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Abstract

Social scientists are often interested in estimating causal effects in settings where all

units in the population are observed (e.g. all 50 US states). Design-based approaches,

which view the treatment as the random object of interest, may be more appealing

than standard sampling-based approaches in such contexts. This paper develops a

design-based theory of uncertainty suitable for quasi-experimental settings, in which the

researcher estimates the treatment effect as if treatment was randomly assigned, but in

reality treatment probabilities may depend in unknown ways on the potential outcomes.

We first study the properties of the simple difference-in-means (SDIM) estimator. The

SDIM is unbiased for a finite-population design-based analog to the average treatment

effect on the treated (ATT) if treatment probabilities are uncorrelated with the potential

outcomes in a finite population sense. We further derive expressions for the variance of

the SDIM estimator and a central limit theorem under sequences of finite populations

with growing sample size. We then show how our results can be applied to analyze the

distribution and estimand of difference-in-differences (DiD) and two-stage least squares

(2SLS) from a design-based perspective when treatment is not completely randomly

assigned.
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1 Introduction

Standard econometric analyses of causal effects typically view the data obtained by the

econometrician as a random sample from a larger superpopulation. This sampling-based

view may be unnatural in economic contexts where the entire population of interest is ob-

served. For example, applied researchers are often interested in the causal effect of state-level

policies when outcomes for all 50 US states are observed (Manski and Pepper, 2018). Simi-

lar difficulties arise when the researcher has access to large-scale administrative data for the

entire population of interest. In these settings, it may be more attractive to view uncertainty

as purely design-based, i.e. arising due to the stochastic nature of the treatment assignment

for a finite population. A celebrated literature in statistics, dating to at least Neyman (1923)

and Fisher (1935), has analyzed randomized experiments from such a design-based perspec-

tive. This finite population view has received recent attention in the econometrics literature,

e.g. from Abadie et al. (2017, 2020).

However, there remains a gap between the typical assumptions used in existing finite

population causal analyses and many leading empirical settings in which a finite population

perspective is conceptually attractive. Typically, finite population analyses of causal effects

assume that the observable data were generated from a randomized experiment, in which the

treatment is randomly assigned to units through an assignment mechanism with known prob-

abilities (e.g., Imbens and Rubin (2015), Aronow and Middleton (2015), Middleton (2018),

Savje and Delevoye (2020) among others). In contrast, social scientists often employ “quasi-

experimental” methods, in which the data is analyzed as if treatment were randomly as-

signed, but random assignment is not guaranteed by design. The probability of treatment

assignment is therefore not known to the researcher. In such settings, it is desirable to under-

stand the properties of quasi-experimental estimators if in fact the data-generating process

differs from random assignment.

Existing analyses of quasi-experimental estimators — such as simple-differences-in-means

(SDIM), difference-in-differences (DiD), and two-stage least squares (2SLS) — often adopt

a sampling-based view and consider the limiting distribution of the estimator in settings

where treatment is not independent of potential outcomes. It is typically possible to obtain

asymptotically valid causal estimation and inference under orthogonality conditions that

are weaker than strict independence between the treatment (or instrument) and potential

outcomes. However, the interpretation of the causal estimand differs under these weaker

assumptions – for example, it may be an average treatment effect on the treated (ATT) or

a local average treatment effect (LATE), rather than an average treatment effect (ATE).

Given the attractiveness of the design-based approach for many quasi-experimental settings,
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it is useful to understand from the design-based perspective whether it is possible to obtain

valid inference on an interpretable causal parameter when randomization fails.

To bridge these gaps, we study the estimation and inference of treatment effects in a

finite population setting where the probability of treatment assignment varies arbitrarily

across units. We analyze a treatment assignment mechanism that allows each unit to have

an idiosyncratic probability pi of receiving a binary treatment. The idiosyncratic probability

pi may depend arbitrarily on i’s potential outcomes pYip0q, Yip1qq. In this sense, our model

allows for the possibility that the “quasi-experimental” research design may not, in fact,

mimic random assignment. We study the properties of three popular quasi-experimental

estimators – SDIM, DiD, and 2SLS – under this assignment mechanism from a purely design-

based perspective.

We begin with an analysis of the simple difference-in-means estimator (SDIM) in Section

3. We first establish a finite-population analog to the omitted variable bias formula, which

decomposes the expectation of the SDIM into two terms: (i) a finite-population design-based

analog to the average treatment effect on the treated (ATT), and (ii) a bias term equal to

the finite-population covariance between the unit-specific treatment probabilities and their

untreated potential outcomes. We then derive the finite population asymptotic distribu-

tion of the SDIM as the size of the population grows large.1 We derive intuitive formulas

for the asymptotic variance of the SDIM statistic, as well as a central limit theorem under

appropriate regularity conditions. As in the standard completely randomized experiment,

the usual variance estimate is consistent for an upper bound on the variance of the esti-

mator. An interesting feature of our setting is that the standard variance estimator may

be conservative even under constant treatment effects if treatment probabilities differ across

units. Thus, standard confidence intervals deliver asymptotically conservative inference for

the finite-population ATT when the unit-specific treatment probabilities are orthogonal to

the potential outcomes.

In Section 4, we extend the results for the SDIM to difference-in-differences (DiD). We

show that the DiD estimator is unbiased for the finite population ATT under a finite-

population analogue to the well-known “parallel trends” assumption in the sampling-based

literature (e.g., see Chapter 5 of Angrist and Pischke (2009)). Our results thus help bridge

the gap between the sampling-based literature on DiD and recent work by Athey and Imbens

(2018), who study DiD from a design-based perspective but assume completely random treat-

ment timing. As with the SDIM, we show that widely used cluster-robust standard errors

1Concretely, we analyze the asymptotic distribution of the SDIM along a sequence of finite populations
in which both the size of the population and the number of treated units grows large. Similar finite pop-
ulation asymptotics have been considered in the context of randomized experiments (Li and Ding, 2017;
Abadie et al., 2017, 2020).
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(Bertrand et al., 2004) are asymptotically conservative.

Finally, in Section 5, we study the properties of the two-stage least squares estimator

(2SLS) with a binary instrument Zi and binary treatment Di. The stochastic nature of

the data now arises due to the assignment of the instrument Zi, holding fixed the potential

outcomes Y pdq and the potential treatments Dpzq, as in Kang et al. (2018). We provide an

intuitive expression for the estimand of 2SLS allowing for an arbitrary relationship between

the probability that Zi “ 1 and the potential outcomes. Our results thus provide a bridge

between recent work by Kang et al. (2018), who study instrumental variables models from

a design-based perspective in which the instrument is completely randomly assigned, and

sampling-based models of sensitivity analysis for IV (e.g. Conley et al. (2010)). When the

instrument is completely random, our expression reduces to the well-known result that the

estimand of 2SLS is a local average treatment effect (LATE) (Angrist and Imbens, 1994;

Angrist et al., 1996). We generalize this result, showing that the 2SLS estimand also has an

interesting causal interpretation from a design-based perspective under the weaker condition

that the probability that Zi “ 1 has zero finite population covariance with both Dip0q and

YipDip0qq. Under this condition, the 2SLS estimand is a weighted average of the causal

effects for compliers, where the weights are equal to the unit-specific probabilities of re-

ceiving Zi “ 1. This parameter can be interpreted as an instrument-propensity reweighted

local average treatment effect. As with the previously discussed estimators, standard in-

ference methods yield asymptotically conservative inference for this estimand under “strong

instrument” asymptotics.

2 A Finite Population Model For Quasi-Experiments

Consider a finite population of N units. Let Di denote a binary indicator for whether unit

i adopts a treatment of interest. Units are associated with potential outcomes Yip1q, Yip0q,
under treatment and control respectively, and the observed outcome equals Yi “ DiYip1q `
p1 ´DiqYip0q. Throughout the paper, the potential outcomes are treated as fixed (or condi-

tioned on), and the stochastic nature of the data arises only due to the random assignment

or adoption of treatment.

Each unit independently adopts the treatment with idiosyncratic probability pi. We

allow for pi to be arbitrarily related to the potential outcomes with pi “ gpYip0q, Yip1q,Wiq,
where g is an unknown link function that maps pYip0q, Yip1qq and some other (possibly

unobserved) i-level pre-treatment covariates Wi into the unit interval. Since the researcher

neither observes the pair of potential outcomes nor knows the link function g, the unit-

specific treatment probabilities pi are unknown to the researcher. For example, such unit-
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specific treatment probabilities may arise if units decide whether to adopt the treatment

based on a choice model in which each unit’s adoption decision depends on its potential

outcomes, pre-treatment covariates and idiosyncratic taste or information shocks νi (e.g.,

see Heckman and Vytlacil (2006) among many others). In this view, the randomness in

treatment adoption in our model arises from the randomness in the idiosyncratic shocks νi

conditional on the potential outcomes and pre-treatment covariates.

Example 1. The Tax Cuts and Jobs Act of 2017 allowed for US census tracts meeting

certain criteria to receive tax benefits if they were designated by the governor of their state

as “Opportunity Zones.” SUppose we are interested in the effect of an eligible census tract

being designated as an Opportunity Zone pDq on housing price growth pY q, as in Chen et al.

(2019). Since housing price growth is observed for all eligible census tracts, it is attractive to

think of the randomness in the data as coming from the choice of which tracts to designate as

Opportunity Zones, rather than from drawing the observed sample from a superpopulation

of census tracts. Owing to the vagaries of the political process, it is plausible that the choice

of which of the eligible census tracts to designate as Opportunity Zones is as-if randomly

assigned. For instance, the choice of which tracts to designate may depend on arbitrary

factors such as the order in which briefings about tracts were presented pνiq that are unrelated

to the potential outcomes. It therefore may be sensible to estimate the causal effect of

the policy by comparing outcomes for designated and non-designated census tracts as if

it were a randomized experiment. Nevertheless, we may still worry that – in addition to

the aforementioned idiosyncratic factors – the probability a particular tract is designated as

an Opportunity Zone depends on the benefit of treatment pYip1q ´ Yip0qq and other fixed

features of the tract such as its partisan lean (Wi). It is therefore instructive to analyze the

properties of quasi-experimental estimators if we view the uncertainty in the data as coming

from the idiosyncratic factors νi but allow the probability of treatment to depend arbitrarily

on the other fixed factors that affect treatment choice, pi “ gpYip1q, Yip0q,Wiq.

Following the literature on completely randomized experiments (e.g. Imbens and Rubin

(2015)), we condition on the number of treatment and control units, N1 :“ ř

i Di and

N0 :“ N ´ N1 respectively. It is straightforward to derive the distribution of treatment

assignments D “ pD1, ..., DNq1 conditional on N1 and N0:

P

˜

D “ d
ˇ

ˇ

ˇ

ÿ

i

Di “ N1

¸

“ C
ź

i

pdii p1 ´ piq1´di (1)

for all d P t0, 1uN such that
ř

i di “ N1, and zero otherwise.2 We refer to this as a Poisson

2This follows from the fact that P pD “ d|
ř

i
Di “ N1q “ P pD “ d ^

ř

i
Di “ N1q {P p

ř

i
Di “ N1q.
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rejective assignment mechanism, since it parallels what Hajek (1964) refers to as Poisson

rejective sampling, in which units are sampled from a finite population only if Di “ 1 and

D has the distribution given in (1).

As notation, define the marginal assignment probability as πi :“ P pDi “ 1|ři di “ N1q.
Additionally, for non-stochastic weights wi and a non-stochastic attribute Xi (such as a

potential outcome), define

Ew rXis :“
1

ř

iwi

ÿ

i

wiXi and Vw rXis :“
1

ř

iwi

ÿ

i

wi pXi ´ Ew rXisq2

to be the finite-population weighted expectation and variance respectively. Analogously, de-

fine Covw rXi, Yis “ Ew rpXi ´ Ew rXisq pYi ´ Ew rYisqs. We denote by ER r¨s “ E r¨ | ři Di “ N1s
the expectation with respect to the randomization distribution for the treatment assignment

D, conditional on the number of treated units. The operators VRr¨s and CovR r¨, ¨s are defined

analogously as the variance and covariance respectively over the randomization distribution

for the treatment assignment D, conditional on the number of treated units.

3 Simple Difference-in-Means

We begin by analyzing the properties of the simple difference in means (SDIM) estimator,

τ̂ :“ 1

N1

ÿ

i

DiYi ´ 1

N0

ÿ

i

p1 ´ DiqYi. (2)

Our results are thus relevant for quasi-experimental settings where the researcher compares

the treated and untreated units as if they were randomly assigned, but may be concerned

that in fact treatment probabilities were related to potential outcomes.

3.1 Bias

We first turn our attention to the expectation of τ̂ under the treatment assignment mecha-

nism (1). Observe that

ER rτ̂ s “ 1

N1

ÿ

i

πi pYip0q ` τiq
looooomooooon

“Yip1q

´ 1

N0

ÿ

i

p1 ´ πiqYip0q

“ 1

N1

ÿ

i

πiτi
loooomoooon

“τATT

` N

N0

N

N1

˜

1

N

ÿ

i

ˆ

πi ´ N1

N

˙

Yip0q
¸

loooooooooooooooomoooooooooooooooon

“Cov1rπi,Yip0qs

, (3)
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where τi “ Yip1q ´ Yip0q is unit i’s causal effect. The first term in the previous display

is a weighted average of the unit-specific causal effects, where the weights are proportional

to the unit-specific treatment probabilities. We interpret this object as a finite-population

analogue to the average treatment effect on the treated since

1

N1

ÿ

i

πiτi “ ER

«

1

N1

ÿ

i

Diτi

ff

“: τATT . (4)

τATT is the expected value of what Imbens (2004) and Sekhon and Shem-Tov (2020) refer

to as the sample average treatment effect on the treated (SATT), where the expectation is

taken over the stochastic realization of which units are treated. The second term in (3) is the

SDIM’s bias for τATT and equals a constant times the finite-population covariance between

the treatment probabilities πi and the untreated potential outcomes Yip0q. The bias is zero

if all units are treated with the same probability (i.e. πi “ N1{N for all i), and furthermore

under this condition τATT reduces to the average treatment effect.

This characterization of the bias of the SDIM estimator suggests that researchers may

conduct sensitivity analysis under different assumptions about the finite-population covari-

ance between the treatment probabilities and the untreated potential outcomes – i.e., report

the range of possible values for τ̂ ´ N
N1

N
N0

Cov1 rπi, Yip0qs under different assumptions about

the possible magnitudes of Cov1 rπi, Yip0qs. Such a sensitivity analysis is related to, but dif-

ferent from existing design-based sensitivity analyses developed in, for example, Rosenbaum

(1987), Chapter 4 of Rosenbaum (2002), Rosenbaum (2005) among many others. The ap-

proach in those papers places bounds on the relative odds ratio of treatment between two

units (i.e.,
πip1´πjq

πjp1´πiq
for i ‰ j) and examines the extent to which the relative odds ratio

must vary across units such that we may no longer reject a particular sharp (Fisher) null

of interest. In contrast, we focus on examining how the bias of the SDIM estimator for

a particular weighted average treatment effect varies with the finite population covariance

between treatment probabilities and untreated potential outcomes.

Equation (3) may also be interpreted as a finite population version of the omitted variables

bias formula for regression analyses. Defining the errors εYi “ Yip0q ´ E1´π rYip0qs and

ετi “ τi ´ τATT , we may rewrite the observed outcome for unit i as

Yi “ β0 ` DiτATT ` ui, (5)

where β0 “ E1´π rYip0qs and ui “ εYi `Diε
τ
i . One can show that the expression derived above

for ER rτ̂ ´ τATT s is equivalent to ER

”

Cov1rDi,uis
Var1rDis

ı

, which in light of equation (5) coincides with

the omitted variable bias formula for the coefficient on Di in an OLS regression of Yi on Di
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and a constant.

3.2 Asymptotic Variance and Distribution

We now turn our attention to the variance and distribution of τ̂ . The exact finite-sample

variance and distribution functions are complicated functions of the pi, and we therefore

rely on a triangular array asymptotic approximation using a sequence of finite populations

where the number of units grows large, in the spirit of Freedman (2008b,a), Lin (2013), and

Li and Ding (2017). We consider sequences of populations indexed by m of size Nm, with

N1m treated units, potential outcomes tYimpdq : d “ 1, 2; i “ 1, ..., Nmu, and assignment

weights p1m, ..., pNm
. For brevity, we leave the subscript m implicit in our notation; all limits

are implicitly taken as m Ñ 8. Our results will provide an approximation to the properties

of τ̂ for finite populations with a sufficiently large number of units.

To analyze its distribution, note that τ̂ may be re-written as

τ̂ “
ÿ

i

Di

πi

Ỹi ´ 1

N0

ÿ

i

Yip0q, (6)

where Ỹi :“ πi

´

1

N1

Yip1q ` 1

N0

Yip0q
¯

. The second term on the right-hand side of the previous

display is non-stochastic. The first term, on the other hand, can be viewed as a Horvitz-

Thompson estimator for
řN

i“1
πiỸi under what Hajek (1964) refers to as Poisson rejective

sampling. We can therefore make use of results from Hajek (1964) to obtain its asymptotic

distribution under a sequence of finite populations as described above.

3.2.1 Deriving a variance bound

To obtain the asymptotic variance of τ̂ , we impose the following assumption on the sequence

of populations.

Assumption 1. The sequence of populations satisfies
řN

i“1
πip1 ´ πiq Ñ 8.

Note that πip1 ´ πiq is the variance of the Bernouli random variable Di, so Assumption 1

implies that the sum of the variances of the Di grows large. Assumption 1 also implies that

both N1 and N0 go to infinity, since
řN

i“1
πip1´πiq ď mintři πi,

ř

ip1´πiqu “ mintN1, N0u.
Note that Assumption 1 is trivially satisfied under the familiar overlap condition (i.e., πi P
rη, 1 ´ ηs for some η ą 0). However, overlap for all units is not necessary for Assumption 1

to hold, and indeed Assumption 1 allows for πi “ 0 or πi “ 1 for some units.
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Lemma 3.1. Under Assumption 1,

VR rτ̂ s r1 ` op1qs “
1

N

řN

k“1
πkp1 ´ πkq

N0

N
N1

N

„

1

N1

Varπ̃ rYip1qs ` 1

N0

Varπ̃ rYip0qs ´ 1

N
Varπ̃ rτis



,

(7)

where op1q Ñ 0 and the weights are given by π̃i “ πip1 ´ πiq.

Proof. Since τ̂ can be represented as a Horvitz-Thompson estimator under Poisson rejective

sampling, Theorem 6.1 in Hajek (1964) implies that

VR rτ̂ s r1 ` op1qs “
«

N
ÿ

k“1

πkp1 ´ πkq
ff

Varπ̃

”

Ỹi

ı

. (8)

Standard decomposition arguments for completely randomized experiments (e.g. Imbens and Rubin

(2015)), modified to replace unweighted variances with weighted variances, yield that

Varπ̃

”

Ỹi

ı

“ N

N1N0

ˆ

1

N1

Varπ̃ rYip1qs ` 1

N0

Varπ̃ rYip0qs ´ 1

N
Varπ̃ rτis

˙

,

which together with the previous display yields the desired result.

Lemma 3.1 shows that the asymptotic variance of τ̂ depends on the weighted variance of

the treated and untreated potential outcomes and treatment effects, where unit i is weighted

proportionally to the variance of their treatment status VR rDis “ πip1 ´ πiq. The leading

constant term is less than or equal to one by Jensen’s inequality, with equality when πi is

constant across units. Thus, in the special case of a completely random experiment, the

formula in Lemma 3.1 reduces to p1 ` op1qq
´

1

N1
Var1 rYip1qs ` 1

N0
Var1 rYip0qs ´ 1

N
Var1 rτis

¯

,

which mimics the familiar formula for completely randomized experiments up to a degrees-

of-freedom corrections.3

We next provide an upper bound for the asymptotic variance derived in Lemma 3.1.

We will later provide regularity conditions under which the standard variance estimator is

asymptotically consistent for this upper bound.

Lemma 3.2. Under Assumption 1, the right-hand side of (7) is bounded above by

1

N1

Varπ rYip1qs ` 1

N0

Var1´π rYip0qs , (9)

3The 1 ` op1q correction is needed here because Var1 rYipdqs “ 1

N

ř

i
pYipdq ´ E1 rYipdqsq2, which differs

from the usual finite population variance by the degrees-of-freedom correction factor N

N´1
.
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and the bound holds with equality if and only if

Eπ̃

„

1

N1

Yip1q ` 1

N0

Yip0q


“ 1

N1

Eπ rYip1qs ` 1

N0

E1´π rYip0qs

and
πi

N1{NYip1q ´ 1 ´ πi

N0{N
Yip0q “ πi

N1{N
Eπ rYip1qs ´ 1 ´ πi

N0{N
E1´π rYip0qs for all i.

Proof. From (8), we see that the right-hand side of (7) is equivalent to

N
ÿ

i“1

πip1 ´ πiq
ˆ

1

N1

Yip1q ` 1

N0

Yip0q ´
ˆ

Eπ̃

„

1

N1

Yip1q ` 1

N0

Yip0q
˙˙2

.

Since for any X, Eπ̃ rXs “ argminµ

řN
i“1

πip1 ´ πiqpXi ´ µq2, it follows that this is bounded

above by

N
ÿ

i“1

πip1 ´ πiq
ˆ

1

N1

Yip1q ` 1

N0

Yip0q ´
ˆ

Eπ

„

1

N1

Yip1q


` E1´π

„

1

N0

Yip0q
˙˙2

, (10)

and the bound is strict if and only if

Eπ̃

„

1

N1

Yip1q ` 1

N0

Yip0q


“ 1

N1

Eπ rYip1qs ` 1

N0

E1´π rYip0qs .

Let 9Yip1q “ Yip1q ´ Eπ rYip1qs and 9Yip0q “ Yip0q ´ E1´π rYip0qs . Then the expression in (10)

can be written as

N
ÿ

i“1

πip1 ´ πiq
ˆ

1

N1

9Yip1q ` 1

N0

9Yip0q
˙2

“
«

1

N2

1

N
ÿ

i“1

πi
9Yip1q2 ` 1

N2

0

N
ÿ

i“1

p1 ´ πiq 9Yip0q2´

1

N2

1

N
ÿ

i“1

π2

i
9Yip1q2 ´ 1

N2

0

N
ÿ

i“1

p1 ´ πq2 9Yip0q2 ` 2

N1N0

N
ÿ

i“1

πip1 ´ πiq 9Yip1q 9Yip0q
ff

“
«

1

N1

Varπ rYip1qs ` 1

N0

Var1´π rYip0qs ´ 1

N2

N
ÿ

i“1

ˆ

πi

N1{N
9Yip1q ´ 1 ´ πi

N0{N
9Yip0q

˙2
ff

,

from which the result is immediate.

Corollary 3.1. If treatment effects are constant, Yip1q “ τ `Yip0q for all i, and ER rτ̂ s “ τ ,

then the bound in Lemma 3.2 is only strict if πi “ N1

N
for all i such that Yip0q ‰ Eπ̃ rYip0qs.
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Proof. The two conditions for equality in Lemma 3.2 together with the assumption that

Yip1q “ τ ` Yip0q imply that

τ ´ ER rτ̂ s “ N

ˆ

πi ´ N1

N

˙ˆ

1

N1

` 1

N0

˙

pYip0q ´ Eπ̃ rYip0qsq for all i,

from which the result follows immediately.

We thus see that under constant treatment effects, if τ̂ is unbiased then the asymptotic

variance of τ̂ will be strictly lower than the upper bound when treatment probabilities are

not uniform (unless the treatment probabilities differ from uniformity only for a set of units

for which Yip0q “ Eπ̃ rYip0qs.)

Remark 1. It is straightforward to show that if π “ N1

N
for all i, then the bound in Lemma

3.2 is strict if and only if treatment effects are constant, which is a standard result for

completely randomized experiments. When π ‰ N1

N
, Lemma 3.2 implies that the bound

holds with strict equality only in knife-edge cases.

3.2.2 Variance bound estimation

Next, we provide a regularity condition under which the standard variance estimator is

consistent for the upper bound on the asymptotic variance of τ̂ given in (9). Let ŝ2 “
1

N1
ŝ2
1

` 1

N0
ŝ2
0
, where

ŝ2
1
:“ 1

N1

ÿ

i

DipYi ´ Ȳ1q2, ŝ2
0
:“ 1

N0

ÿ

i

p1 ´ DiqpYi ´ Ȳ0q2,

and Ȳ1 :“ 1

N1

ř

iDiYi, Ȳ0 :“ 1

N0

ř

ip1 ´ DiqYi.

The following assumption and consistency result generalize those in Li and Ding (2017)

for the case of completely randomized assignment.

Assumption 2. Define mNp1q :“ max1ďiďN pYip1q ´ Eπ rYip1qsq2, and analogously mN p0q :“
max1ďiďN pYip0q ´ E1´π rYip0qsq2. Assume that,

1

N1

mNp1q
Varπ rYip1qs Ñ 0 and

1

N0

mNp0q
Var1´π rYip0qs Ñ 0.

Lemma 3.3. Under Assumptions 1 and 2,

ŝ2
´

1

N1
Varπ rYip1qs ` 1

N0
Varπ rYip0qs

¯

pÝÑ 1.
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Proof. See Appendix.

3.2.3 Asymptotic normality

Finally, we introduce an assumption that allows us to obtain a central limit theorem for the

SDIM τ̂ .

Assumption 3. Let Ỹi “ 1

N1
Yip1q ` 1

N0
Yip0q, and assume σ2

π̃ “ Varπ̃

”

Ỹi

ı

ą 0. Suppose that

for all ǫ ą 0,

1

σ2

π̃

Eπ̃

«

´

Ỹi ´ Eπ̃

”

Ỹi

ı¯

2

1

«

ˇ

ˇ

ˇ
Ỹi ´ Eπ̃

”

Ỹi

ıˇ

ˇ

ˇ
ě
c

ÿ

i

πip1 ´ πiq ¨ σπ̃ǫ

ffff

Ñ 0.

Assumption 3 is similar to the Lindeberg condition for the standard Lindeberg-Levy cen-

tral limit theorem, and imposes that the weighted finite-population variance of Ỹi is not

dominated by a small number of observations. Viewing τ̂ as a Horvitz-Thompson estimator

under Poisson rejective sampling in light of (6), the following result follows immediately from

Theorem 1 in Berger (1998), which is based on Hajek (1964).4

Lemma 3.4. Suppose Assumptions 1 and 3 hold. Then,

τ̂ ´ ER rτ̂ s
a

VR rτ̂ s
dÝÑ N p0, 1q .

3.3 Multiple Outcomes

The results for scalar outcomes Yi extend easily to the multiple outcome case with Yi P RK .

This is relevant when we observe multiple outcome measures in a cross-section, or we observe

the same outcome measure for multiple periods (or both). We use the extension to multi-

ple outcomes in our finite population analysis of difference-in-differences and instrumental

variables settings later in the paper.

We extend our notation from the scalar case, so that Yi P RK , and for a fixed vector-

valued characteristic Xi (e.g a function of the potential outcomes), Ew rXis :“ 1
ř

i wi

ř

i wiXi

and Varw rXis “ 1
ř

i wi

ř

i pXi ´ Ew rXisq pXi ´ Ew rXisq1. In particular, define

S1,w :“ Varw rYip1qs , S0,w :“ Varw rYip0qs ,
S10,w :“ Ew rpYip1q ´ Ew rYip1qsqpYip0q ´ Ew rYip0qsq1s

4Berger (1998) gives the result using the actual inclusion probabilities πi, whereas Hajek (1964) states a
similar result where the Horvitz-Thompson estimator uses an approximation to the πi in terms of the pi.
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to be the weighted finite population variances and covariance of Yip1q and Yip0q. Addition-

ally, the vector-valued ATT is defined as, τATT :“ 1

N1

ř

i πipYip1q ´Yip0qq, and consider the

vector-valued SDIM estimator τ̂ “ 1

N1

ř

i DiYip1q ´ 1

N0

ř

ip1´DiqYip0q. We also generalize

the variance estimators introduced above,

ŝ :“ 1

N1

ŝ1 ` 1

N0

ŝ0,

ŝ1 :“
1

N1

ÿ

i

DipYi ´ Ȳ1qpYi ´ Ȳ1q1, ŝ0 :“
1

N0

ÿ

i

p1 ´ DiqpYi ´ Ȳ0qpYi ´ Ȳ0q1,

where Ȳ1 :“ 1

N1

ř

iDiYi and Ȳ0 :“ 1

N0

ř

ip1 ´ DiqYi.

We introduce the following assumptions on the sequence of finite populations.

Assumption 4. Suppose that N1{N Ñ p1 P p0, 1q, and S1,w, S0,w, S10,w have finite limits for

w P tπ, 1 ´ π, π̃u.

Assumption 5. Assume that

max
1ďiďN

||Yip1q ´ Eπ rYip1qs ||2{N Ñ 0 max
1ďiďN

||Yip0q ´ E1´π rYip0qs ||2{N Ñ 0

where || ¨ || is the Euclidean norm.

Assumption 6. Let Ỹi “ 1

N1

Yip1q ` 1

N0

Yip0q, and let λmin be the minimal eigenvalue of

Σπ̃ “ Varπ̃

”

Ỹi

ı

. Assume λmin ą 0 and for all ǫ ą 0,

1

λmin

Eπ̃

«

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Ỹi ´ Eπ̃

”

Ỹi

ıˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

¨ 1
«

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Ỹi ´ Eπ̃

”

Ỹi

ıˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ě
c

ÿ

i

πip1 ´ πiq ¨ λmin ¨ ǫ
ffff

Ñ 0.

Assumption 4 requires that the fraction of treated units and the (weighted) variance and

covariances of the potential outcomes have limits. Assumption 5 is a multivariate analog

of Assumption 2 in that it requires that no single observation dominate the π or p1 ´ πq-
weighted variance of the potential outcomes. Assumption 6 is a multivariate generalization

of the Lindeberg-type condition in Assumption 3.

Proposition 3.1 (Results for vector-valued outcomes). (1)

ER rτ̂ s “ τATT ` N

N0

N

N1

˜

1

N

ÿ

i

ˆ

πi ´ N1

N

˙

Yip0q
¸

.
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(2) Under Assumptions 1, and 4,

VR rτ̂ s ` opN´1q “
1

N

řN
k“1

πkp1 ´ πkq
N0

N
N1

N

„

1

N1

Varπ̃ rYip1qs ` 1

N0

Varπ̃ rYip0qs ´ 1

N
Varπ̃ rτ is



ď 1

N1

Varπ rYip1qs ` 1

N0

Var1´π rYip0qs

where A ď B if B ´ A is positive semi-definite.

(3) Under Assumptions 1, 4, and 5,

ŝ1 ´ Varπ rYip1qs pÝÑ 0, ŝ0 ´ Var1´π rYip0qs pÝÑ 0.

(4) Under Assumptions 1, 4, and 6,

VR rτ̂ s´ 1

2 pτ̂ ´ τ q dÝÑ N p0, Iq .

Assumption 4 implies Στ “ limNÑ8 NVR rτ̂ s exists, so the previous display can alterna-

tively be written as ?
Npτ̂ ´ τ q dÝÑ N p0, Στ q .

Proof. See appendix.

4 Difference-in-Differences

In this section, we apply our results to provide a design-based analysis of difference-in-

differences estimators (e.g., Chapter 5 of Angrist and Pischke (2009)). Such a design-based

analysis is useful since applied researchers commonly use difference-in-differences estimators

in quasi-experimental settings to analyze the causal effects of state-level polices in which

outcomes for all 50 US states are observed.

Suppose we observe panel data for a population of N units for periods t “ ´
¯
T, ..., T̄ .

Units with Di “ 1 receive a treatment of interest beginning at period t “ 1.5 The observed

outcome for unit i at period t is Yit “ YitpDiq. We assume the treatment has no effect prior

5We focus on the case with non-staggered treatment timing, since it may be difficult to interpret the
estimand of standard two-way fixed effects models under treatment effect heterogeneity and staggered
treatment timing (Borusyak and Jaravel, 2016; de Chaisemartin and D’Haultfœuille, 2018; Goodman-Bacon,
2018; Athey and Imbens, 2018). The results in this section could be extended to other estimators with a
more sensible interpretation under staggered timing e.g. Callaway and Sant’Anna (2019); Sun and Abraham
(2020).
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to its implementation, so that Yitp1q “ Yitp0q for all t ă 1. Consider the common dynamic

two-way fixed effects (TWFE) or “event-study” regression specification

Yit “ αi ` φt `
ÿ

s‰0

Di ˆ 1rs “ ts ˆ βs ` ǫit. (11)

It is well known in this setting that

β̂t “ τ̂t ´ τ̂0 where τ̂t “ 1

N1

ÿ

i

DiYit ´ 1

N0

ÿ

i

p1 ´ DiqYit.

Thus, β̂t is the difference in the SDIM estimators for the outcome in period t and period 0.

Letting Yi “ pYi,´
¯
T , ..., Yi,T̄ q1, (3) implies that under Poisson rejective assignment,

ER

”

β̂t

ı

“ τt ` N

N0

N

N1

Cov1 rπi, Yitp0q ´ Yi0p0qs ,

where τt “ 1

N1

ř

i πiYitp0q is the ATT in period t, and we use the fact that τ0 “ 0 by the

no-anticipation assumption. Thus, the bias in β̂t is proportional to the finite population co-

variance between πi and trends in the untreated potential outcomes, Yitp0q´Yi0p0q. It follows

that β̂t is unbiased for τt over the randomization distribution if Cov1 rπi, Yitp0q ´ Yi0p0qs “ 0,

or equivalently, if

ER

«

1

N1

ÿ

i

DipYitp0q ´ Yi0p0qq
ff

“ ER

«

1

N0

ÿ

i

p1 ´ DiqpYitp0q ´ Yi0p0qq
ff

,

which mimics the familiar “parallel trends” assumption from the sampling-based model.

Further, if the sequence of populations satisfies the assumptions in part (4) of Proposition

3.1, then ?
Npβ̂ ´ pτ ` δqq Ñd N p0, Σq , (12)

where β̂ is the vector that stacks β̂t, Σ “ limNÑ8 NVR

”

β̂t

ı

, and τ , δ are the vectors that

stack τt and δt “ N
N0

N
N1

Cov1 rπi, Yitp0q ´ Yi0p0qs. Part (3) implies that the variance estimator

ŝ is asymptotically conservative for β̂. It is easily verified that ŝ corresponds with the

cluster-robust variance estimator for (11) that clusters at level i (up to degrees of freedom

corrections). The normal limiting model in (12) has been studied by Roth (2019) and

Rambachan and Roth (2019) from a sampling-based perspective in which parallel trends

may fail; our results show that it also has a sensible interpretation from a design-based

perspective.
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5 Instrumental Variables

In this section, we apply our results to analyze the properties of two-stage least squares

instrumental variables estimators. Let Zi P t0, 1u be an instrument. Let Dipzq P t0, 1u be

the potential treatment status as a function of z. Let Yipdq be the potential outcome as a

function of d P t0, 1u. Our notation Y pdq encodes the so-called “exclusion restriction” that Z

affects Y only through D. We observe pYi, Di, Ziq where Yi “ YipDipZiqq and Di “ DipZiq.
We treat Zi as stochastic and the potential outcomes for both D and Y as fixed. The number

of units with Zi “ 1 is denoted by NZ
1

and the number of units with Zi “ 0 is denoted by

NZ
0

.

Example 2. Researchers may have data on student outcomes for all students attending

public and private schools in a particular geographic area (e.g., Goodman (2008) observes

data on all high school graduates in Massachusetts from 2003-2005). The instrument Zi

could be an indicator for whether a student is offered a subsidy for attending private school,

Di could be an indicator for whether a student attends private school, and Yi could be a

student’s test score. We might suspect that an organization assigns scholarships essentially

as-if random, but it is also plausible that they may target their offers to students that are

likely to accept if offered, or who have high benefits from private school, so that P pZiq “ 1

may be related to Yipdq and Dipzq. It is therefore instructive to consider the distribution the

2SLS estimator when Zi is not completely randomly assigned.

In canonical IV frameworks, it is traditionally assumed that the instrument Z is indepen-

dent of the potential outcomes (see Angrist and Imbens (1994); Angrist et al. (1996) for a

sampling-based model, and Kang et al. (2018) for a design-based model). We instead allow

for the possibility that the probability that Zi “ 1 may differ across units, and be arbitrarily

related to the potential outcomes. In particular, we suppose that

P

˜

Z “ z
ˇ

ˇ

ˇ

ÿ

i

Zi “ NZ
1

¸

“ C
ź

i

pzii p1 ´ piq1´zi (13)

for all Z P t0, 1uN such that
ř

i zi “ NZ
1

, and zero otherwise. Thus, the assignment of

the instrument Zi mimics the Poisson rejective assignment of Di in (1). We update the

notation to use ERZ
r¨s ,VRZ

r¨s to denote the expectations and variances with respect to the

randomization distribution of Z conditional on the number of units assigned to Z “ 1. We

also maintain the typical monotonicity assumption that is commonly imposed in IV settings.

Assumption 7 (Monotonicity). Dip1q ě Dip0q for all i.
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A common method for estimating treatment effects in an instrumental variables setting

is two-stage least squares (2SLS), defined as β̂2SLS :“ τ̂RF {τ̂FS with

τ̂RF :“ 1

NZ
1

ÿ

i

ZiYi ´ 1

NZ
0

ÿ

i

p1 ´ ZiqYi

τ̂FS :“ 1

NZ
1

ÿ

i

ZiDi ´ 1

NZ
0

ÿ

i

p1 ´ ZiqDi.

τ̂RF is often referred to as the “reduced-form” coefficient, whereas τ̂FS is referred to as the

“first-stage” coefficient.

Observe that τ̂RF is a SDIM for the effect of Zi on Yi, whereas τ̂FS can be viewed as a

SDIM for the effect of Zi on Yi. Equation (3) thus implies that

ERZ
rτ̂RF s “ 1

N

ÿ

i

πZ
i pYipDip1qq ´ YipDip0qqq ` N

NZ
1

N

NZ
0

Cov1

“

πZ
i , YipDip0qq

‰

,

where Cov1

“

πZ
i , YipDip0qq

‰

“ 1

N

ř

i

´

πZ
i ´ NZ

1

N

¯

YipDip0qq is the finite population covariance

between πZ
i and YipDip0qq. Let C “ ti : Dip1q ą Dip0qu denote the set of compliers. The

previous display along with Assumption 7 imply that

ERZ
rτ̂RF s “ 1

N

ÿ

iPC

πZ
i pYip1q ´ Yip0qq ` N

NZ
1

N

NZ
0

Cov1

“

πZ
i , YipDip0qq

‰

. (14)

By an analogous argument for τ̂FS, we obtain that

ERZ
rτ̂FSs “ 1

N

ÿ

iPC

πZ
i ` N

NZ
1

N

NZ
0

Cov1

“

πZ
i , Dip0q

‰

. (15)

Define β2SLS :“ ERZ
rτ̂RF s

ERZ
rτ̂FSs

.

Our earlier results imply that under suitable regularity conditions β̂2SLS is normally

distributed around β2SLS in large populations. Let Yi “ pYi, Diq1 and define the potential

outcomes Yipzq “ pYipDipzqq, Dipzqq. If the sequence of populations satisfies the assumptions

in Proposition 3.1, part 4 (using Yi as just defined, and adding sub- or super-script Z as

needed), then
?
N

˜

τ̂RF ´ ERZ
rτ̂RF s

τ̂FS ´ ERZ
rτ̂FSs

¸

Ñd N p0, Στ q ,

where Στ “ limNÑ8 NVRZ

«˜

τ̂RF

τ̂FS

¸ff

. Assuming further that the sequence of populations

satisfies pERZ
rτ̂RF s ,ERZ

rτ̂FSsq Ñ pτ˚
RF , τ

˚
FSq with τ˚

FS ą 0, then the uniform delta method
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(e.g., Theorem 3.8 in van der Vaart (2000)) implies that6

?
Npβ̂2SLS ´ β2SLSq Ñd Np0, g1Στgq,

where g is the gradient of hpx, yq “ x{y evaluated at pτ˚
RF , τ

˚
FSq. Proposition 3.1 likewise

implies that it is possible to obtain asymptotically conservative inference for β2SLS using

plug-in estimates of the variance.

How should we interpret the estimand β2SLS? First, note that if πZ
i ” NZ

1

N
, so that all

units receive Z “ 1 with equal probability, then equations (14) and (15) imply that β2SLS “
1

|C|

ř

iPCpYip1q´Yip0qq, which is the canonical local average treatment effect (LATE) for com-

pliers (Angrist et al., 1996). Interestingly, our results show that β2SLS has a general causal in-

terpretation under the weaker assumption that Cov1

“

πZ
i , YipDip0qq

‰

“ Cov1

“

πZ
i , Dip0q

‰

“ 0,

so that the probability that Zi “ 1 may differ across units but the finite population covari-

ance between treatment probabilities and Dip0q and YipDip0qq is equal to zero. Under this

assumption, we have that

β2SLS “ 1
ř

iPC π
Z
i

ÿ

iPC

πZ
i pYip1q ´ Yip0qq .

The parameter β2SLS can then be interpreted as a πZ
i -weighted local average treatment effect

(LATE) for compliers. The weights given to each complier are proportional to the probability

that Zi “ 1. This is intuitive, as a complier with a low probability of having Zi “ 1 should

have little effect on the 2SLS estimator.

6 Conclusion

This paper analyzes the properties of quasi-experimental estimators, such as SDIM, DiD,

and 2SLS, in a finite population setting in which treatment probabilities are non-constant

across units and may vary systematically with potential outcomes. Analogous to familiar

results in the sampling-based framework, we show that one can obtain valid causal inference

for certain interpretable causal estimands if complete randomization is replaced with weaker

orthogonality conditions. More generally, our results allow one to understand the bias and

limiting distribution of these estimators for the ATT as a function of the finite-population

6It is well-known in sampling-based instrumental variables settings that the delta method fails under
“weak-instrument asymptotics” in which ERZ

rτ̂FSs drifts towards zero (Staiger and Stock, 1997). Similar
issues apply here. However, the test static used to form Anderson-Rubin confidence intervals, which are
robust to weak identification, can be written as a quadratic form in a SDIM statistic (see, e.g., Li and Ding
(2017)). Our results could thus also be applied to analyze the properties of Anderson-Rubin based CIs under
weak identification asymptotics.
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covariance between treatment probabilities πi and functions of the potential outcomes, akin

to familiar omitted variable bias formulas.

The analysis in this paper could be extended in a variety of directions. First, the analysis

might be extended to settings where the stochastic nature of the data arises both from the

assignment of treatment and from sampling a subset of units from a finite population, as

in Abadie et al. (2020). Like in Abadie et al. (2020), the analysis could also be extended

to allow for clustered sampling or treatment assignment. Second, our results on the lim-

iting distribution of the SDIM suggest that a variety of mis-specification robust tools and

sensitivity analyses which have been developed under the assumption of asymptotic normal-

ity from a sampling-based perspective could also potentially be applied in finite population

contexts as well (e.g., Armstrong and Kolesar (2018a,b); Bonhomme and Weidner (2018);

Andrews et al. (2017, 2019)). However, the finite population setting studied here differs

from the usual sampling-based approach in that the variance matrix is only conservatively

estimated. It would be useful to study which guarantees of size control and/or optimality

from the sampling literature are robust to this modification.
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A Additional Proofs

Proof of Lemma 4

Proof. It suffices to show that
ŝ2
1

Varπ rYip1qs Ñp 1 and
ŝ2
0

Var1´π rYip0qs Ñp 1. We provide a

proof for the former; the latter proof is analogous. For notational convenience, let v1 “
Varπ rYip1qs . From the definition of ŝ2

1
, we can write

ŝ2
1

v1
“ 1

v1

˜˜

1

N1

ÿ

i

DipYip1q ´ Eπ rYip1qsq2
¸

´ pȲ1 ´ Eπ rYip1qsq2
¸

.

Now, 1

N1

ř

iDipYip1q ´ Eπ rYip1qsq2 can be viewed as a Horvitz-Thompson estimator of
1

N1

ř

i πipYip1q ´ Eπ rYip1qsq2 “ v1, and thus by Theorem 6.2 in Hajek (1964), its variance is
equal to

p1 ` op1qq
˜

1

N2

1

ÿ

i

πip1 ´ πiq
¸

¨ Varπ̃
“

pYip1q ´ Eπ rYip1qsq2
‰

q.

Note further that
˜

1

N2

1

ÿ

i

πip1 ´ πiq
¸

¨ Varπ̃
“

pYip1q ´ Eπ rYip1qsq2
‰

ď 1

N2

1

ÿ

i

πip1 ´ πiqpYip1q ´ Eπ rYip1qsq4

ď 1

N2

1

mN p1q
ÿ

i

πipYip1q ´ Eπ rpYip1qsq2

“ 1

N1

mNp1qVarπ rYip1qs .

Applying Chebychev’s inequality, we have

1

N1

ÿ

i

pDipYip1q ´ Eπ rYip1qsq2 ´ v1 “ Op

ˆ
c

1

N1

mNp1qVarπ rYip1qs
˙

.

Next, viewing Ȳ1 as a Horvitz-Thomson estimator, we see that its variance is bounded by

p1 ` op1qq
´

1

N2

1

ř

i πip1 ´ πiq
¯

¨ Varπ̃ rYip1qs, which by similar logic to that above is bounded
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above by p1 ` op1qq 1

N1
Varπ rYip1qs. Thus, by Chebychev’s inequality,

Ȳ1 ´ Eπ rYip1qs “ Op

ˆ
c

1

N1

Varπ rYip1qs
˙

.

Combining the results above, it follows that

ŝ2
1

v1
“ 1

v1

˜

v1 ` Op

˜

d

mN p1qv1
N1

¸

` Op

ˆ

1

N1

v1

˙

¸

“ 1 ` Op

˜

d

mNp1q
v1N1

¸

` Op

ˆ

1

N1

˙

.

However, the first Op term converges to 0 by assumption, and since Assumption 1 implies
that N1 Ñ 8, the second Op term converges to 0 as well.

Proof of Proposition 3.1

Proof. The proof of claim (1) is analogous to equation (3). We next prove claim (2). For
simplicity, let An “ VR rτ̂ s, let Bn be the right-hand-side of the first equality in claim (2),
and let Cn be the right-hand side of the inequality in claim (2). We first prove the inequality.
Note that by the definition of a semi-definite matrix, it suffices to show that l1Bnl ď l1Cnl

for all l P RK . However, letting Yipdq “ l1Yipdq, the desired inequality follows from Lemma
3.2. Next, observe that An ´ Bn “ opN´1q if and only if Dn :“ NAn ´ NBn “ op1q,
which holds if and only if l1Dnl “ op1q for all l P L :“ tej | 1 ď j ď Ku Y tej ´ ej1 | 1 ď
j, j1 ď Ku, where ej is the jth basis vector in RK . To obtain the last equivalence, note that
e1
jDnej “ rDnsjj (the pj, jq element of Dn), whereas exploiting the fact that Dn is symmetric,

pej ´ ej1q1Dnpej ´ ej1q “ rDnsjj ` rDnsj1j1 ´ 2rDnsjj1, and so convergence of l1Dnl to zero for
all l P L is equivalent to convergence of each of the elements of Dn. Next, note that if
Yipdq “ l1Yipdq, then τ̂ as defined in (2) is equal to l1τ̂ and Varπ̃ rYipdqs “ l1Varπ̃ rYipdqs l.
It follows from Lemma 3.1 that

N ¨l1VR rτ̂ s lr1`op1qs “
1

N

řN

k“1
πkp1 ´ πkq

N0

N
N1

N

l1
„

N

N1

Varπ̃ rYip1qs ` N

N0

Varπ̃ rYip0qs ´ Varπ̃ rτis


l,

(16)
which implies that l1Dnl “ l1pNAnql ¨ op1q. However, Assumption 4, together with the
inequality in claim (2), implies that the right-hand side of the previous display is Op1q, and
thus l1pNAnql “ Op1q, from which the desired result follows.

The proof of (3) is similar to the proof of Lemma A3 in Li and Ding (2017), which gives a
similar result in the case of completely randomized experiments. We provide a proof for the
convergence of ŝ1; the convergence of ŝ0 is similar. As in the proof to claim (2), it suffices
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to show that l1ŝ1l ´ l1Varπ rYip1qs l Ñp 0 for all l P L. Let Yipdq “ l1Yip1q. Then

l1ŝ1l “ 1

N1

ÿ

i

Dipl1Yip1q ´ 1

N1

ÿ

j

Djl
1
Yjp1qq2

“
˜

1

N1

ÿ

i

Dipl1Yip1q ´ l1Eπ rYip1qsq2
¸

`
˜

1

N1

ÿ

i

Dil
1
Yip1q ´ Eπ rl1Yip1qs

¸2

, (17)

where the second line uses the bias variance decomposition. The first term can be viewed
as a Horvitz-Thompson estimator of 1

N1

ř

i πipl1Yip1q ´Eπ rl1Yip1qsq2 “ Varπ rl1Yip1qs under
Poisson rejective sampling, and thus has variance equal to

p1 ` op1qq 1

N2

1

ÿ

i

πip1 ´ πiqVarπ̃
“

pl1Yip1q ´ Eπ rl1Yip1qsq2
‰

.

Further, observe that

1

N2

1

ÿ

i

πip1 ´ πiqVarπ̃
“

pl1Yip1q ´ Eπ rl1Yip1qsq2
‰

ď

1

N1

Eπ

“

pl1Yip1q ´ Eπ rl1Yip1qsq4
‰

ď
1

N1

max
i

 

pl1Yip1q ´ Eπ rl1Yip1qsq2
(

¨ Varπ rl1Yip1qs ď
„

||l||2 N
N1



”

max
i

||Yip1q ´ Eπ rYip1qs ||2{N
ı

¨ rl1Varπ rYip1qs ls “ op1q

where the first inequality is obtained using the fact that Varπ̃ rXs ď Eπ̃ rX2s, expanding the
definition of Eπ̃ r¨s, and using the inequality πip1 ´ πiq ď πi, analogous to the argument in
the proof to Lemma 3.3; the final inequality uses the Cauchy-Schwarz inequality and factors
out l; and we obtain that the final term is op1q by noting that the first and final bracketed
terms are Op1q by Assumption 4 and the middle term is op1q by Assumption 5. Applying
Chebychev’s inequality, it follows that the first term in (17) is equal to Varπ rl1Yip1qs ` op1q.

To complete the proof of the claim, we show that the second term in (17) is op1q. Note
that we can view 1

N1

ř

i Dil
1
Yip1q as a Horvitz-Thompson estimator of Eπ rl1Yis. Following

similar arguments to that in the proceeding paragraph, we have that its variance is bounded
above by 1

N1
l1Varπ rYip1qs l, which is op1q by Assumption 4 combined with the fact that

Assumption 1 implies N1 Ñ 8. Applying Chebychev’s inequality again, we obtain that the
second term in (17) is op1q, as needed.

To prove claim (4), appealing to the Cramer-Wold device, it suffices to show that for any

l P RKzt0u, Yi “ l1Yi, and τ̂ as defined in (2), VR rτ̂ s´ 1

2 pτ̂´τq Ñd N p0, 1q. This follows from
Proposition 3.4, provided that we can show that Assumption 6 implies that Assumption 3
holds when Yi “ l1Yi for any conformable vector l. Indeed, recall that σ2

π̃ “ l1Σπ̃l ě λmin||l||2,

A-3



and hence 1

λmin
ě 1

||l||2
1

σ2

π̃

. From the Cauchy-Schwarz inequality

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Ỹi ´ Eπ̃

”

Ỹi

ıˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

¨ ||l||2 ě pỸi ´ Eπ̃

”

Ỹi

ı

q2.

Together with the previous inequality, this implies that

1

λmin

Eπ̃

«

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Ỹi ´ Eπ̃

”

Ỹi

ıˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

¨ 1
«

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Ỹi ´ Eπ̃

”

Ỹi

ıˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ě
c

ÿ

i

πip1 ´ πiq ¨ λmin ¨ ǫ
ffff

ě

1

σ2

π̃

Eπ̃

«

pỸi ´ Eπ̃

”

Ỹi

ı

q2 ¨ 1
«

ˇ

ˇ

ˇ
pỸi ´ Eπ̃

”

Ỹi

ı

q
ˇ

ˇ

ˇ
ě
c

ÿ

i

πip1 ´ πiq ¨ σπ̃ǫ

ffff

,

from which the result follows.
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