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Abstract

Perhaps the most fundamental contribution to economics in the past
century relates to understanding how agents behave in strategic set-
tings. While our theoretical knowledge is deep, the empirical evidence
remains behind. This study makes use of data from a Facebook appli-
cation that had hundreds of thousands of people play a simultaneous
move, zero-sum game – rock-paper-scissors – with varying information
to provide empirical insights into whether play is consistent with ex-
tant theories. We report three major insights. First, we observe that
many people employ strategies consistent with Nash equilibrium: that
is, most people employ strategies consistent with Nash, at least some
of the time. Second, players predictably respond to incentives in the
game. For example, out of equilibrium, players strategically use infor-
mation on previous play of their opponents, and they are more strategic
when the payoffs for such actions increase. Third, experience matters:
players with more experience use information on their opponents more
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efficiently than lesser experienced players, and are more likely to win
as a result. We also explore the degree to which the deviations from
Nash predictions are consistent with various non-equilibrium models.
We find that both a level-k framework and a quantal response model
have explanatory power: whereas one group of people employ strategies
that are close to k1, there is also a set of people who use strategies that
resemble quantal response.

JEL classification: C72, D03
Keywords: play in strategic settings, large-scale data set, Nash equilib-
rium, non-equilibrium strategies

Over the last several decades it would be difficult to find an idea that al-

tered the social science landscape more profoundly than game theory. Across

economics and its sister sciences, elements of Nash equilibrium are included

in nearly every analysis of behavior in strategic settings. For their part,

economists have developed deep theoretical insights into how people should

behave in a variety of important strategic environments – from optimal ac-

tions during wartime to more mundane tasks such as how to choose a parking

spot at the mall. Understanding whether people actually behave in accord

with theoretical predictions, however, has considerably lagged behind. Al-

though there are important tests of game theory in lab experiments (see, e.g.,

Dufwenberg and Gneezy (2000); Dufwenberg et al. (2010); Lergetporer et al.

(2014); Sutter et al. (2013)), credibly testing whether behavior conforms to

theory in the field has been difficult (yet, see Chiappori et al. (2002); Güth

et al. (2003); Goette et al. (2012) and the cites therein).

In this paper, we take a fresh approach to studying strategic behavior in

the field, exploiting a unique dataset that allows us to observe play while the

information shown to the player changes. In particular, we use data from over

one million matches of rock-paper-scissors1 played on a historically popular

Facebook application. Before each match (made up of multiple throws), play-

ers are shown a wealth of data about their opponent’s past history: the percent

of past first throws in a match that were rock, paper, or scissors, the percent

of all throws that were rock, paper, or scissors, and all the throws from the

1Two players each play rock, paper, or scissors. Rock beats scissors; scissors beats paper;
paper beats rock. If they both play the same, it is a tie. The payoff matrix is in Figure 2.
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opponents’ most recent five games. These data thus allow us to investigate

whether, and to what extent, players use information.

The informational variation makes the strategy space for the game poten-

tially much larger than a basic rock-paper-scissors game. We show, however,

that in Nash Equilibrium, players must expect their opponents to mix equally

across rock-paper-scissors – same as in the one-shot game. Therefore, a player

has no use for information on the opponent’s history when the opponent is

playing Nash.

To the extent that an opponent systematically deviates from Nash, how-

ever, knowledge of that opponent’s past history can potentially be exploited.2

Yet, despite the simplicity of the game and the transparency of the informa-

tion, it is not clear how one should utilize the information provided. Players

can use the information to determine whether an opponent’s past play con-

forms to Nash, but they do not observe the past histories of the opponent’s

previous opponents; without seeing what information the opponent was react-

ing to, it is hard to guess what non-Nash strategy the opponent may be using.

Additionally, players are not shown information about their own past play, so

if a player wants to exploit an opponent’s reaction, he has to keep track of his

own history of play.

Because of the myriad of possible responses, we start with a reduced-form

analysis of the first throw in each match to describe how players respond to

the provided information. We find that players use information: for example,

they are more likely to play rock when their opponent has played less paper

(which beats rock) or more scissors (which rock beats) on previous first throws.

Players have a weak negative correlation across their own first throws. Overall,

we find that most players, at some point in their histories, employ strategies

consistent with Nash equilibrium. Even so, we do find considerable evidence

of disequilibrium play; for example, 53% of players are reacting to information

about their opponents’ history.

2If the opponent is not playing Nash, then Nash is no longer a best response. In symmetric
zero-sum games like RPS, deviating from Nash is costless if the opponent is playing Nash
(since all strategies have an expected payoff of zero), but there is a profitable deviation from
Nash if a player thinks he knows what non-Nash strategy his opponent is using.
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This finding motivated us to adopt a structural approach to evaluate the

performance of two well-known disequilibrium models: level-k and quantal

response. The level-k model posits that players are of different types according

to the depth of their reasoning about the strategic behavior of their opponents

(Stahl, 1993; Stahl and Wilson, 1994, 1995; Nagel, 1995). Players who are

k0 do not take into account their opponents’ strategies or incentives. This

can either mean that they play randomly (e.g. Costa-Gomes and Crawford

(2006)) or that they play some focal or salient strategy (e.g. Crawford and

Iriberri (2007); Arad and Rubinstein (2012)). Players who are k1 respond

optimally to a k0 player, which in our context means responding to the focal

strategy of the opponent’s (possibly skewed) historical distribution of throws;

k2 players respond optimally to k1, etc.3

Level-k theory acknowledges the difficulty of calculating equilibria and of

forming beliefs, especially in one shot games. It has been applied to a va-

riety of laboratory games (e.g. Costa-Gomes et al. (2001); Costa-Gomes and

Crawford (2006); Hedden and Zhang (2002); Crawford and Iriberri (2007); Ho

et al. (1998)), but this is one of the first applications of level-k theory to a

naturally-occurring environment (e.g. Bosch-Domenech et al. (2002); Ostling

et al. (2011); Gillen (2009); Goldfarb and Xiao (2011); Brown et al. (2012)).

We also have substantially more data than most other level-k studies, both in

number of observations and in the richness of the information structure.

We adapt level-k theory to our repeated game context. Empirically, we

use maximum likelihood to estimate how often each player plays k0, k1, and

k2, assuming that they are restricted to those three strategies. We find that

the majority of play is best described as k0 (about 74%). On average, k1 is

used in 19% of throws. The average k2 estimate is 7.7%, but for only 12% of

players do we reject at the 95% level that they never play k2. Most players use

a mixture of strategies, mainly k0 and k1.
4 We also find that 20% of players

3Since the focal k0 strategies can be skewed, our k1 and k2 strategies usually designate a
unique throw, which would not be true if k0 were constrained to be a uniform distribution.

4As we discuss in Section 4 there are several reasons that may explain why we find lower
estimates for k1 and k2 play than in previous work. Many players may not remember their
own history, which is necessary for playing k2. Also, given that k0 is what players would
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deviate significantly from 1
3
, 1
3
, 1
3

when playing k0.

An interesting result is that play is more likely to be consistent with k1

when the expected return to k1 is higher. This effect is larger when the op-

ponent has a longer history – that is, when the skewness in history is less

likely to be noise. The fact that players respond to the level of the perceived

expected (k1) payoff, not just whether it is the highest, is related to another

model of non-equilibrium play based on Quantal Response Equilibrium (QRE)

theory (McKelvey and Palfrey, 1995). QRE posits that players’ probability

of using a pure strategy is increasing in the relative perceived expected payoff

of that strategy. Because we think players differ in the extent to which they

respond to information and consider expected payoffs, we do not impose the

equilibrium restriction that the perceived expected payoffs are correct. This

version of quantal response can be thought of as a more continuous version of

a k1 strategy. Rather than always playing the strategy with the highest ex-

pected payoff as under k1, the probability of playing a strategy increases with

the expected payoff. As the random error in quantal response approaches

zero (or the responsiveness of play to the expected payoff goes to infinity) this

converges to the k1 strategy.

On average, we find that increasing the expected payoff to a throw by

one standard deviation increases the probability it is played by 5.2 percentage

points (more than one standard deviation). The coefficient is positive and

statistically significant for 60% of players. To interpret these results, one must

consider that if players were using the k1 strategy, then we would also find

that expected payoffs have a positive effect on probability of play. Similarly, if

players used quantal response, many of their throws would be consistent with

k1 and our maximum likelihood analysis would indicate some k1 play.

Therefore, this evidence does not allow us to formally state which model

is a better fit for the data. To preform that task, we compare the model

likelihoods to test whether k1 or quantal response better explains play. The

quantal response model is significantly better than the maximum likelihood for

most likely play if they were not shown the information (i.e. when they play RPS outside
the application), it may be more salient than in other contexts.
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17.8 percent of players, yet the k1 model is significantly better for 18.4 percent

of players. We interpret this result as suggesting that there are some players

whose strategies are close to k1 and a distinct set of players who use strategies

resembling quantal response. In sum, our data paint the picture that there is

a fair amount of equilibrium play, and when we observe disequilibrium play,

extant models have power to explain the data patterns.

The remainder of the paper is structured as follows. Section 1 describes

the Facebook application in which the game is played and presents summary

statistics of the data. Section 2 describes the theoretical model underlying

the game, and the concept (and implications) of Nash equilibrium in this set-

ting. Section 3 explores how players respond to the information about their

opponents’ histories. Section 4 explains how we adapt level-k theory to this

context and provides parameter estimates. Section 5 adapts the quantal re-

sponse model to our setting and Section 6 uses maximum likelihood to compare

the level-k and quantal response models. Section 7 concludes.

1 An Introduction to Roshambull
Rock-Paper-Scissors, also known as Rochambeau and jan-ken-pon, is said

to have originated in the Chinese Han dynasty, making its way to Europe in

the 18th century. To this day, it continues to be played actively around the

world. There is even a world Rock-Paper-Scissors championship sponsored by

Yahoo.5

The source of our data is an early Facebook ‘app’ called Roshambull,6

which allowed users to play rock-paper-scissors against other Facebook users.

It was a very popular app for its era with 340,213 users (≈ 1.7% of Facebook

5Rock-paper-scissors is usually played for low stakes, but sometimes the result carries
with it more serious ramifications. During the World Series of Poker, an annual $500 per
person rock-paper-scissors tournament is held, with the winner taking home $25,000. Rock-
paper-scissors was also once used to determine which auction house would have the right
to sell a $12 million Cezanne painting. Christie’s went to the 11-year-old twin daughters of
an employee, who suggested “scissors” because “Everybody expects you to choose ‘rock’.”
Sotheby’s said that they treated it as a game of chance and had no particular strategy for
the game, but went with “paper” (Vogel, 2005).

6The name is a combination of a bastardized spelling of Rochambeau and the name of
the firm sponsoring the app, Red Bull.
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users) playing at least one match in the first three months of the game’s ex-

istence. Users played best-two-out-of-three matches for prestige points known

as ‘creds.’ They could share their records on their Facebook page and there

was a leader board with the top players’ records.

To make things more interesting for players, before each match the app

showed them a “scouting sheet” with information on the opponent’s history of

play.7 In particular, the app showed each player the opponent’s distribution of

throws on previous first throws of a match (and the number of matches) and

on all previous throws (and the number of throws), as well as the opponent’s

lifetime win record and a play-by-play breakdown of the opponent’s previous

five matches. It also shows the opponent’s win-loss records and the number of

creds wagered. Figure 1 shows a sample screenshot from the game.

Our dataset contains 2,636,417 matches, all the matches played between

May 23rd, 2007 (when the program first became available to users) and August

14th, 2007. For each throw, the dataset contains a player ID, match number,

throw number, throw type, and the time and date at which the throw was

made.8 This allows us to create complete player histories at each point in

time. Most players play relatively few matches in our three month window:

the median number of matches is 5 and the mean number is 15.34.9

Some of our inference depends upon having a large number of observations

per player; for those sections, our analysis is limited to the 7751 “experienced”

players for whom we observe at least 100 clean matches. They play an average

of 195.6 matches; the median is 151 and the standard deviation is 141.8.10

Because these are the most experienced players, their strategies may not be

representative; one might expect more sophisticated strategies in this group

7Bart Johnston, one of the developers said, “We’ve added this intriguing statistical aspect
to the game. . . You’re constantly trying to out-strategize your opponent” (Facebook, 2010).

8Unfortunately we only have a player id for each player; there is no demographic infor-
mation or information about their out-of-game connections to other players.

9We exclude the small fraction of player-pairs for which one player won an implausibly
high share of the matches (suggesting collusion). We of course include those matches when
forming the histories.

10For some analyses we only use players who have 100 clean games with the relevant
strategies indicate a unique throw, so we use between 5732 and 7751 players.
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relative to the Roshambull population as a whole.

For all of the empirical analysis we focus on the first throw in each match.

Modeling non-equilibrium behavior on subsequent throws is more complicated

because in addition to their opponent’s history, a player may also respond to

the prior throws in the match. Table 1 summarizes the play and opponents’

histories shown in the first throw of each match, for both the entire sample

and the experienced players.

2 Model of the game
A standard game of rock-paper-scissors is a simple 3 × 3 zero-sum game.

The payoffs are shown in Figure 2. The only Nash Equilibrium is for players

to mix 1
3
, 1
3
, 1
3

across rock, paper, and scissors. Because each match is won

by the first player to win two throws, and players play multiple matches,

the strategies in Roshambull are potentially substantially more complicated:

players could condition their play on various aspects of their own or their

opponents’ histories. A strategy would be a mapping from (1) the match

history for the current match so far, (2) one’s own history of all matches

played, and (3) the space of information one might be shown about one’s

opponent’s history, onto a distribution of throws.

In addition, Roshambull has a matching process operating in the back-

ground, in which players from a large pool are matched into pairs to play a

match and then are returned to the pool to be matched again. In the Ap-

pendix, we formalize Roshambull in a repeated game framework.

Despite this potential for complexity, however, the equilibrium strategies

are still simple.

Proposition 1. In any Nash Equilibrium, for every throw of every match,

each player correctly expects his opponent to mix 1
3
, 1
3
, 1
3
over rock, paper, and

scissors.11

Proof. See the Appendix.

11Players could use aspects of their history that are not observable to the opponent as a
private randomization devices, but conditional on all information available to the opponent,
they must be mixing 1

3 ,
1
3 ,

1
3 .
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The proof uses the fact that it is a symmetric, zero sum game to show that

players continuation values at the end of every match must be zero. Therefore

players are only concerned with winning the match, and not with the effect of

their play on their resulting history. We then show that for each throw in the

match, if player A correctly believes that player B is not randomizing 1
3
, 1
3
, 1
3
,

then player A has a profitable deviation.

Nash Equilibrium implies that players randomize 1
3
, 1
3
, 1
3

both uncondition-

ally and conditional on any information available to the opponent. Out of

equilibrium, players may condition their throws on their or their opponents’

histories in a myriad of ways. The resulting play may or may not result in

an unconditional distribution of play that differs substantially from 1
3
, 1
3
, 1
3
.

In Section 3, we present evidence that 83% of players have throw distribu-

tions that do not differ from from 1
3
, 1
3
, 1
3
. Yet, when throw distributions are

exploitable, players respond to their opponents’ histories.12

3 Players respond to information
Before examining the data for specific strategies players may be using,

we present reduced-form evidence that players respond to the information

available to them. To keep the presentation clear and simple, for each analysis

we focus on rock, but the results are similar for paper and scissors.

We start by examining the dispersion across players in how often they

play rock. Figure 3 shows the distribution across experienced players of the

fraction of their last 100 throws that are rock. It also shows this distribution

for simulated players who play rock, paper and scissors with probability one-

third on each throw. The distribution from the actual data is substantially

more disperse than the simulations, suggesting that the fraction of rock played

deviates from one-third more than one would expect from pure randomness.

Doing a chi-squared test on all of players’ throws we reject uniform random

play for 17% of experienced players.

Given this dispersion in the frequency with which players play rock, we test

12We also find serial correlation both across throws within a match and across matches,
which is inconsistent with Nash Equilibrium.
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whether players respond to the information they have about their opponents

tendency to play rock – the opponents’ historical rock percentage. Table 2 bins

opponents by their historical percent rock and shows the fraction of paper,

rock, and scissors play. Note that the percent paper is increasing across the

bins and percent scissors is decreasing. Paper goes from less than a third

chance to more than a third chance (and scissors goes from more to less) right

at the cutoff where rock goes from less often than random to more often than

random. The percent rock a player throws does not vary nearly as much across

the bins.

For a more quantitative analysis of how this and other information pre-

sented to players affects their play, Table 3 presents regression results. The

dependent variable is binary, indicating whether a player throws rock. The

coefficients all come from one regression. The first column is the effect for all

players, the second column is the additional effect of the covariates for play-

ers in the restricted sample; the third column is the additional effect for those

players after their first 99 games. For example, a standard deviation increase in

the opponents historical fraction of scissors (.18) increases the probability than

an inexperienced player plays rock by 4.5 percentage points (100 · .18 · .2531)

and for an experienced player who already played at least 100 games, the in-

crease is 9 percentage points (100 · .18 · (.2531 + .1409 + .1379)). As expected,

the effects of the opponents percent of first throws that were paper is positive

and gets stronger with experience, and the effect for scissors is negative and

gets stronger with experience. The effect of the opponent’s distribution of all

throws and lagged throws is less clear.13

The consistent and strong reactions to the opponent’s distribution of first

throws motivates our use of that variable in the structural models.

The fact that players respond to their opponents’ histories makes their play

somewhat predictable and potentially exploitable. To measure this exploitabil-

ity, we run the regression from Table 3 on half the restricted sample and use

13If we run the regression with just the distribution of all throws or just the lags, the
signs are as expected, but that seems to be mostly picking up the effect via the opponent’s
distribution of first throws.
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the coefficients to predict the probability of playing rock on each throw for the

other half of the restricted sample. We do the same for paper and scissors.

We then calculate how often a player who was optimally responding to this

predicted play would win, draw, and lose a throw. We compare these rates to

the players in our sample, keeping in mind that predicted play is based largely

on the opponent’s history, so responding to it optimally would require that

the opponent know his own history. Table 4 presents the results. If players

bet $100 on each throw, the average experienced player would win $1.49 on

the average throw. This is better than the $.66 the average player wins,14

but someone responding optimally to their predictability would win $16.86 on

average.

Given these incentives to exploit players’ predictability, we want to check

whether their opponents do. They do not appear to. Given the predicted

probabilities of play for experienced players, we calculate the expected payoff

to an opponent of playing rock. Table 5 bins throws by the expected payoff to

playing rock and shows the distribution of opponent throws. The probability

of playing rock bounces around – opponents are not more likely to play rock

when the actual expected payoff is high; the predictability of players’ throws

is not effectively exploited.

Since players are mostly responding to their opponent’s history, exploiting

those response requires that a player remember her own history of play (since

the game does not show one’s own history). So it is perhaps not surprising

that players’ predictability is not exploited and therefore unsurprising that

they react in a predictable manner. If we do the analysis at the player level,

53% of players significantly respond to their opponents’ historical distributions

of past throws.

Having described in broad terms how players react to the information pre-

sented, we turn to existing structural models to test whether play is consistent

with these hypothesized non-equilibrium strategies.

14The average overall must be zero, but our cleaning of the data left us with .66% more
wins than losses.
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4 Level-k behavior
While level-k theory was developed to analyze single shot games, it is a

useful framework for exploring how players incorporate information about their

opponent.15 The k0 strategy is to ignore the information about one’s opponent

and play a (possibly random) strategy independent of the opponent’s history.

While much of the existing literature assumes that k0 is uniform random, some

studies assume that k0 players use a salient or focal strategy. In this spirit, we

allow players to randomize non-uniformly (imperfectly) when playing k0 and

assume that the k1 strategy best responds to a focal strategy for the opponent

— k1 players best respond to the opponent’s past distribution of first throws.16

It seems natural that a k1 player who assumes his opponent is non-strategic

would use this description of past play as a predictor of future play. When

playing k2, players assume that their opponents are playing k1 and respond

accordingly.

Given players’ assumptions about their opponents’ play, their strategies

then depend on the value function they are maximizing. We assume that

players are myopic and ignore the effect of their throw on their continuation

value.17 This approach is consistent with the literature that analyzes some

games as “iterated play of a one-shot game” instead of as an infinitely re-

peated game (Monderer and Shapley, 1996). More generally, we think it is a

reasonable simplifying assumption. While not impossible, it is hard to imagine

how one would manipulate one’s history to affect future payoffs with an effect

large enough to outweigh the effect on this period’s payoff.18

15Though players play multiple games, they might struggle to form accurate beliefs about
opponents’ strategies since players are playing against many different opponents each of
whom may be using a complicated mixed strategy.

16The reduced form results indicate that players react much more strongly to the distri-
bution of first throws than to the other information provided.

17In the proof of Proposition 1 we show that in Nash Equilibrium, histories do not affect
continuation values, so in equilibrium it is a result, not an assumption, that players are
myopic. However, out of Nash Equilibrium, it is possible that what players throw now can
affect their probability of winning later rounds.

18One statistic that we thought might affect continuation values is the skew of a player’s
historical distribution. As a player’s history departs further from random play, the more
opportunity for opponent response and player manipulation of opponent response. We ran
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Formal definitions of the different level-k strategies in our context are as

follows:

Definition. When a player uses the k0 strategy in a match, his choice of throw

is unaffected by his history or his opponent’s history.

We should note that using k0 is not necessarily unsophisticated. It could

be playing the Nash equilibrium strategy. However there are two reasons to

think that k0 might not represent sophisticated play. First, for some players

the frequency distribution of their k0 play differs significantly from 1
3
, 1
3
, 1
3
,

suggesting that if they are trying to play Nash, they are performing poorly.

Second, more subtly, it is not sophisticated to play the Nash equilibrium if

your opponents are failing to play Nash. With most populations who play the

beauty contest game, people who play Nash do not win (Nagel, 1995). In RPS,

if there is a possibility that one’s opponent is playing something other than

Nash, there is a strategy that has a positive expected return, whereas Nash

always has a zero expected return. (If it turns out the opponent is playing

Nash, then every strategy has a zero expected return and so their is little

cost to trying something else.) Given that some players differ from 1
3
, 1
3
, 1
3

when playing k0 and most don’t always play k0, Nash is frequently not a best

response.

Definition. When a player uses the k1 strategy in a match, he plays the throw

that has the highest expected payoff on this throw if his opponent randomizes

according to the opponent’s historical distribution of first throws.19

We have not specified how a player using k0 chooses a throw, but provided

the process is not changing over time, his past throw history is a good predictor

multinomial logits for each player on the effect of own history skewness on the probability of
winning, losing or drawing. The coefficients were significant for less than 5% of players. The
mean coefficient implied that if a player’s skewness is a standard deviation higher (relative
to the population) her probability of winning is .37 percentage points higher. This provides
some support to our assumption that continuation values are not a primary concern.

19Sometimes opponents’ distributions are such that there are multiple throws that are tied
for the highest expected payoff. For our baseline specification we ignore these throws. As
a robustness check we define alternative k1−strategies where one throw is randomly chosen
to be the k1 throw when payoffs are tied or where both throws are considered consistent
with k1 when payoffs are tied. The results to do not change substantially.

13



of play in the current match. To calculate the k1 strategy for each throw, we

calculate the expected payoff to each of rock, paper, and scissors against a

player who randomizes according to the distribution of the opponent’s history.

The k1 strategy is the throw that has the highest expected payoff.

Definition. When a player uses the k2 strategy in a match, he plays the throw

that is the best response if his opponent randomizes between the throws that

maximize expected payoff against the player’s own historical distribution.

The k2 strategy is to play “the best response to the best response” to one’s

own history. In this particular game k2 is in some sense harder than k1 because

the software shows only one’s opponent’s history, but players could keep track

of their own history.

Having defined the level-k strategies in our context, we now turn to the

data for evidence of level-k play.

4.1 Reduced-form evidence for level-k play

One proxy for k1 and k2 play is players choosing throws that are consistent

with these strategies. Whenever a player plays k1 (or k2) her throw is consistent

with that strategy. However, the converse is not true. Players playing the NE

strategy of 1
3
, 1
3
, 1
3

would be consistent with k1 a third of the time (on average).

For each player we calculate the fraction of throws that are k1-consistent;

these fractions are upper bounds on the amount of k1 play. The highest per-

centage of k1-consistent behavior for an individual in our restricted sample is

84.6 percent, indicating that no player uses k1 consistently. Figure 4a shows

the distribution of the fraction of k1-consistency across players. It suggests

that at least some players use k1 at least some of the time: the distribution

is to the right of the vertical 1
3
-line and there is a right tail. To complement

the graphical evidence, we formally test whether the observed frequency of

k1-consistent play is significantly greater than expected under random play.

Using this test, we can reject the null of no k1 play at a 95 percent confidence

interval for 71.7 percent of players in the sample.

Given that players seem to play k1 some of the time, players could benefit

from playing k2. Figure 4b shows the distribution of the fraction of actual
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throws that are k2-consistent. Perhaps unsurprisingly given that players are

not shown the necessary information, we do not find much evidence of k2 play.

The observed frequency of k2 play is significantly greater than expected with

random play for only 7.5 percent of players, barely more than the 5% we would

find if no one played k2.

If we assume that players use either k0, k1, or k2 we can use the percentage

of throws that are consistent with neither k1 nor k2 to obtain a lower bound on

how often each player is playing k0. We calculate k0 = 1− k̄1− k̄2. We do not

expect this bound to be tight because, in expectation, a randomly chosen k0

play will be consistent with either the k1 or k2 strategy relatively often. The

mean lower bound across players is 37 percent. The minimum is 9.3 percent

and the maximum is 74 percent.

4.1.1 Multinomial Logit

Before turning to the structural model, we can use a multinomial logit

model to explore whether a throw being k1-consistent increases the probability

that a player choses that throw. For each player, we estimate a multinomial

logit where the utilities are

Ui = αi + β · 1{k1 = i}+ εi,

where i = r, p, s and 1{k1 = i} is an indicator for when the k1-consistent action

is to throw i. Figure 5 shows the distribution of β’s across players. The mean

is .532.

The marginal effect varies slightly with the baseline probabilities, ∂Pr{i}
∂xi

=

β ·Pr{i}(1−Pr{i}), but is approximately 1
3

(
1− 1

3

)
= 2

9
times the coefficient.

Hence, on average, a throw being k1-consistent means it is 12 percentage points

more likely to be played. Given that the standard deviation across players in

the percent of rock, paper, or scissors throws is about 5 percentage points, this

is a large average effect. The individual level effect is positive and significant

for 61 percent of players.
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4.2 Maximum likelihood estimation of a structural model

of level-k thinking

The results presented in the previous sections provide some evidence as to

what strategies are being employed by the players in our sample, but they do

not allow us to identify with precision the frequency with which strategies are

employed. To obtain point estimates of each player’s proportion of play by

level-k, along with standard errors, we need additional assumptions.

Assumption 1. All players use only the k0, k1, or k2 strategies in choosing

their actions.

Assumption 1 restricts the strategy space, ruling out any approach other

than level-k, and also restricting players not to use levels higher than k2. We

limit our modeling to levels k2 and below, both for mathematical simplicity

and because there is little reason to believe that higher levels of play are

commonplace, both based on the low rates of k2 play in our data, and rarity

of k3 and higher play in past experiments.20

Assumption 2. Whether players chose to play k0, k1, or k2 on a given throw

is independent of which throw (rock, paper, or scissors) each of the strategies

would have them play.

Assumption 2 implies, for example, that the likelihood that a player chooses

to play k2 will not depend on whether it turns out that the best k2 action is

rock or is paper. This independence is critical to the conclusions that follow.

Note that Assumption 2 does not require that a player commit to having the

same probabilities of using k0, k1, and k2 strategies across different throws.

Given these assumptions we can calculate the likelihood of observing a

given throw in terms of 4 parameters, given in Table 6. Given these parameters,

the probability of observing a given throw i is

k̂1 · 1{k1 = i}+ k̂2 · 1{k2 = i}+ (r̂0 · 1{i = r}+ p̂0 · 1{i = p}+ ŝ0 · 1{i = s}),

20As an aside, in the case of rock-paper-scissors the level k + 6 strategy is identical to
the level k strategy for k ≥ 1, so it is impossible to identify levels higher than 6. This also
implies that the k1 play we observe could in fact be k7 play, but we view this as highly
unlikely.
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where 1{·} is an indicator function, equal to one when the statement in braces

is true and zero otherwise. This reflects the fact that the throw will be i if the

player plays k1 and the k1 strategy says to play i (k̂1 · 1{k1 = i}) or the player

plays k2 and the k2 strategy says to play i (k̂2 · 1{k2 = i}) or the player plays

k0 and chooses i (r̂0 · 1{i = r}+ p̂0 · 1{i = p}+ ŝ0 · 1{i = s}).
For each player, the overall log-likelihood depends on twelve statistics from

the data. For each throw type (i = R,P, S), let ni12 be the number of throws

that are of type i and consistent with k1 and k2, n
i
1 the number of i throws

consistent with just k1, n
i
2 the number of i throws consistent with just k2,

and ni0 the number of i throws consistent with neither k1 nor k2. Given these

statistics, the log-likelihood function is

L(k̂1, k̂2, r̂0, p̂0, ŝ0) =∑
i=r,p,s

(
ni12 ln(k̂1 + k̂2 + ı̂0) + ni1 ln(k̂1 + ı̂0) + ni2 ln(k̂2 + ı̂0) + ni0 ln(̂ı0)

)
.

For each player we use maximum likelihood to estimate
(
k̂1, k̂2, r̂0, p̂0, ŝ0

)
.

Given these estimates, the standard errors are calculated analytically from

the inverse of the Hessian of the likelihood function.

Table 7 summarizes the estimates of k0, k1, and k2: the average player

uses k0 for 73.8 percent of throws, k1 for 18.5 percent of throws and k2 for

7.7 percent of throws. Weighting by the precision of the estimates or by

the number of games does not change these results substantially. As the

minimums and maximums suggest, these averages are not the result of some

people always playing k1 while others always play k2 or k0. Most players mix,

using a combination of mainly k0 and k1.
21

Table 8 reports the share of players for whom we can reject with 95 percent

confidence their never playing a particular level-k strategy. Almost all players

(93 percent) appear to use k0 at some point. About 63 percent of players use

k1 at some stage, but we can reject exclusive use of k1 for all but two out of

6,399 players. Finally, only about 12 percent of players are we confident use

21Other work has found evidence of players mixing levels of sophistication of across dif-
ferent games, e.g. Georganas et al. (2010).
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k2.

For each player, we can also examine the estimated fraction of rock, paper,

and scissors when they play k0. The distribution differs significantly from

random uniform for 1257 or 20% of players, similar to the fraction of players

whose raw throw distributions differ significantly from uniform (17%).

4.3 Cognitive Hierarchy

The idea that players might use a distribution over the level-k strategies

naturally connects to the Cognitive Hierarchy model of Camerer et al. (2004).

They also model players as having different levels of reasoning, but the higher

types are more sophisticated than in level-k. The strategies for ch0 and ch1 are

the same as k0 and k1; ch2 assumes that other players are playing either ch0

or ch1, in proportion to their actual use in the population, and best responds

to that mixture. To test if this more sophisticated version of two levels of

reasoning fits the data better, we do another maximum likelihood estimation.

The definitions of ch0 and ch1 are the same as k0 and k1.

Definition. When a player uses the ch2 strategy in a match, he plays the throw

that is the best response to the opponent playing according to the opponent’s

historical distribution 79.94% of the time and randomizing between the throws

that maximize expected payoff against the player’s own historical distribution

the other 20.05% of the time.

The percents come from observed frequencies in the level-k estimation. When

players play either k0 or k1, they play k0
73.79

73.79+18.52
= 79.94% of the time.22

Analogous to Assumptions 1 and 2 above, we assume that players use only

ch0, ch1 and ch2, and that which strategy they chose is independent of what

throw the strategy dictates.

Table 9 summarizes the estimates: the average player uses ch0 for 74.9

percent of throws, ch1 for 16.31 percent of throws, and ch2 for 8.85 percent

of throws. Weighting by the precision of the estimates or by the number of

games a player plays does not change these substantially. These results are

22To fully calculate the equilibrium, we could repeat the analysis using the frequencies of
ch0 and ch1 found below and continue until the frequencies converged, but the numbers are
very similar, so we do not think this computationally intense exercise is necessary.
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similar to what we found for level-k strategies, suggesting that the low rates of

using two iterations of reasoning were not a result of restricting that strategy

to ignoring k0 play.

4.4 Naive level-k strategies

Even if a player expects his opponent to play as she did in the past, he may

not calculate the expected return to each strategy. Instead he may employ

the simpler strategy of playing the throw that beats the opponent’s most

common historical throw. Put another way, he may only consider maximizing

his probability of winning instead of weighing it against the probability of

losing as is done in an expected payoff calculation. We consider this play

naive and define alternative versions of k1 and k2 accordingly.

Definition. When a player uses the naive k1 strategy in a match, he plays the

throw that will beat the throw that his opponent has played most frequently

in the past.

Definition. When a player uses the k2 strategy in a match, he plays the throw

that is the best response if his opponent plays the throw that beats the throw

that the player has played most frequently in the past. If two throws are

tied for most frequent in the player’s historical distribution, he assumes his

opponent randomizes between the two throws that beat one of the throws tied

for most frequent.

Table 10 summarizes the estimates for naive play. The average player uses

k0 for 72.3 percent of throws, naive k1 strategy for 21.1 percent of throws

and naive k2 strategy for 6.7 percent of throws. As before, weighting by the

precision of the estimates or by the number of games a player plays does not

change these results substantially. Most players use a mixed strategy, mixing

primarily over k0 and naive k1 strategy.

Compared with our standard level-k model, the results for our naive level-k

model show slightly more use of the naive k1 strategy. The average player used

it for 21.1 percent of throws compared to 18.6 percent for standard k1 in the

former model. In the naive level-k model, players used k0 and the naive k2

strategy slightly less often compared to their standard level-k counterparts.
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The opposite naive strategy would be for players to minimize their prob-

ability of losing, playing the throw that is least likely to be beat. Running

the same model for that strategy we find almost no evidence of k1 or k2 play,

suggesting that players are more focused on the probability of winning.

4.5 Comparison to the literature

All three of these related models suggest that players of Roshambull use

considerably fewer levels of iteration in their reasoning process compared to

estimates from other games and other experiments. Bosch-Domenech et al.

(2002) found that less than a fourth of the players who used the k-strategies

discussed in this paper were k0 players. Whereas, depending on the model,

we found between 72.25% and 74.85% of plays involved zero iterations of rea-

soning. Camerer et al. (2004) suggest that players iterate 1.5 steps on average

in many games. In comparison, in our level-k model we find that our average

player uses 1 ∗ .185 + 2 ∗ .077 = .339 levels of iterated rationality. Stahl (1993)

reported that an insignificant fraction of players were k0, 24 percent were k1

players, 49 percent were k2 players, and the remaining 27 percent were “Nash

types.” In contrast, we found that the majority of plays were k0 (ch0) and

that k1 (ch1) outnumbered k2 (ch2), though in this game k0 is closer to Nash

than either k1 or k2. The dearth of k2 play is especially striking in our context

given the high returns to playing k2.

One explanation for the differences between our results and the past liter-

ature is that most of the players do not deviate substantially from equilibrium

play, making the expected payoffs to k1 relatively small. Also, the set-up of

rock-paper-scissors does not suggest a level-k thinking mindset as strongly as

the p-beauty contest games or other games specifically designed to measure

level-k behavior. Our more flexible definition of k0 play may also explain its

higher estimate. The low level of k2 play is likely a result of the fact that the

Facebook application did not show players their histories so players had to

keep track of that on their own in order to effectively play k2.

Another explanation is that we restrict the strategy space to exclude both

Nash Equilibrium and different ways in which the players can react rationally

to their opponent’s information. It seems players respond more to the first
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throw history than other information, but there may be many other strategies

which are rationalizable in ways which we do not model. Bosch-Domenech

et al. (2002), for example, considered equilibrium, fixed point, degenerate and

non-degenerate variants of iterated best response, iterated dominance, and

even experimenter strategies. Not all of these translate into the RPS set-up,

but any strategies that our model left out might look like k0 play when the

strategy space is restricted.

4.6 When are players’ throws consistent with k1?

Though we find relatively low levels of k1 play, we do find some and the

result that many of the players seem to be mixing strategies raises the question

of when they chose to play k0, k1, and k2. Our structural model assumes that

which strategy players chose is independent of the throw dictated by each of the

strategies. It does not require that which strategy they chose be independent

of the expected payoffs, but the MLE model cannot give us insight into how

expected payoffs may affect play. This is partially because the MLE model

does not allow us to categorize individual throws as being a given strategy.

Therefore, to try to get at when players use k1, we return to using k1-

consistency as a proxy for possible k1 play. We test two hypotheses. First, the

higher the expected payoff to playing k1, the more likely a player is to play k1.

For example, if an opponent is k0, the expected returns to playing k1, relative

to playing randomly, are much higher if the opponent’s history (or expected

distribution) is 40 percent rock, 40 percent paper, 20 percent scissors than if

it is 34 percent rock, 34 percent paper, 32 percent scissors.

The second hypothesis is that a player will react more to a higher k1 payoff

when his opponent has played more games. A 40 percent rock, 40 percent

paper, 20 percent scissors history is more informative if it is based 100 past

throws than if it is based on only 10 throws.23

We also analyze whether these effects vary by player experience; we inter-

act all the covariates with whether a player is in the restricted sample (they

eventually play ≥ 100 matches) and whether they have played 100 matches

23Similar predictions could be made about k2 play; however, since we find that k2 is used
so little, we do not model k2 play in this section
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before the current match.

Tables 11 present empirical results from testing these hypotheses. The

k1 payoff is the expected payoff to playing k1 assuming the opponent random-

izes according to his history. Its standard deviation is .25, so for inexperienced

players a one standard deviation increase in payoff to the k1 strategy, increases

the probability the throw is k1-consistent by 1.8 percentage points when op-

ponents have a short history, 10 percentage points when opponents have a

medium history and 15 percentage points when opponents have played over

94 games. Given that 45% of all throws are k1-consistent, these latter two

effects are substantial. Experienced players react slightly less to the k1-payoff

when opponents have short histories, but their reactions to opponents with

medium or long histories are somewhat larger.

If we run a logit analysis at the player level of the effect of k1 payoff and

opponent history length on k1 consistency, the mean marginal effect across

players is very close to the OLS coefficients. We only report the overall results

because the individual analyses lack power — very few of the individual-level

coefficients are statistically different from zero.

While we expect the correlation between opponent’s history-length and

playing k1 to be negative – since longer histories are less likely to show sub-

stantial deviation from random – we do not have a good explanation for why

the direct effect of opponent’s history length is negative, even when controlling

for the k1 payoff. Perhaps the players are more wary of trying to exploit a

more experienced player.

5 Quantal Response
The above evidence that k1-consistent play is more likely when the ex-

pected payoff is higher, naturally leads us to a model of play that is more

continuous. In some sense level-k strategies are all or nothing. If a throw

has the highest expected payoff against the opponent’s historical distribution,

then the k1 strategy says to play it, even if expected payoff is very small. A

related, but different strategy is for players to choose each throw with a proba-

bility that is increasing in its expected payoff against the opponent’s historical
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distribution of play. This is related to the idea behind Quantal Response Equi-

librium (McKelvey and Palfrey, 1995), but without requiring that players be

in equilibrium. In this context, players doing one iteration of reasoning would

have probabilities of play

Pi ∝ exp(αi + βE[i | opponent’s distribution]).

Their probability of playing a given throw is increasing in expected return

to that throw, assuming the opponent plays according to his historical distri-

bution. This smooths the threshold response of the k1 strategy into a more

continuous response.24

Figure 6 shows the distribution of coefficients across individuals. The mean

coefficient is .01.25 The expected return is the percent chance of winning minus

the percent chance of losing, so it ranges from -100 to 100. The standard

deviation is 23.2, so, on average, a standard deviation increase in the expected

return to an action, increases the percent chance it is played by

23.2 · .01 · 100 · 2

9
= 5.2 percentage points.

(We multiply by 100 to convert to percentages and by 2/9 to evaluate the

margin at the means.) The standard deviation across players in the percent of

the time they play a throw is 5%, so this is significant, but not a huge effect.

The expected return has a significant effect for 60.7% of players. The

mean of the effect size conditional on being significant is .025. Converting to

margins, this corresponds to a standard deviation increase in expected return

resulting in a 12.9 percentage point increase in the probability of playing a

given throw, which is quite large.

24A second level of reasoning would expect opponents to play according to the distribution
induced by one’s own history and would play with probabilities proportional to the expected
payoff against that distribution. However, given the low levels of k2 play we find and
the econometric difficulties of including own history in the logit, we only analyze the first
iteration of reasoning.

25In the reduced form results (Table 5) we showed that players did not respond to the
expected payoff calculated from predicted opponent play, whereas this shows that players
do respond to expected payoffs calculated from historical opponent play.
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6 Likelihood Comparison
Which is a better model of player behavior, the discrete “if it’s the k1

throw, play it” or the more continuous “if its k1 payoff is higher, play it with

higher probability”? Since the strategies are similar, if players were using

one there would still be some evidence for the other, so we use a likelihood

test to see which model better fits players’ behavior. For each player we can

calculate the likelihood of observing the set of throws he plays given the level-k

maximum likelihood model and given the quantal response model. To facilitate

the comparison, we estimate a version of the maximum likelihood model with

no k2 so that each model has three independent parameters.

If we assume that one of two models, level-k (LK) and QE, generated the

data and have a flat prior over which it was, then the probability that it was

QE is

P ( QE | data ) =
P ( data | QE )

P ( data | LK ) + P ( data | QE )
.

Figure 7 plots the distribution of the probability of the quantal response

model across players. The probability is less than .5 for 3,711 players, so for

55.6% of players the quantal response is a better model. More interestingly,

there are substantial numbers of players both to the left of .05 and to the right

of .95. For 1,228 players (18.4%) the MLE model is a statistically better fit

and for 1,186 players (17.8%) the quantal response is a statistically better fit.

This suggests some players’ strategies focus more on whether the throw has

the highest expected return (k1) and others’ strategies respond more to the

level of the expected return (quantal response).

7 Conclusion
The 20th century witnessed several break through discoveries in economics.

Arguably the most important revolved around understanding behavior in strate-

gic settings, which originated with John von Neumann’s (1928) minimax theo-

rem. In zero-sum games with unique mixed-strategy equilibria, minimax logic

dictates that strategies should be randomized to prevent exploitation by one’s
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opponent. The work of Nash enhanced our understanding of optimal play in

games, and several theorists since have made seminal discoveries.

We take this research in a different direction by analyzing an enormous

set of naturally generated data on rock-paper-scissors with information about

opponents’ past play. In doing so, we are able to explore the models — both

equilibrium and non-equilibrium — that best describe the data. While we

find that most people employ strategies consistent with Nash, at least some

of the time, there is considerable deviation from equilibrium play. Adapting

level-k thinking to our repeated game context, we use maximum likelihood to

estimate the frequency with which each player uses k0, k1 and k2. We find that

about three-quarters of all throws are best described as k0. A little less than

one-fifth of play is k1, with k2 level play accounting for less than one-tenth

of play. Interestingly, we find that most players are mixing over at least two

levels of reasoning. Since players mix across levels, we explore when they are

most likely to play k1. We find that consistency with k1 is increased when the

expected return to k1 is higher.

We also explore the quantal response model. Our adapted version of quan-

tal response has players paying attention to the expected return to each strat-

egy. We find that a one standard deviation increase in expected return in-

creases the probability of a throw by 5.2 percentage points. In addition, for

about a fifth of players the quantal response model fits significantly better than

the level-k model, but for another one-fifth the level-k model fits significantly

better. It seems that some players focus on the levels of the expected returns,

while others focus on which throw has the highest expected return.

Beyond theory testing, we draw several methodological lessons. First, while

our setting is very different from the single-shot games that level-k theory

was originally developed, the evidence that players mix across strategies raises

questions for experiments that attempt to categorize players as a k-type, based

on only a few instances of play. Second, with large data sets subtle differences

in theoretical predictions can be tested with meaningful power. As the internet

continues to provide unique opportunities for such large-scale data, we hope

that our study can serve as a starting point for future explorations of behavior
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in both strategic and non-strategic settings.
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Figure 1: Screenshot of the Roshambull App.
Note: This is a sample screenshot from the start of a game of Roshambull.
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Player 2:
Rock Paper Scissors

Player 1:
Rock (0,0) (-1,1) (1,-1)
Paper (1,-1) (0,0) (-1,1)

Scissors (-1,1) (1,-1) (0,0)

Figure 2: Payoffs for a single throw of rock-paper-scissors.
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Figure 3: Observed and Simulated Percent of Throws that are Rock
Note: For each of the 7751 players with at least 100 matches we calculate the percent of his or

her last 100 throws that were rock (white distribution). We overlay this on the distribution

of the percent of throws that are rock for 7751 simulated players who each play 100 throws

and throw rock, paper and scissors each with a probability one-third (blue distribution).
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(a) Fraction of k1-consistent throws.
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Figure 4: Level-k consistency
Note: These graphs show the distribution across players of the fraction of throws that are

k1- and k2-consistent. They include the 6674 players who have 100 games with well-defined

k1 and k2 strategies. The vertical line indicates 1
3 , which we would expect to be the center

of the distribution if throws were random.
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Figure 5: Distribution across players of the coefficient in the multinomial
logit.

Note: The graph shows distribution across 6670 players of the coefficient from the multi-

nomial logit Ui = αi + β · 1{k1 = i}+ εi, where i = r, p, s and 1{k1 = i} is an indicator for

when i is the k1-consistent thing to do.
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Figure 6: Distribution across players of the coefficient in the quantal
response model.

Note: The distribution across 6670 players.
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Figure 7: Distribution across players of the probability that the quantal
response model and not the maximum likelihood model generated the data.

Note: The distribution across 6670 players, assuming a flat prior.
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Table 1: Summary Statistics of First Throws

Variable Full Sample Restricted Sample

Mean (SD) Mean (SD)

Throw Rock (%) 33.39 (47.16) 32.57 (46.86)
Throw Paper (%) 34.78 (47.63) 34.57 (47.56)
Throw Scissors (%) 31.83 (46.58) 32.86 (46.97)
Opp’s Historical %Rock 34.15 (18.40) 33.59 (13.71)
Opp’s Historical %Paper 35.12 (18.12) 34.76 (13.45)
Opp’s Historical %Scissors 30.73 (17.03) 31.65 (12.83)
Opp’s Historical Skew 9.68 (17.29) 5.39 (12.43)
Opp’s Historical %Rock (all) 35.36 (11.49) 34.81 (8.58)
Opp’s Historical %Paper (all) 34.03 (11.25) 34.10 (8.35)
Opp’s Historical %Scissors (all) 30.61 (10.62) 31.09 (7.98)
Opp’s History Length 59.06 (125.12) 99.13 (162.14)

Total observations 4,596,464 1,471,159

The Restricted Sample uses data only from players who play at least 100 matches. The first

3 variables are dummies for when a throw is rock (R), paper (P), or scissors (S). The next

3 are the percentages opponent’s past first throws that were R, P or S. The “all throws”

are the corresponding percentages for all of the opponents’ past throws. Skew measures

the extent to which the opponent’s history of first throws deviates from random. Opp’s

Historical Length is the number of previous matches the opponent played.

Table 2: Response to Percent Rock

Opp’s Historical %Rock Throws (%)

Paper Rock Scissors N

0% - 25% 24.33 34.12 41.55 216542
25% - 30% 25.75 34 40.25 259141

30% - 331
3

% 29.84 33.98 36.17 259427

331
3

% - 37% 35.41 33.48 31.1 294979
37% - 42% 42.74 31.38 25.87 185369
42% - 100% 51.11 27.61 21.28 219066

Note: Using only players with at least 100 matches, we bin matches by the opponent’s

historical percent of rock throws prior to the match. For each range of opponent’s historical

percent rock, we show the distribution of rock, paper, and scissors throws the players use.
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Table 3: Probability of Playing Rock

Dependent Variable: Dummy for Throwing Rock

Overall
Effect

Additional Effect
on Experienced
Players

Additional
Effect when
≥100 Games

(1) (2) (3)
Opp’s Frac Paper (first) -0.0415*** -0.0695*** -0.0955***

(0.0022) (0.0056) (0.0087)
Opp’s Frac Scissors (first) 0.2531*** 0.1409*** 0.1379***

(0.0023) (0.0061) (0.0094)
Opp’s Frac Paper (all) 0.0018 0.0224* 0.0041

(0.0033) (0.0088) (0.0138)
Opp’s Frac Scissors (all) 0.0401*** 0.0245** -0.0209

(0.0035) (0.0094) (0.0146)
Opp’s Paper Lag 0.0042*** -0.0012 -0.0040*

(0.0007) (0.0016) (0.0019)
Opp’s Scissors Lag 0.0145*** 0.0048** -0.0014

(0.0008) (0.0016) (0.0020)
Own Paper Lag 0.0001 0.0073*** 0.0052**

(0.0007) (0.00015) (0.0019)
Own Scissors Lag 0.0039*** 0.0029 -0.0046*

(0.0007) (0.00015) (0.0019)
Constant 0.3385*** -0.0106*** -0.0015

(0.0007) (0.0009) (0.0018)
R2 0.0142 0.0239 0.0258
N 4210005

Note: All columns show OLS coefficients for the effect on whether a throw is rock; all the

coefficients come from one regression. The first column is the effect for all players, the

second column is the additional effect of the covariates for players in the restricted sample;

the third column is the additional effect for those players after their first 99 games. Opp’s

Fraction Paper refers to the fraction of the opponent’s previous first throws that were paper.

Opp’s Fraction Paper (all) refers to the fraction of all the opponent’s previous throws that

were paper. Opp’s Paper Lag is a dummy for whether the opponent’s most recent first

throw in a match was paper. Own Paper Lag is a dummy for whether the player’s own most

recent first throw in a match was paper (similarly for scissors). The regression also control

for the opponent’s number of previous matches.
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Table 4: Win Percentages

Data Wins (%) Draws (%) Losses (%) W - L (%)

Full Sample 34.14 32.38 33.48 0.66
Experienced Sample 34.65 32.18 33.16 1.49
Best Response to Predicted 42.14 29.7 25.28 16.86

Note: Experienced refers to players who play at least 100 games. “Best Response” is how

a player playing against the experienced sample would do if she always played the best

response to how the player is predicted to play by Table 3. We used half the sample to

calculate the coefficients, which were used to predict the play for the other half. W-L is the

difference between the first and third column; it equals the average winnings per throw if

players bet $100 on a throw.

Table 5: Opponents’ Response to Expected Payoff of Rock

Opponent’s Expected Opponent’s Throw (%) N

Payoff of Rock Paper Rock Scissors

[−1, −0.666] 29.5 42.57 27.93 3183

[−0.666, −0.333] 29.57 41.34 29.09 14723

[−0.333, 0] 32.65 33.81 33.54 354952

[0, 0.333] 34.53 32.46 33 329709

[0.333, 0.666] 35.42 33.85 30.73 11441

Note: Using the players’ predicted play from Table 3 (and similar for paper and scissors),

we calculate the expected payoff to their opponents of playing rock. This table shows the

distribution of opponents’ play for different ranges of that expected payoff.

Table 6: Parameters of the Structural Model

Variable Definition
r̂0 fraction of the time a player plays k0 and chooses rock
p̂0 fraction of the time a player plays k0 and chooses paper
ŝ0 fraction of the time a player plays k0 and chooses scissors

k̂1 fraction of the time a player plays k1
(k̂2) 1− k̂1 − r̂0 − p̂0 − ŝ0 (not an independent parameter)

Note: r̂0 is not equal to the fraction of k0 throws that are rock; that
conditional probability is given by r̂0

r̂0+p̂0+ŝ0
.
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Table 7: Summary of k0, k1, and k2 estimates.

Variable Mean SD Median Min Max N
k0 73.79 15.7 75.2 18.65 100 6635
k1 18.52 14.48 16.12 0 76.66 6635
k2 7.69 7.76 5.87 0 40.65 6635

Note: Based on the 6635 players who have 100 clean matches where the k1 and k2 strategies

are well-defined.

Table 8: Percent of players we reject always or never playing a strategy.

Variable N 95% CI does
not include 0

95% CI does
not include 1

95% CI does not
include 0 or 1

k0 6399 93.06 58.26 57.45
k1 6399 62.78 99.97 62.78
k2 6399 11.55 95.55 11.55

Note: All percentages refer to the 6399 players who have 100 matches where the k1 and k2

strategies are well-defined and for whom we can calculate standard errors on the estimates.

Table 9: Summary of ch0, ch1, and ch2 estimates.

Variable Mean SD Median Min Max N
ch0 74.85 16.03 76.84 16.99 100 6853
ch1 16.31 14.08 13.78 0 76.66 6853
ch2 8.85 6.89 8.12 0 50.61 6853

Note: Based on the 6853 players who have 100 clean matches where the ch1 and ch2 strate-

gies are well-defined.

Table 10: Summary of Naive k0, k1, and k2 estimates.

Variable Mean SD Median Min Max N
k0 72.25 17.73 74.72 6.54 100 5732
k1 21.06 16.71 18.04 0 93.46 5732
k2 6.69 7.71 4.39 0 45.75 5732

Note: Based on the 5732 players who have 100 clean matches where the naive k1 and k2

strategies are well-defined.
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Table 11: Effect of Expected k1 Payoff on k1-Consistency (OLS)

(1) (2) (3)
K1 Payoff 0.076*** 0.107*** 0.071***

(0.0012) (0.0014) (0.0017)
High Opp Exp -0.076***

(0.0017)
Medium Opp Exp -0.056***

(0.0015)
K1 Payoff X High Opp Exp 0.541***

(0.011)
K1 Payoff X Medium Opp Exp 0.324***

(0.0051)
Experienced 0.014*** . .

(0.0016) . .
Exp X K1 Payoff 0.061*** 0.043*** -0.005

(0.0039) (0.0039) (0.0051)
Exp X High Opp Exp -0.007**

(0.0038)
Exp X Medium Opp Exp -0.012***

(0.0037)
Exp X K1 Payoff X High Opp Exp 0.072***

(0.022)
Exp X K1 Payoff X Medium Opp Exp 0.075***

(0.012)
Own Games>100 -0.002 0.002 0.031***

(0.0022) (0.0017) (0.0044)
Own Games>100 X K1 Payoff 0.081*** 0.066*** -0.026***

(0.0068) (0.0059) (0.0080)
Own Games>100 X High Opp Exp -0.017***

(0.0049)
Own Games>100 X Medium Opp Exp -0.010*

(0.0052)
Own Games>100 X K1 Payoff X High Opp Exp 0.005

(0.024)
Own Games>100 X K1 Payoff X Medium Opp Exp 0.065***

(0.017)
Observations 3921798 3921798 3921798
Player Fixed Effects No Yes Yes
Adjusted R2 0.003 0.004 0.008

* p < .10, ** p < .05, *** p < .01
S.E.’s are clustered by player.

Note: ‘k1 Payoff’ is the expected payoff to playing k1 if the opponent randomizes according
to his history (ranges from -1 to 1). ‘High opp exp’ is a dummy for opponents who have
95 or more past games; ‘Medium opp exp’ is a dummy for opponents with between 31 and
94 past games. ‘Experienced’ is a dummy for players who eventually play at ≥ 100 games.
‘Own Games >100’ indicates the player has already played at least 100 games. The ‘X’
indicates the interaction between the dummies and other covariates. SEs are clustered by
player.
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Appendix
We formalize the process of playing rock-papers-scissors over Facebook as

a sequence of best-of-three matches described by the game Γ nested inside a
larger game Γ̂, which includes the matching process that pairs the players. We
do not specify the matching process, as it turns out that it does not matter
and the following holds for any matching process. Players may exit the game
(and exit may not be random) after any subgame, but not in the middle of one.
All players have symmetric payoffs and discount factor δ across subgames.

Each nested game Γ is a “best-of-three” match of rock-paper-scissors played
in rounds, which we will call “throws.” For each throw, both players simulta-
neously choose actions from A = {r, p, s} and the outcome for each player is a
win, loss, or tie; r beats s, s beats p, and p beats r. A player wins Γ by winning
two throws. The winner of Γ receives a pay-off of 1 and the loser gets -1. Note
that Γ is zero-sum. Therefore, at any stage of Γ̂ the sum across players of all
future discounted payoffs is zero.

Each match consists of at least two throws. Because of the possibility of
ties, there is no limit on the length of a match. Let

Kl = A2 × A2 . . .× A2︸ ︷︷ ︸
l times

be the set of all possible sequences of l throws by two players. Let K l ⊂ Kl
be the set of possible complete matches of length l: sequences of throw pairs
such that no player had 2 wins after l − 1 throws, but a player had two wins
after the lth throw. Let K = ∪K l be the set of possible complete matches of
any length. Let K̂ l ⊂ Kl be the set of possible incomplete matches of length
l: sequences of throw pairs such that no player has 2 wins.

A player’s overall history after playing t matches is the sequence of match
histories for all matches he has played,

hti ∈ H t = K ×K . . .×K︸ ︷︷ ︸
t times

.

Players may not observe their opponents’ exact histories. Instead a player
observes some public summary information of his opponent’s history. Let
f : H t → St ∀t be the function that maps histories into summary information.
Denote by st an element of St.

A strategy for a player having played t complete matches, facing an oppo-
nent with m complete matches after l throws of the current match is a mapping
from the player’s history, the information the player has about his opponent’s
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history, and partial history of the current match to a distribution of actions
σt,m,l : H t × Sr × K̂ l → ∆A.

It is helpful to define a function #wini : K̂ l ∪ K l → {0, 1, 2} ∀ l, which
denotes the number of wins for player i after a match history. Similarly #winj
is the number of wins for player j and #win = max{#wini,#winj} is the
number of wins of the player with the most wins.

In Nash Equilibrium, at any throw of any match, the distribution chosen
must maximize the expected payoff. The payoff consists of the flow payoff plus
the continuation value from future matches if the match ends on this throw,
or the expected payoff from continuing the match with the updated match
history if the match does not end on this throw. So,

σt,m,l(k̂
l
ij, h

ti
i , s

tj
j ) ∈ arg max

σi
Eσi,σj

[
u(k̂lij, ai, aj)

]
,

where

u(k̂lij, ai, aj) =


1 + δ · η((htii , (k̂

l
ij, (ai, aj)))) #wini((k̂

l
ij, (ai, aj))) = 2,

−1 + δ · η((htii , (k̂
l
ij, (ai, aj)))) #winj((k̂

l
ij, (ai, aj))) = 2,

vi((k̂
l
ij, (ai, aj)), h

ti
i , s

tj
j ) #win((k̂lij, (ai, aj))) < 2.

In the first two cases there is the immediate payoff from the match ending
plus the inter-match continuation value, η(hti+1

i ) (the value of going back into
the pool and playing future matches with the updated player history). In the
last case there is just the intra-match continuation value, v(kl+1, htii , s

tj
j ) (the

value of continuing this match with the updated match history), which includes
the later inter-match continuation value from when the match eventually ends.
Note that we have implicitly set the intra-match discount factor to 1.26

Because each match is symmetric and zero sum, the inter-match continu-
ation values are unimportant.

Lemma 1. Under Nash equilibrium play, η(ht) = 0 ∀ht ∈ H t ∀t.

Proof. Suppose that η(hti) 6= 0. If η(hti) < 0, then a player with that history
could deviate to always playing

(
1
3
, 1
3
, 1
3

)
. The player would win half their

matches and lose half their matches and have continuation value 0. If η(hti) >
0, then since Γ̂ is zero sum at every stage, there must exist hrj such that
η(hrj) < 0, which by the same logic cannot happen in equilibrium.

26Because what matters for the result is the symmetry across strategies at all stages, hav-
ing an intra-match discount factor does not change the result, but substantially complicates
the proof.
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Since inter-match continuation values are all zero, the intra-match contin-
uation value is just the probability of eventually winning the match minus
the probability of eventually losing the match. This means that continuation
values are zero-sum: vi(k̂ij, hi, sj) = −vj(k̂ij, hi, sj).

The symmetry of the match also implies that, regardless of history, when-
ever players are tied for the number of wins in the match, the continuation
value going forward is 0 for both players.

Lemma 2. In Nash equilibrium if #wini(k̂
l
ij) = #winj(k̂

l
ij), then vi(k̂

l
ij, hi, sj) =

vj(k̂
l
ij, hj, si) = 0.

Proof. Assume #wini(k̂
l
ij) = #winj(k̂

l
ij). Suppose vi(k̂ij, hi, sj) 6= 0. If

vi(k̂ij, hi, sj) < 0, player i has a profitable deviation to play (1
3
, 1
3
, 1
3
) for the re-

mainder of the match and they will win with probability one-half, giving them a
continuation value of zero. Similarly for j. We therefore have vi(k̂ij, hi, sj) ≥ 0

and vj(k̂
l
ij, hj, si) ≥ 0 for all match histories.

If vi(k̂
l
ij, hi, sj) > 0 then since the match is zero-sum, there must exist an

ĥi, ĥj such that vi(k̂
l
ij, ĥi, f(ĥj)) < 0 or vj(k̂

l
ij, ĥj, f(ĥi)) < 0, which contradicts

the above result. Similarly for vj > 0.

Lemma 3. In Nash equilibrium, if #wini(k̂
l
ij) = 1 and #winj(k̂

l
ij) = 0 then

vi(k̂
l
ij, hi, sj) = 1

2
and vj(k̂

l
ij, hj, si) = −1

2
.

Proof. Assume #wini(k̂
l
ij) = 1 and #winj(k̂

l
ij) = 0. Suppose vi(k̂

l
ij, hi, sj) <

1
2
. This implies that player i has a profitable deviation to play (1

3
, 1
3
, 1
3
) for the

remainder of the match. If they do so they will win the match with probability

1

3︸︷︷︸
win this throw

·1 +
1

3︸︷︷︸
lose this throw

·1
2

+
1

3︸︷︷︸
draw this throw

(
1

3
+

1

3
· 1

2
+

1

3
(· · · )

)
=

1

3
· 3

2

(
1 +

1

3
· · ·
)

=
3

4
.

and lose with probability 1
4
, giving them an intra-match continuation value of

1
2
. Therefore vi(k̂

l
ij, hi, sj) ≥ 1

2
. Similar logic guarantees that vj(k̂

l
ij, hj, si) ≥

−1
2
.

If vi(k̂
l
ij, hi, sj) >

1
2

then since the match is zero-sum, there must exist an

ĥi, ĥj such that vi(k̂
l
ij, ĥi, f(ĥj)) <

1
2

or vj(k̂
l
ij, ĥj, f(ĥi)) < −1

2
, which contra-

dicts the above result. Similarly for vj(k̂
l
ij, hj, si) > −1

2
.

Since the number of wins each player has after any history that has not
ended the match is either 0 or 1, Lemmas 2 and 3 encompass all the possible
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k̂li,j. We therefore see that the continuation value depends only on the number
of wins each player has

vi(k̂
l
i,j, hi, sj) = ṽi(#wini(k̂

l
i,j),#winj(k̂

l
i,j)).

So, for every k̂li,j we can calculate ui((k̂
l
i,j, (ai, aj))) for each own throw and

opponent throw. Figure 8 gives these payoffs for each possible stage in a
match. For each of these stages, it can only be a Nash Equilibrium of each
player expects their opponent to play

(
1
3
, 1
3
, 1
3

)
.

A\B R P S
R 0,0 -1

2
,1
2

1
2
,-1

2

P 1
2
,-1

2
0,0 -1

2
,1
2

S -1
2
,1
2

1
2
,-1

2
0,0

(a) Start of Match

A\B R P S
R 1

2
,-1

2
0,0 1,-1

P 1,-1 1
2
,-1

2
0,0

S 0,0 1,-1 1
2
,-1

2

(b) A has 1 win, B has zero

A\B R P S
R -1

2
,1
2

-1,1 0,0
P 0,0 -1

2
,1
2

-1,1
S -1,1 0,0 -1

2
,1
2

(c) B has 1 win, A has zero

A\B R P S
R 0,0 -1,1 1,-1
P 1,-1 0,0 -1,1
S -1,1 1,-1 0,0

(d) A has 1 win, B has 1 win

Figure 8: Total payoffs (flow + continuation) for each stage of the match.
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