumber and wood
12 Furniture and fixtures
13 Paper products
14 Printing and publishing
15 Chemical products
16 Petroleum refining
17 Rubber and plastic
18 Leather products
19 Stone, clay, and glass
20 Primary metals
21 Fabricated metals
22 Industrial machinery and equipment
23 Electronic and electric equipment
24 Motor vehicles
25 Other transportation equipment
26 Instruments
27 Miscellaneous manufacturing
28 Transport and warehouse
29 Communications
30 Electric utilities
31 Gas utilities
32 Trade
33 Finance, insurance, and real estate
34 Services
35 Government enterprises

described in Section 3. Changes in the latent variables fit represent
biases of technical change and the latent variable fpt represents the
level of technology.
An important advantage of the translog price function in this

application is that it generates input share equations that are linear
in the latent variables representing the biases of technical change.
Differentiation of the price function (4) with respect to the log
of input prices yields the input share equations. For example, the
demand for capital is derived from the capital share equation:

vKt =
PKK
PQQ
= αK +

∑
k

βKk ln Pkt + fKt . (5)

The share of capital is a linear function of the logarithms of the
input prices and a latent variable corresponding to the bias of
technical change.
The biases of technical change are the changes in the shares of

inputs, holding the input prices constant, for example:

1vKt = fKt − fK ,t−1. (6)

The biases capture patterns of increasing or decreasing input use
over time after accounting for price changes. If the latent variable
fKt in Eq. (5) is increasing with time, the bias of technical change
is ‘‘capital-using’’. For a given set of input prices, the share of
capital is higher as a consequence of the change in technology.
Alternatively, if fKt is decreasing, the bias of technical change is
‘‘capital-saving’’. It is important to emphasize that technical change
may be capital-using at one point of time and capital-saving at
another. This would be ruled out by the constant time trends used
in Binswanger’s approach. There is a separate bias for each of the
productive inputs—capital, labor, energy, and materials.
The rate of technical change between t and t−1 is the negative

of the rate of change in the price of output, holding the input prices
constant:

1Tt = −
n∑
i=1

ln Pit(fit − fi,t−1)− (fpt − fp,t−1). (7)

As technology progresses for a given set of input prices, the price
of output falls. The first term in the rate of technical change (7)
depends on the prices and the biases of technical change. We refer
to this as the rate of induced technical change. If, for example, the
price of capital input falls and the bias of technical change (6),
corresponding to a change in the latent variable fKt , is capital-using,
the rate of technical change in (7) will increase. However, if the
bias of technical change is capital-saving, a decrease in the price
for capital will retard the rate of productivity growth. The second
term in (7) depends only on changes in the level of technology fpt ,
so that we refer to this as the rate of autonomous technical change.
The rate of technical change (7) is the sum of induced and

autonomous rates of technical change. Ordinarily, the autonomous
rate of technical change would be positive, while the induced
rate of technical change could be positive or negative. The rate of
induced technical change is simply the negative of the covariance
between the logarithms of the input prices and the biases of
technical change. If lower input prices are correlated with higher
biases of technical change, then the rate of induced technical
change is positive.
The parameters βik capture the price responsiveness of

demands for inputs for a given state of technology. These parame-
ters are called share elasticities and represent the degree of substi-
tutability among the inputs. For example, a lower price of capital
leads to greater demand for capital input. This may lead to a higher
or lower share of capital input, depending on the substitutability
of other inputs for capital; this substitutability is captured by the
share elasticity for capital input. Share elasticities may be positive
or negative, so that the share of capital may increase or decrease
with the price of capital input. When all share elasticities βik are
zero, the cost function reduces to the Cobb–Douglas or linear log-
arithmic form and the shares are independent of input prices.
In estimating the unknown share elasticities, restrictions de-

rived from production theory must be imposed on the translog
price function (4). In more compact vector notation the price func-
tion and input share equations can be written as

ln PQt = α0 + α′ ln pt +
1
2
ln p′tB ln pt + ln p

′

t ft + fpt + ε
p
t (4′)

vt = α+ B ln pt + ft + εvt (5′)

where p = (PK , PL, PE, PM)′, v = (vK , vL, vE, vM)
′, ft =

(fKt , fLt , fEt , fMt)′ and B = [βik]. We have added disturbance terms
ε
p
t and εvt , random variables with mean zero, to represent shocks
to producer behavior for a given state of technology.
Homogeneity restrictions on the price function imply that

doubling of all input prices doubles the output price, so that

αK + αL + αE + αM = 1. (8)∑
i

βik = 0 for each k.

In addition, the matrix of share elasticities must be symmetric,
so that

βik = βki. (9)

Finally, the price function must be ‘‘locally concave’’ when
evaluated at the prices observed in the sample period; note that
this does not imply that the cost function is ‘‘globally concave’’ at
all possible prices. The concavity condition implies that

B+ vtv′t − Vt , (10)
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must be non-positive definite at each t in the sample period,9
where B is the matrix of parameters in (4′) and Vt is a diagonal
matrixwith the shares along the diagonal. These restrictions on the
parameter estimates are easily implemented bymeans of standard
optimization code.10

Since the shares for all four inputs sum to unity, the latent
variables representing biases of technical change fit must sum to
zero. Similarly, the shocks to producer behavior for a given state of
technology εvt sum to zero. We solve out these constraints on the
shocks, as well as the homogeneity constraints (8), by expressing
the model (4′) and (5′) in terms of relative prices and dropping
one of the Eq. (5′) for the shares and one of the latent variables
representing biases of technical change.
We assume that the latent variables corresponding to biases

of technical change fit are stationary since the value shares vt are
non-negative and sum to unity. We assume, further, that the level
of technology is non-stationary but the first difference, 1fpt =
fpt− fpt−1, is stationary, so that technology evolves in accordwith a
stochastic trend or unit root. To implement a model of production
based on the price function (4), we express the technology state
variables as a vector auto-regression (VAR).
Let Ft = (1, fkt , flt , fet ,1fpt)′ denote the vector of stationary

state variables. The transition equation is

Ft = 8Ft + ut , (11)

where ut is a random vector with mean zero representing
technology shocks and 8 is a matrix of unknown parameters of
a first-order VAR. The transition Eq. (11) determines a vector of
latent variables, including the biases as well as the determinants
of the rate of technical change. This equation is employed in
projecting the vector of latent technology variables, given the
values of these variables during the sample period and estimates
of the unknown parameters of the coefficient matrix8.

3. Application of the Kalman filter

The econometric technique for identifying the rate and biases
of technical change is a straightforward application of the Kalman
filter, introduced by Kalman (1960, 1963) and presented in detail
by Hamilton (1994, Chapter 13) and others. In the empirical
research described in the following section, the Kalman filter is
used to model production in each of the 35 sectors of our data set.
The latent variables in the state-space specification of the price
function (4) determine current and future patterns of production
along with relative prices, which are the covariates of the Kalman
filter.
The model underlying the Kalman filter is as follows:

ξt
(r×1)
= F

(r×r)
ξt−1
(r×1)
+ vt
(r×1)

, (12)

yt
(n×1)
= A′

(n×k)
xt

(k×1)
+ H ′
(n×r)

ξt
(r×1)
+ wt
(n×1)

, (13)

where ξt , t = 0, 1, 2, . . . , T , is the vector of unobserved latent
variables and yt , t = 1, 2, . . . , T is the vector of observations on
the dependent variables. The vector yt is determined by ξt and
xt , the vector of observations on the explanatory variables. The
subscript t denotes time and indexes the observations.
In the model underlying the Kalman filter the state equation is

(12) and the observation equation is (13), where xt is exogenous,

9 More detail on the implications of imposing concavity at all data points in the
sample is provided by Gallant and Golub (1984).
10 For additional details see Gallant and Golub (1984).
that is, uncorrelated with the disturbancewt . The shocks vt andwt
are assumed uncorrelated at all lags and

E(vtv′τ ) =

{
Q

(r×r)
t = τ

0 otherwise

E(wtw′τ ) =

{
R

(n×n)
t = τ

0 otherwise

where Q and R are the covariance matrices for the disturbances.
The matrices A, H , F , R, Q include unknown parameters, but some
of their elements may be known. For simplicity, we denote the
unknown components of thesematrices by the parameter vector θ .
Computation of the standard Kalman filter involves two pro-

cedures, filtering and smoothing. In filtering we use the maximum
likelihood estimator (MLE) to estimate the unknown parameter
vector θ . The log-likelihood function, based on the normal distribu-
tion, is computed by the forward recursion described by Hamilton
(1994):

max
θ
l(θ |YT ) = max

θ

T∑
t=1

logN(yt |ŷt|t−1, Vt|t−1),

where the matrix,

Yt = (y′t , y
′

t−1, . . . y
′

1, x
′

t , x
′

t−1, . . . x
′

1)
′,

consists of the observations up to time t and themean and variance
are

ŷt|t−1 = E(yt |Yt−1); Vt|t−1 = E[(yt − ŷt|t−1)(yt − ŷt|t−1)′].

Both are functions of θ and the data, calculated in the forward re-
cursion. We use numerical methods to calculate the covariance
matrix of the maximum likelihood estimator θ̂ . In smoothing,
we estimate the latent vector ξt , given the maximum likelihood
estimator, using the backward recursion described by Hamilton
(1994).
The econometric model we have presented in Section 2 can

be expressed in the form required by the Kalman filter with the
following definitions:

yt =


vKt
vLt
vEt

ln
PQt
PMt

 , xt =



1

ln
PKt
PMt

ln
PLt
PMt

ln
PEt
PMt

1
2

(
ln
PKt
PMt

)2
1
2

(
ln
PLt
PMt

)2
1
2

(
ln
PEt
PMt

)2
ln
PKt
PMt
ln
PLt
PMt

ln
PKt
PMt
ln
PEt
PMt

ln
PLt
PMt
ln
PEt
PMt



,

A′ =

αK βKK βKL βKE 0 0 0 0 0 0
αL βKL βLL βLE 0 0 0 0 0 0
αE βKE βLE βEE 0 0 0 0 0 0
α0 αK αL αE βKK βLL βEE βKL βKE βLE

 ,
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ξt =


1
fKt
fLt
fEt
fpt
fpt−1

 ,

H ′ =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

0 ln
PKt
PMt

ln
PLt
PMt

ln
PEt
PMt

1 0

 , wt =

εKtεLtεEt
εpt

 ,

vt =


0
uKt
uLt
uEt
udpt
0

 F ′ =


1 0 0 0 0 0
χK δKK δKL δKE δKp −δKp
χL δLK δLL δLE δLp −δLp
χE δEK δEL δEE δEp −δEp
χp δpK δpL δpE δpp + 1 −δpp
0 0 0 0 1 0

 .

4. Instrumental variables

We require two modifications of the standard Kalman filter.
First, we impose the concavity constraints (10) at each data point
in the sample period by simply adding these constraints to the
computation of the MLE, converting this from an unconstrained to
a constrained optimization. Second, the explanatory variables are
prices determined by the balance of demand and supply, so that
they may be endogenous. We introduce exogenous instrumental
variables, say zt , to deal with the potential endogeneity of the
prices.11 We assume that the vector zt includes the observations
on these variables at time t and satisfies the equation:

xt
(k×1)
= Π

(k×m)
zt

(m×1)
+ ηt
(k×1)

, (14)

where zt is uncorrelated with ηt and wt , and ηt is correlated with
wt but uncorrelated with vt .
Combining Eq. (14) with the observation equation and the state

equation:

yt
(n×1)
= A′

(n×k)
xt

(k×1)
+ H ′
(n×r)

ξt
(r×1)
+ wt
(n×1)

,

ξt
(r×1)
= F

(r×r)
ξt−1
(r×1)
+ vt
(r×1)

,

we can construct a new observation equation;[
yt
xt

]
=

[
A′Π
Π

]
zt +

[
H ′

O

]
ξt +

[
A′ηt + wt

ηt

]
,

or:

ỹt
[(n+k)×1]

= Ã′
[(n+k)×m]

x̃t
(m×1)
+ H̃ ′
[(n+k)×r]

ξt
(r×1)
+ w̃t
[(n+k)×1]

,

leaving the state equation unchanged. The new model satisfies
the exogeneity requirement of the Kalman filter. This would be a
promising approach if the size of Π were small; however, in our
application, this matrix involves 120 unknown parameters.
A more tractable approach is the two-step Kalman filter,

obtained by a direct application of the two-step MLE (Wooldridge,
2002, Ch. 13). If the parameter Π were known, we could replace
xt withΠzt + ηt and formulate a new observation equation, yt =
A′Πzt +H ′ξt + (A′ηt +wt), where zt is the exogenous explanatory
variable. Motivated by this idea, we proceed in two steps:

11 Input and output prices for each of the 35 sectors are determined within an
intertemporal general equilibriummodel like those presented by Jorgenson (1998)
and employed by Jorgenson et al. (2008).
Step One: Estimate Π̂ = XZ ′(ZZ ′)−1 using OLS to obtain a
consistent estimator of Π , where X and Z represent the matrices
of observations on xt and zt , t = 1, 2, . . . , T .
Step Two: ReplaceX in the standardKalman filterwith X̂ = Π̂Z ,

that is, replace xt with the fitted value x̂t at time t , and use the
standard filtering procedure to obtain the two-step MLE of the
unknown parameters in the matrices A, H , F , R, Q .12

Wooldridge (2002, Chapter 13) shows that θ̂ is a consistent
estimator of the parameter θ . In addition, it is asymptotically
normal with

√
N(θ̂ − θ) =

A−10
√
N

N∑
i=1

[−gi(θ;Π)] + Op(1)

= −
A−10
√
N

{
∂ l(Y , X, Z, θ,Π)

∂θ
+

[
1
N
∂ l(Y , X, Z, θ,Π)

∂θ∂Π

]
×
[
N(Z ′Z)−1Z ′η

]}
+ Op(1)

≈ −
A−10
√
N

{
∂ l(Y , X, Z, θ̂ , Π̂)

∂θ

+
∂ l(Y , X, Z, θ̂ , Π̂)

∂θ∂Π
(Z ′Z)−1Z ′η̂

}
+ Op(1)

where

A0 =
1
N
∂ l2(Y , X, Z, θ,Π)

∂θ∂θ ′
≈
1
N
∂ l2(Y , X, Z, θ̂ , Π̂)

∂θ∂θ ′
.

Therefore,

Var(θ̂ − θ)→
A−10
N

N∑
i=1

[−gi(θ; γ )]
N∑
i=1

[−gi(θ; γ )]′
A−10
N

=
N
N

[
∂ l2(Y , X, Z, θ,Π)

∂θ∂θ ′

]−1 [
∂ l(Y , X, Z, θ,Π)

∂θ

+
∂ l(Y , X, Z, θ,Π)

∂θ∂Π
(Z ′Z)−1Z ′η

] [
∂ l(Y , X, Z, θ,Π)

∂θ

+
∂ l(Y , X, Z, θ,Π)

∂θ∂Π
(Z ′Z)−1Z ′η

]′ N
N

[
∂ l2(Y , X, Z, θ,Π)

∂θ∂θ ′

]−1
≈

[
∂ l2(Y , X, Z, θ̂ , Π̂)

∂θ∂θ ′

]−1 [
∂ l(Y , X, Z, θ̂ , Π̂)

∂θ

+
∂ l(Y , X, Z, θ̂ , Π̂)

∂θ∂Π
(Z ′Z)−1Z ′η̂

][
∂ l(Y , X, Z, θ̂ , Π̂)

∂θ

+
∂ l(Y , X, Z, θ̂ , Π̂)

∂θ∂Π
(Z ′Z)−1Z ′η̂

]′ [
∂ l2(Y , X, Z, θ̂ , Π̂)

∂θ∂θ ′

]−1
.

We estimate this covariance matrix numerically after calculating
the two-step MLE.
Table A.1 of the Appendix provides a list of the instrumental

variables and Fig. A.1 displays the instruments graphically. These
are treated as exogenous variables in the intertemporal general
equilibrium model employed by Jorgenson et al. (2008). We
employ two tests to check the validity of our instrumental

12 Estimates of the unknown parameters of our state-space model are presented
in Table S1 and S2 of the Supplement to this paper. This can be downloaded from
www.economics.harvard.edu/faculty/jorgenson/. A similar approach for estimation
of models with time-varying parameters has been introduced by Kim (2006) and
Kim and Nelson (2006).

http://www.economics.harvard.edu/faculty/jorgenson/
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variables. Fortunately, we have more instrumental variables than
endogenous explanatory variables; in fact, there are eleven non-
constant instruments in zt and nine endogenous explanatory
variables in xt . This enables us to conduct a test of over-identifying
restrictions to confirm the exogeneity of the instruments.
We carry out the test of over-identifying restrictions as follows:

first, we select any two non-constant instrumental variables out of
the 11 z(m−k)t , wherem− k = 12− 10 = 2. Second, in the second-
stage Kalman filter, we include z(m−k)t as an exogenous variable in
the observation equation and keep the state equation the same as
before:

yt
(n×1)
= A′

(n×k)
x̂t

(k×1)
+ C ′
[n×(m−k)]

z(m−k)t
[(m−k)×1]

+ H ′
(n×r)

ξt
(r×1)
+w

(m−k)
t
(n×1)

ξt
(r×1)
= F

(r×r)
ξt−1
(r×1)
+ vt
(r×1)

.

Note that X̂ , the observation matrix of x̂t , t = 1, 2, . . . , T ,
satisfies X̂ = Π̂Z = XZ ′(ZZ ′)−1Z with rank k = 10; therefore,
selection of any two non-constant instrumental variables yields
the same test statistic. Moreover, if our null hypothesis that zt
is uncorrelated with wt is true, the addition of z

(m−k)
t to the

observation equation will not affect the original Kalman filter. We
perform a Likelihood Ratio Test of the hypothesis that C is zero by
comparing l and lg , the log-likelihood values before and after the
introduction of z(m−k)t . Under the null hypothesis of exogeneity the
difference is asymptotically chi squared:

2(lg − l)
a
∼χ2n×(m−k).

The results presented in Table A.2 of the Appendix show that the
instrumental variables are exogenous.
Second, we apply a Likelihood Ratio Test to the hypothesis of

zero correlation between endogenous explanatory variables and
instrumental variables. Let Σ̂ represent the empirical covariance
matrix of ẋt , the nine non-constant elements of xt , and Σ̃ represent
the corresponding empirical covariance matrix of ẋt − Π̇zt , the
residuals from the fitted values of the ẋt ’s in the linear regression,
where Π̇ represents the corresponding sub-matrix of Π . The log-
likelihood for the later is

ln L̃ = −
(k− 1)T
2

ln |2π | −
T
2
ln |Σ̃ |

−
1
2

T∑
t=1

(ẋt − Π̇zt)′Σ̃−1(ẋt − Π̇zt)

= −
(k− 1)T
2

ln |2π | −
T
2
ln |Σ̃ | +

(k− 1)T
2

.

The quadratic term is replaced by a constant due to the ML
process of the linear regression. For Σ̂ , we can derive a similar log-
likelihood:

ln L̂ = −
(k− 1)T
2

ln |2π | −
T
2
ln |Σ̂ | +

(k− 1)T
2

.

This is a linear regression, where the parameters before the
constant term in zt are unconstrained and all other parameters in
Π̇ are fixed at zero.
The Likelihood Ratio Test statistic is

LR = −2(ln L̂− ln L̃) = T (ln |Σ̃ | − ln |Σ̂ |).

This statistic is asymptotically chi-squared, where the number of
degrees of freedom is equal to the number of parameters that are
constrained, (m − 1) ∗ (k − 1) = 11 ∗ 9 = 99 in our model.
The results presented in Table A.3 of the Appendix show that the
instrumental variables are highly correlated with the endogenous
variables. We conclude that both diagnostic tests confirm the
validity of our instruments.
Change of Capital Input Share
U.S. 1960-2005

Fig. 1. vKT − vK1 . Note: Year 1= 1960, Year T= 2005.

Change of Labor Input Share
U.S 1960-2005

Fig. 2. vLT − vL1 .

5. Empirical results

In this section we present the rate and biases of technical
change for the state-space model of producer behavior (4) for each
of the 35 sectors of the US economy listed in Table 1. In Figs. 1–4we
give the changes in input shares of the four inputs—capital, labor,
energy, and materials—over the period 1960–2005. These are the
dependent variables for the value share of capital input in Eq. (5)
and the remaining value shares. The industries are ordered by the
magnitude of the changes. In general, the capital input shares have
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Change of Energy Input Share
U.S. 1960-2005

Fig. 3. vET − vE1 .

Change of Material Input Share
U.S. 1960-2005

Fig. 4. vMT − vM1 .

increased, some of them very substantially. With some notable
exceptions the labor shares have decreased and the energy shares
have increased slightly. The materials shares are almost evenly
divided between increases and decreases.
We next allocate changes in the input shares between a price

effect, corresponding to the second term in Eq. (5), and the bias
of technical change (6), corresponding to the third term in (5).
The price effects presented in Figs. 5–8 represent the responses
of production patterns to price changes through substitution
Price Effect of Capital Input Share
Change

U.S. 1960-2005

Fig. 5.
(
βKK ln

PKT
PMT
+ βKL ln

PLT
PMT
+ βKE ln

PET
PMT

)
−

(
βKK ln

PK1
PM1
+ βKL ln

PL1
PM1
+

βKE ln
PE1
PM1

)
= (βKK ln PKT + βKL ln PLT + βKE ln PET + βKM ln PMT ) − (βKK ln PK1 +

βKL ln PL1 + βKE ln PE1 + βKM ln PM1).

Price Effect of Labor Input Share
Change

U.S. 1960-2005

Fig. 6. (βKL ln PKTPMT +βLL ln
PLT
PMT
+βLE ln

PET
PMT
)−(βKL ln

PK1
PM1
+βLL ln

PL1
PM1
+βLE ln

PE1
PM1
) =

(βKL ln PKT+βLL ln PLT+βLE ln PET+βLM ln PMT )−(βKL ln PK1+βLL ln PL1+βLE ln PE1+
βLM ln PM1).

among inputs. These responses are substantial, but appear to be
evenly balanced between negative and positive effects for capital
and energy. The labor price effects are predominantly negative,
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Price Effect of Energy Input Share
Change

U.S. 1960-2005

Fig. 7. (βKE ln
PKT
PMT
+ βLE ln

PLT
PMT
+ βEE ln

PET
PMT
) − (βKE ln

PK1
PM1
+ βLE ln

PL1
PM1
+

βEE ln
PE1
PM1
) = (βKE ln PKT + βLE ln PLT + βEE ln PET + βEM ln PMT ) − (βKE ln PK1 +

βLE ln PL1 + βEE ln PE1 + βEM ln PM1).

Price Effect of Material Input Share
Change

U.S. 1960-2005

Fig. 8. (βKM ln PKT+βLM ln PLT+βEM ln PET+βMM ln PMT )−(βKM ln PK1+βLM ln PL1+
βEM ln PE1 + βMM ln PM1).

reflecting increases in wages relative to prices, while the materials
price effects are predominantly positive. These price effects rule
out a Cobb–Douglas or linear logarithmic specification for the price
function (4).
Bias of Technical Change for Capital
Input

U.S. 1960-2005

Fig. 9. fKT − fK1 .

Bias of Technical Change for Labor 
Input

U.S. 1960-2005

Fig. 10. fLT − fL1 .

We present the biases of technical change (6) in Figs. 9–12.13
The biases of technical change for capital input are predominantly
capital-using and substantial in magnitude, especially for Coal
Mining and Government Enterprises. The biases are capital-saving

13 Biases in Figs. 9–12 and projections in Figs. 19–22 can be downloaded in time
series format as Figs. S.1–4 of the Supplement to this paper.
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Bias of Technical Change for Energy 
Input

U.S. 1960-2005

Fig. 11. fET − fE1 .

Bias of Technical Change for Material
Input

U.S. 1960-2005

Fig. 12. fMT − fM1 .

but relatively small for Paper Products and Services. The biases
of technical change for labor input are divided between labor-
saving technical change for industries like Leather Products and
Coal Mining and labor-using change for industries such as Food
Products and Textile Mill Products.
The biases of technical change for energy are relatively small in

magnitude, reflecting the small size of the energy shares for most
Reduction of Log Relative Output Price
U.S. 1960-2005 

Fig. 13. −
(
ln PQTPMT − ln

PQ1
PM1

)
.

industries. The bias for energy is energy-using for Transportation
and Warehousing and energy-saving for Electric and Gas Utilities,
Coal Mining, and Petroleum and Gas Mining. Finally, the biases of
technical change formaterials are predominantlymaterials-saving
and substantial in size, especially for Government Enterprises
and Food Products. However, the biases are materials-using for
Petroleum and Gas Mining and Gas Utilities.
We conclude that the biases of technical change are comparable

in magnitude to the price effects. Substitution among inputs
and biased technical change are both important determinants
of changes in the input shares. However, the biases also play a
significant role in our state-space model of producer behavior as
determinants of the rate of induced technical change.We turn next
to changes in the price of output and its decomposition into a price
effect, corresponding to the second and third terms in Eq. (4), and
the rates of induced and autonomous technical change in Eq. (6).
Fig. 13 presents reductions in the logarithms of prices of the

outputs of the 35 industries, relative to the prices of materials in-
puts in each sector. Not surprisingly, these price changes are almost
evenly divided between positive and negative valueswith the large
reductions for Electronic and Electrical Equipment and Industrial
Machinery and Equipment as the outstanding exceptions. The Elec-
tronic and Electrical Equipment industry produces semiconductor
components for computers and other electronic equipment, while
Industrial Machinery and Equipment includes computers. Techni-
cal change has resulted in a very dramatic fall in the prices of out-
puts for these industries, relative to the materials they consume.
The price effects presented in Fig. 14 are differences between

the price reductions in Fig. 13 and the rates of technical change in
Eq. (7). These price effects result from substitution among inputs
and are dominated by increases in wage rates, relative to prices of
materials inputs. Using estimates of the biases of technical change,
we can divide the rate of technical change between the rate of
induced technical change, corresponding to the first term in Eq. (7),
and the rate of autonomous technical change, corresponding to the
second term in this equation.
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Price Effect of Log Relative Output
Price Change

U.S. 1960-2005

Fig. 14. −
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.

The rates of autonomous technical change given in Fig. 16 are
predominantly positive and substantial in magnitude. Electronic
and Electric Equipment leads all other industries with a rate of
autonomous technical change that exceeds even the very dramatic
rate of decline of the relative price of the industry’s output.
Industrial Machinery and Equipment, the industry that includes
computers, has the second largest rate of autonomous technical
change. The Tobacco Products industry and Petroleum and Gas
Mining have sizable negative rates of autonomous technical
change.
The rates of induced technical change in Fig. 15, corresponding

to the first term in Eq. (7), depend on the correlations between
prices of inputs and biases of technical change. If this correlation
is negative, input-using technical change corresponds to low input
prices and input-saving change to high input prices, so that
the rate of induced technical change is positive. The rates of
induced technical change presented in Fig. 15 are predominantly
negative, so that input-using technical change is correlated with
high input prices and input-saving technical changewith low input
prices.14
Our overall conclusion from the empirical results presented

in Figs. 13–16 is that rates of autonomous and induced technical
change are substantial in magnitude and opposite in sign.
However, autonomous technical change predominates, so that
rates of technical change are positive for most industries. Rates of
technical change are large relative to the price effects associated
with substitution among inputs. The price effects exert upward
pressure on output prices while induced technical change exerts
pressure in the same direction, but both are offset by positive rates
of autonomous technical change.
In order to explore changes in the direction and magnitude

of biases in technical change in greater detail, we sub-divide the

14 Rates of induced and autonomous technical change in Figs. 15 and 16 and
projections in Figs. 23 and 24 can be downloaded in time series format as Fig S.5
of the Supplement to this paper.
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Rate of Induced Technical Change
U.S. 1960-2005

Fig. 15. −
[∑T

t=2 ln
PKt
PMt
(fKt − fKt−1)+ ln

PLt
PMt
(fLt − fLt−1)+ ln

PEt
PMt
(fEt − fEt−1)

]
=

−

[∑T
t=2 ln PKt (fKt − fKt−1) + ln PLt (fLt − fLt−1) + ln PEt (fEt − fEt−1) + ln PMt (fMt −

fMt−1)
]
.

Rate of Autonomous Technical Change
U.S. 1960-2005

Fig. 16. −(fpT − fp1).

biases for energy input into two sub-periods, 1960–1980 and
1980–2005. Recall that the biases of technical change are first
differences of the latent variables, as in Eq. (6). In Figs. 17 and 18
the biases are both energy-saving and energy-using for the seven
most intensive energy-using sectors during the sample period—
petroleum refining, electric and gas utilities, transportation and
Bias of Technical Change for Energy
 Input

U.S. 1960-1980

Fig. 17. fE1980 − fE1 .

Bias of Technical Change for Energy
Input

U.S. 1980-2005

Fig. 18. fET − fE1980 .

warehousing, coal mining, chemical products, and stone, clay, and
glass. This pattern would have been concealed by constant time
trends.
There is a common pattern of energy-using change from

1960–1980 and energy-saving change from 1980–2005, except
for metal mining. The turning point was the Second Oil Crisis,
when energy prices reached their postwar peaks in real terms. We
conclude that high energy prices after 1980 are correlated with
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Projection of Bias of Technical Change
 for Energy Input
U.S. 2006-2030

Fig. 19. fE2030 − fET .

Projection of Bias of Technical Change
 for Capital Input
U.S. 2006-2030

Fig. 20. fK2030 − fKT .

energy-saving change, while low energy prices before 1980 are
correlatedwith energy-using change. This patternwould also have
been concealed by constant time trends.
The latent variables fit converge to constants, so that biases

of technical change corresponding to changes in these variables
converge to zero. In Fig. 19 we present projections of the biases
of technical change for energy for the period 2006–2030. Note that
the projected biases for the sevenmost energy-intensive industries
are not simple extrapolations of the trends toward energy
Projection of Bias of Technical Change
 for Labor Input
U.S. 2006-2030

Fig. 21. fL2030 − fLT .

Projection of Bias of Technical Change
 for Material Input
U.S. 2006-2030

Fig. 22. fM2030 − fMT .

conservation we have identified after 1980. Projected biases are
energy-saving for gas utilities, transportation and warehousing,
and chemical products. However, projected biases are energy-
using for electric utilities, petroleum refining, stone, clay, and glass,
and coal mining. As before, these projections are inconsistent with
the constant time trends in Binswanger’s approach.
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Projected Rate of Induced
Technical Change
U.S. 2006-2030

Fig. 23. −
[
ln PKTPMT (fK2030 − fKT )+ ln

PLT
PMT
(fL2030 − fLT )+ ln

PET
PMT
(fE2030 − fET )

]
.

In Figs. 20–22 we give projections of biases of technical change
for capital, labor, and materials for the period 2006–2030. These
projections are not simple extrapolations of biases during the sam-
ple period and many alternate between input-using and input-
saving bias. This variation is particularly pronounced in the case
of energy input and characterizes biases of technical change dur-
ing the sample period, 1960–2005, and the projection period,
2006–2030. We conclude that the latent variables representing bi-
ases of technical change must be sufficiently flexible to capture
variations between input-using and input-saving technical change.
The levels of technology fpt converge to linear trends, cor-

responding to constant rates of autonomous technical change.
Recalling that we employ the dual representation of technology
(4), falling trends correspond to positive rates of technical change,
while rising trends represent negative rates. In Figs. 23 and 24 we
give projections of the rates of induced and autonomous technical
change. Rates of induced technical change are relatively small in
magnitude and are evenly divided between positive and negative
values. Rates of autonomous technical change are predominantly
positive in sign and substantial in magnitude. The projections for
electronic and electric equipment, including semiconductors, have
very rapid rates of technical change. Projected rates of technical
change for industrial machinery and equipment, including com-
puters, are the next most rapid, also extrapolating trends during
the sample period. Negative rates of autonomous technical change
are substantial in magnitude for coal mining and petroleum and
gas mining.

6. Conclusion

Our principal innovation is to generate empirical measures of
the rate and biases of technical change as latent or unobservable
variables, while retaining flexibility in modeling substitution in
terms of observable variables such as prices and value shares. We
find that biases of technical change are substantial in magnitude,
comparable to responses to price changes. Biases of technical
change are generally capital-using andmaterials-saving and biases
for energy alternate between energy-using before 1980 and
energy-using afterward. Projections of the biases of technical
Projected Rate of Autonomous 
Technical Change
U.S. 2006-2030

Fig. 24. −(fp2030 − fpT ).

Table A.1
Instrumental variables.

1 Constant
2 Average marginal tax rate on personal labor income
3 Effective Corporate Income tax rate
4 Average Marginal Tax Rate on Dividends
5 Rate of Taxation on Consumption Goods
6 Time endowment in 2000 dollars/Lagged private wealth including

claims on government and the ROW
7 Lagged price of personal Consumptions Expenditure/Lagged price

index of private domestic labor input
8 Lagged price of leisure and unemployment/Lagged price index of

private domestic labor input
9 Lagged price of capital services for household/Lagged price index of

private domestic labor input
10 Lagged real full consumption/Lagged private wealth including claims

on government and the ROW
11 US population/Lagged private wealth including claims on government

and the ROW
12 Government Demand/Lagged private wealth including claims on

government and the ROW

change are not consistent with the constant time trends employed
in Binswanger’s approach.
The rate of induced technical change captures the correlation

between the biases of technical change and the prices of inputs.
Perhaps surprisingly, this correlation is positive, so that rates of
induced technical change are predominantly negative. Techni-
cal change directed toward increasing or decreasing the utiliza-
tion of a particular input generally reduces the rate of technical
change. However, rates of autonomous technical change are pre-
dominantly positive and much greater in magnitude. Projections
of rates of technical change are positive and substantial, suggest-
ing a relatively optimistic outlook for future US economic growth.
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Fig. A.1. Instrumental variables.
Table A.2
Tests for overidentification.

Sector lg l 2(lg − l) p-value p-value*35

1 563.48 562.65 1.67 0.990 34.63
2 454.21 447.07 14.28 0.075 2.62
3 481.81 478.00 7.61 0.473 16.55
4 509.39 508.64 1.50 0.993 34.74
5 550.44 547.61 5.66 0.685 23.97
6 714.71 712.61 4.19 0.839 29.38
7 730.60 727.74 5.72 0.679 23.75
8 604.98 604.94 0.07 1.000 35.00
9 704.31 702.58 3.47 0.902 31.56
10 709.93 708.88 2.11 0.978 34.21
11 638.50 637.66 1.68 0.989 34.62
12 691.26 688.36 5.82 0.668 23.37
13 630.64 627.61 6.07 0.640 22.40
14 722.78 719.49 6.59 0.581 20.33
15 620.06 618.78 2.55 0.959 33.57
16 531.17 526.66 9.01 0.342 11.96
17 702.20 699.77 4.86 0.772 27.03
18 597.88 596.47 2.82 0.945 33.08
19 660.17 658.94 2.47 0.963 33.71
20 647.79 641.26 13.07 0.109 3.83
21 702.88 700.86 4.03 0.854 29.90
22 701.61 697.96 7.30 0.505 17.67
23 648.23 648.00 0.47 1.000 35.00
24 674.59 670.90 7.38 0.496 17.36
25 648.00 642.70 10.61 0.225 7.87
26 700.77 695.14 11.26 0.187 6.56
27 673.38 669.86 7.06 0.530 18.56
28 607.55 602.54 10.01 0.264 9.26
29 781.95 776.59 10.72 0.218 7.64
30 595.61 594.48 2.25 0.972 34.03
31 560.82 552.14 17.35 0.027 0.93
32 703.84 699.63 8.43 0.392 13.73
33 765.86 760.74 10.24 0.248 8.69
34 726.58 721.86 9.43 0.307 10.76
35 572.33 564.66 15.34 0.053 1.85

Notes: (1) The number of degrees of freedom for the LR test for each sector is 8.
(2) The null hypothesis is that the instrumental variables are exogenous. (3) High
p-values indicate that we cannot reject the null hypothesis of exogeneity. (4) The
last column presents p-values adjusted for simultaneous inference.
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Table A.3
Tests of validity of the instrumental variables.

Sector LR p-value

1 677.89 <0.001
2 580.45 <0.001
3 679.11 <0.001
4 762.29 <0.001
5 717.90 <0.001
6 646.73 <0.001
7 672.32 <0.001
8 646.00 <0.001
9 782.78 <0.001
10 643.17 <0.001
11 541.68 <0.001
12 600.82 <0.001
13 668.19 <0.001
14 743.66 <0.001
15 732.65 <0.001
16 692.95 <0.001
17 734.26 <0.001
18 625.93 <0.001
19 829.69 <0.001
20 626.03 <0.001
21 726.69 <0.001
22 696.75 <0.001
23 791.19 <0.001
24 601.69 <0.001
25 596.51 <0.001
26 777.20 <0.001
27 588.84 <0.001
28 568.53 <0.001
29 762.82 <0.001
30 657.10 <0.001
31 748.91 <0.001
32 856.78 <0.001
33 755.03 <0.001
34 715.89 <0.001
35 764.75 <0.001

Notes: (1) Number of degrees of freedom for the LR test for each sector is 99. (2) The
null hypothesis is that instrumental variables are uncorrelatedwith the endogenous
independent variables. (3) Low p-values indicate that we can reject the null
hypothesis of no correlation.

Appendix A

See Tables A.1–A.3.

Appendix B. Supplementary data

Supplementary data associated with this article can be found,
in the online version, doi:10.1016/j.jeconom.2009.12.002.

http://dx.doi.org/doi:10.1016/j.jeconom.2009.12.002
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