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This supplement contains proofs and additional results for the paper “Inference for
Linear Conditional Moment Inequalities.” Section A discusses results for an alternative
formulation of the conditional approach based on the dual linear program, which
allows the possibility of non-unique or degenerate solutions. Section B develops some
additional results for the dual problem used in Section A. All proofs for the finite-
sample normal model are collected in Section C. Section D states our asymptotic
results, while proofs for these results are given in Section E. Section F provides
simulation results for our tests in a simple example without nuisance parameters, while
Section G provides additional details and results for the simulation designs discussed
in Section 7 of the main text. Finally, Section H discusses a bisection algorithm for
computing bounds used in the dual conditioning approach.

A Conditional Inference Based on the Dual

This section describes a conditioning approach based on a dual linear program which
can be applied even in settings where the linear program (12) has a non-unique or
degenerate solution, but which is equivalent to the primal conditioning approach de-
scribed in the main text when the solution to (12) is unique and non-degenerate. To
formally describe the dual approach, we first define the dual linear program.

Lemma 8 When ⌘̂ as defined in Lemma 3 is finite, it is equal to

max� �0Yn

subject to � � 0, W 0
n
� = e1.

(21)
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for Wn the matrix with row j equal to Wn,j =
⇣ p

⌃jj Xn,j

⌘
and e1 = (1, 0, ..., 0)0

the first standard basis vector.

The set of solutions to the dual linear program is

b� = {� : ⌘̂ = �0Yn, � � 0, W 0
n
� = e1} .

This set is defined by a collection of linear equalities and inequalities and so is a
polytope. Our dual approach conditions on the set of vertices bV of b�. Results in the
next section show that this set of solution vertices has finite support, and that any
pair of possible vertices �1, �2 arise together with probability either zero or one

Prµn

n
{�1, �2} ✓ bV

o
2 {0, 1}.

Thus, conditioning on a given value for the set of vertices, bV = V, is equivalent to
conditioning on � 2 bV for any � 2 V, up to sets of measure zero. We thus consider
inference conditional on � 2 bV . We further discuss the set of vertices bV and its
properties in the next section.

As before, the distribution of ⌘̂ conditional on � 2 bV will in general depend on the
full vector µn, rather than just on �0Yn. To eliminate dependence on µn other than
through �0Yn we again condition on a sufficient statistic for the rest of the vector µn,

Sn,� =
⇣
I � ⌃��

0

�0⌃�

⌘
Yn, which coincides with Sn,B defined in the main text for � = �n,B.

We obtain the following conditional distribution for ⌘̂:

Lemma 9 The conditional distribution of ⌘̂ given � 2 bV and Sn,� = s is truncated
normal,

⌘̂|
n
Sn,� = s & � 2 bV

o
⇠ ⇠|⇠ 2

⇥
V lo(s),Vup(s)

⇤

for ⇠ ⇠ N(�0µn, �0⌃�),

V lo (s) = min

(
c :

c = max�̃ �̃0
⇣
s+ ⌃�

�0⌃�
c
⌘

subject to �̃ � 0, W 0
n
�̃ = e1

)
(22)

and

Vup (s) = max

(
c :

c = max�̃ �̃0
⇣
s+ ⌃�

�0⌃�
c
⌘

subject to �̃ � 0, W 0
n
�̃ = e1

)
, (23)

provided s is such that the set on the right hand side of (22) is nonempty.
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Thus, we see that the dual conditioning approach yields conditional distributions of
the same form as those based on primal approach, up to the difference in the truncation
points. Unlike our result in Lemma 7 for the primal case, however, Lemma 9 does
not impose any conditions regarding uniqueness or nondegeneracy of the solution to
either the dual or primal problems.

Our next result shows that when the solution � to the dual satisfies additional
conditions, the truncation points V lo and Vup in Lemma 9 are the same as those
obtained in the primal problem.

Proposition 5 Suppose there exists � 2 bV with exactly p+1 strictly positive entries.
Let B denote the set of rows for these entries, and suppose that B corresponds to
linearly independent rows of Wn. Then there exists a solution to the primal problem
(12) with the moments B binding, � = �n,B as defined in Lemma 6, and the definition
of V lo and Vup in equations (14) and (15) coincides with that in equations (22) and
(23).

The conditions on � in this proposition are implied by existence of a unique, non-
degenerate solution to the primal problem.

Lemma 10 If there is a unique, non-degenerate solution (⌘̂, �̂0)0 to the primal problem
(12), any solution �̂ 2 b� to the dual problem satisfies the conditions of Proposition 5.

This result suggests a straightforward way to proceed in practice. The widely-used
dual-simplex algorithm for solving the primal problem (12) automatically generates
a vertex �̂ 2 bV of the dual solution set as well. To determine how to calculate the
truncation points V lo and Vup, we can thus simply check whether the conditions of
Proposition 5 hold at this solution. If they do we can calculate V lo and Vup using the
closed-form expressions given in Lemma 6, while otherwise we can use (22) and (23).34

Going forward we consider the conditional test

�C = 1
�
⌘̂ > c↵,C

�
�̂,V lo(Sn,�̂),Vup(Sn,�̂),⌃

� 
.

If the solution to (12) is unique and non-degenerate this test coincides with (17).
34In particular, one can show that the set on the right hand side of (22) is convex, so we can quickly

find lower and upper bounds using e.g. the bisection method (see Section H). See Section 6 in the
main text for further discussion of implementation.

52



Conditional and Unconditional Size Control Now that we have formulated the
conditional test in the general case, we can establish conditional and unconditional
size control.

Proposition 6 Under Assumption 1, the conditional test �C has size ↵ both condi-
tional on � 2 bV ,

sup
µn2M0

Eµn

h
�C |� 2 bV

i
= E0

h
�C |� 2 bV

i
= ↵

for all � such that Prµn

n
� 2 bV

o
> 0, and unconditionally,

sup
µn2M0

Eµn [�C ] = E0 [�C ] = ↵.

Size Control for Hybrid Tests We can likewise show that the hybrid test based
on the dual formulation controls size. As before, hybrid tests reject when ⌘̂ >

c,LF (Xn,⌃), and otherwise modify the upper bound to

Vup,H(s) = min {Vup(s), c,LF (Xn,⌃)} ,

yielding the test

�H =
n
⌘̂ > c↵�

1� ,C

�
�̂,V lo(Sn,�̂),Vup,H(Sn,�̂),⌃

�o
.

Proposition 7 Under Assumption 1, the hybrid test �H has size ↵�

1�
conditional on

⌘̂  c,LF (Xn,⌃) and � 2 bV for all � such that Prµn

n
⌘̂  c,LF (Xn,⌃), � 2 bV

o
> 0,

sup
µn2M0

Eµn

h
�H |⌘̂  c,LF (Xn,⌃), � 2 bV

i
= E0

h
�H |⌘̂  c,LF (Xn,⌃), � 2 bV

i
=
↵� 
1�  ,

and has unconditional size ↵,

sup
µn2M0

Eµn [�H ] = E0 [�H ] = ↵.
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B Properties of the Dual Solution Verticies bV

In this section we further discuss the set of solution vertices bV used in the dual
conditioning approach. As noted above, the set of solutions � to the dual problem is
the polytope

b� = {� : ⌘̂ = �0Yn, � � 0, W 0
n
� = e1} .

Letting bV = bV (Yn,Wn) denote the set of vertices of b�, and

bC = C(Yn,Wn) = {� : �0Yn = 0, � � 0,W 0
n
� = 0} ,

the characteristic cone of b�, we can write b� = CH(bV )+ bC for CH(A) the convex hull
of a set A, where we use B+D to denote the Minkowski sum of sets B and D (see e.g.
Chapter 8.2 of Schrijver (1986)). Let us further define the set of values � satisfying
the constraints in (21) (often called the feasible set) as

F = {� : � � 0,W 0
n
� = e1} .

The set F is again a polytope. Let VF denote the vertices of F , often called the basic
feasible solutions to the linear program (21). Any vertex of b� must also be a vertex of
F (see e.g. Chapter 8.3 of Schrijver (1986)), so bV ✓ VF . We can view bV as a random
variable with support contained in the (finite) power set of VF .

Lemma 10 and Proposition 5 above show that when the primal problem has a
unique and non-degenerate solution, conditioning on the set of vertices bV is equivalent
to conditioning on the set of binding moments in the primal problem. In more general
cases, however, conditioning on bV rather than the set of binding moments resolves a
number of difficulties. Specifically, when there are multiple solutions to the primal
problem, approaches that condition on the set of binding moments face the question
of which set(s) of binding moments to use. By contrast, our results show that the
presence of multiple solutions to the dual raises no difficulties when we condition on
bV . As another alternative, rather than conditioning on bV , one might instead condition
on the full solution set b� or, equivalently, on bC in addition to bV . Such conditioning is
unnecessary to obtain tractable tests, however, and would further reduce the variation
in the data usable for inference. We thus do not pursue this possibility.

The problem of conditioning on bV is greatly simplified by the fact that the support
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of bV is finite and disjoint.

Lemma 11 There is a finite collection of sets V = {V1, V2, ..., Vm} , with Vj ✓ VF for
all j, such that Prµn

n
bV 2 V

o
= 1, Prµn

n
bV = Vj

o
> 0 for all j, and Vj \ Vk = ; for

all j 6= k.

This result simplifies the problem of conditioning on bV , since for any � 2 Vj 2 V
the event � 2 bV is equivalent to the event bV = Vj. Thus, in order for us to construct
conditional tests it will be enough for us to find a single vertex �̂ of bV , rather than fully
characterizing bV . The widely used dual-simplex method for solving linear programs
finds such a vertex.

C Proofs for Finite-Sample Normal Model

Proof of Lemma 1 Follows immediately from the Lindeberg-Feller central limit
theorem (see e.g. Proposition 2.27 in Van der Vaart (2000))). ⇤

Proof of Lemma 2 Immediate from the central limit theorem for iid data (see e.g.
Proposition 2.17 in Van der Vaart (2000)). ⇤

Proof of Lemma 3 By the definition of the maximum, S (Yn �Xn�,⌃) is equal to
the smallest value ⌘ satisfying

(Yn,j �Xn,j�)/
p

⌃jj  ⌘ 8j.

The result of the lemma follows immediately. ⇤

Proof of Proposition 1 To prove this result, we note first that min� S (Yn �Xn�,⌃)

is invariant to shifts of Yn by Xn�̃, in the sense that

min
�

S (Yn �Xn�,⌃) = min
�

S
⇣
Yn +Xn�̃ �Xn�,⌃

⌘
for all �̃.

From this, we see immediately that c↵ (µn, Xn,⌃) is also invariant, in the sense that

c↵ (µn, Xn,⌃) = c↵
⇣
µn +Xn�̃, Xn,⌃

⌘
for all �̃. (24)
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Next, we note that min� S (Yn �Xn�,⌃) is elementwise nondecreasing in Yn, and thus
that c↵ (µn, Xn,⌃) is elementwise nondecreasing in µn.

To complete the proof, we first argue that

{c↵ (µn, Xn,⌃) : µn 2M0} = {c↵ (µn, Xn,⌃) : µn  0} , (25)

so the set of of critical values for µn consistent with the null is equal to the set of critical
values consistent with µn  0. To see that this is the case, consider any µn 2 M0,
and note that by the definition of M0 there exists � (µn) such that µn�Xn� (µn)  0.

By (24) above, however, this means that

c↵ (µn, Xn,⌃) = c↵ (µn �Xn� (µn) , Xn,⌃) .

Since µn � Xn� (µn)  0, and we can repeat this argument for all µn 2M0, we see
that

{c↵ (µn, Xn,⌃) : µn 2M0} ✓ {c↵ (µn, Xn,⌃) : µn  0} .

On the other hand, {µn  0} ✓M0, so (25) follows immediately. Finally, note that
since we showed above that c↵ (µn, Xn,⌃) is elementwise nondecreasing in µn,

sup
µn0

c↵ (µn, Xn,⌃) = c↵ (0, Xn,⌃)

which completes the proof. ⇤

Proof of Lemma 4 This result follows from Lemma 10 below. In particular, note
that by Lemma 10 any solution � to the dual linear program has exactly p+1 nonzero
elements. By complementary slackness the corresponding constraints in the primal
problem (12) must bind, and Lemma 10 implies that the corresponding rows of Wn

have full rank. Further, no additional constraints can bind since this would imply
degeneracy of the solution. ⇤

Proof of Lemma 5 To prove this result, note that since (12) is a linear program,
the Kuhn-Tucker conditions are necessary and sufficient for a solution. By arguments
in the text, if there exists a solution with the moments B binding, then we can write
the optimal values as (⌘̂, �̂0)0 = W�1

n,B
Yn,B, which sets Yn,B �Wn,B(⌘̂, �̂0)0 = 0. If the

remaining inequalities fail to hold when evaluated at (⌘̂, �̂0)0 then (⌘̂, �̂0)0 is infeasible
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and so not a solution. If, on the other hand, the remaining inequalities hold when
evaluated at (⌘̂, �̂0)0, then if we take the corresponding Kuhn-Tucker multipliers to be
zero while setting the multipliers on the binding moments equal to MB�n,B = W�10

n,B
e1,

one can verify that the Kuhn-Tucker conditions hold. ⇤

Proof of Lemma 6 Follows immediately from Lemma 5 together with Lemma 5.1
of Lee et al. (2016). ⇤

Proof of Lemma 7 Follows immediately from Lemma 9 together with Lemma 10
and Proposition 5. ⇤

Proof of Proposition 2 Follows immediately from Lemma 10, together with Propo-
sitions 5 and 6. ⇤

Proof of Proposition 3 We prove this result for the dual conditioning approach
introduced in Section A. That these results also hold in the primal conditioning
approach discussed in Section 5.2 when the solution to the linear program (12) is
unique and non-degenerate is immediate from Lemma 10 and Proposition 5. Our
assumptions imply that the set of feasible vertices VF in the dual problem based on
(Yn,m,Wn,⌃) is non-empty, and that the set of optimal vertices bV is likewise non-
empty. Since the primal is feasible by construction, we further know that the dual is
bounded. We begin by showing that bV converges to the set bVB of solution vertices in
the dual problem based on (Yn,m,B,Wn,B,⌃B). In particular, let

V B
F,B =

�
� 2 Rk : �B 2 VF,B, �j = 0 8j 62 B

 
= {� 2 VF : �j = 0 8j 62 B}

denote the set of vertices in VF corresponding to vertices VF,B of the feasible region in
the problem restricted to the moments B, and bV B

B ✓ V B
F,B the analog for bVB,

bV B
B =

n
� 2 Rk : �B 2 bVB, �j = 0 8j 62 B

o
.

We will show that Prµn,m

n
bV = bV B

B

o
! 1.

To establish this result, recall that the dual problem (restricted to � 2 VF ) is

max
�2VF

�0Yn,m.
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For any � 2 VF with �j 6= 0 for some j 62 B, �0Yn,m !p �1 as m ! 1. Our
assumption that there exists �B � 0 with W 0

n,B�B = e1 implies that there exists at
least one �̃ 2 VF such that �̃j = 0 for all j 62 B. Thus, for any � 2 VF with �j 6= 0 for
some j 62 B, since �̃0Yn,m = Op(1) as m!1,

P r {�̃0Yn,m > �0Yn,m}! 1.

Thus, all � 2 VF with �j > 0 for some j 62 B yield a value of the objective smaller than
that for �̃ with probability tending to one. This implies that Pr

n
bV ✓ V B

F,B

o
! 1.

However, for any � 2 bV such that � 2 V B
F,B, � 2 bV B

B as well. Thus, we see that
Pr
n
bV = bV B

B

o
! 1, as we wanted to show.

For ⌘̂ the optimal value of ⌘ based on (Yn,m,Wn,⌃), and ⌘̂B the optimal value
based on (Yn,m,B,Wn,B,⌃B), we see that bV = bV B

B , implies ⌘̂ = ⌘̂B. Thus, the argument
above shows that ⌘̂ !p ⌘̂B as m!1.

We next argue that the critical values c↵,C
�
�̂,V lo(Sn,m,�̂),Vup(Sn,m,�̂),⌃

�
based

on (Yn,m,Wn,⌃) converge to the critical values c↵,C
�
�̂B,V lo(Sn,B,�̂B),Vup(Sn,B,�̂B),⌃B

�

which limit attention to the moments B. To do so, we will show that V lo (Sn,m,�̂)!p

V lo (Sn,B,�̂B) , and likewise for Vup (Sn,m,�̂) .

Recall, in particular, that

V lo (s) = min

(
c :

c = max�̃ �̃0
⇣
s+ ⌃�

�0⌃�
c
⌘

subject to �̃ � 0, W 0
n
�̃ = e1

)
.

By the results above we know that �̂ 2 bV B
B with probability approaching one. Note

that for
Sn,m,�̂ =

✓
I � ⌃�̂�̂0

�̂0⌃�̂

◆
Yn,m,

the conditioning statistic based on Yn,m, we have �̂0Yn,m = Op(1), so Sn,m,�̂,j = Op(1)

for all j 2 B. By contrast Sn,m,j ! �1 for all j 62 B.
Note, next, that by linearity of the problem we can restrict the optimization in the

construction of V lo to �̃ 2 VF , and so write

V lo (s) = min

⇢
c : c = max

�̃2VF

�̃0
✓
s+

⌃�

�0⌃�
c

◆�
.

Using the divergence of Sn,m,�̂, for any �̃ 2 VF such that �̃j > 0 for some j 62 B and
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any compact set C,

Pr

⇢
�̃0
✓
Sn,m,�̂ +

⌃�̂

�̂0⌃�̂
c

◆
< �̂0

✓
Sn,m,�̂ +

⌃�̂

�̂0⌃�̂
c

◆
8c 2 C

�
! 1.

From the finiteness of VF , we thus see that for any compact set C

Pr

(
max

�̃2VF /V
B
F,B

�̃0
✓
Sn,m,�̂ +

⌃�̂

�̂0⌃�̂
c

◆
< �̂0

✓
Sn,m,�̂ +

⌃�̂

�̂0⌃�̂
c

◆
8c 2 C

)
! 1. (26)

Since �̂ 2 VF , this implies

Pr

(
max
�̃2VF

�̃0
✓
Sn,m,�̂ +

⌃�̂

�̂0⌃�̂
c

◆
= max

�̃2V B
F,B

�̃0
✓
Sn,m,�̂ +

⌃�̂

�̂0⌃�̂
c

◆
8c 2 C

)
! 1.

Note that by the definition of �̂,

�̂0Yn,m = max
�̃2VF

�̃0Yn,m.

Since �̂ 2 VF , for any v we have

�̂0(Yn,m + v)  max
�̃2VF

�̃0(Yn,m + v).

Note further that from the definition of Sm,n,�̂, c = �̂0
⇣
Sn,m,�̂ +

⌃�̂

�̂0⌃�̂
c
⌘

for any c and
that Yn,m = Sn,m + ⌃�̂

�̂0⌃�̂
�̂0Yn,m. Setting v = ⌃�̂

�̂0⌃�̂
(c� �̂0Yn,m), we then have

c = �̂0
✓
Sn,m,�̂ +

⌃�̂

�̂0⌃�̂
c

◆
 max

�2VF

�0
✓
Sn,m,�̂ +

⌃�̂

�̂0⌃�̂
c

◆
8c.

Note, further, that for all c,

max
�2VF

�0
✓
Sn,m,�̂ +

⌃�̂

�̂0⌃�̂
c

◆
� max

�2V B
F,B

�0
✓
Sn,m,�̂ +

⌃�̂

�̂0⌃�̂
c

◆
,

since the left hand side optimizes over a larger set. The fact that Pr
n
bV ✓ V B

F,B

o
! 1

implies that with probability approaching one

c = �̂0
✓
Sn,m,�̂ +

⌃�̂

�̂0⌃�̂
c

◆
 max

�2V B
F,B

�0
✓
Sn,m,�̂ +

⌃�̂

�̂0⌃�̂
c

◆
8c,
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and thus that

⇢
c : c = max

�2VF

�0
✓
Sn,m +

⌃�̂

�̂0⌃�̂
c

◆�
✓
(
c : c = max

�2V B
F,B

�0
✓
Sn,m +

⌃�̂

�̂0⌃�̂
c

◆)
.

Hence, if V lo(Sn,B,�̂B) is finite then with probability approaching one V lo(Sn,�̂) is finite
as well.

Note that the distribution of V lo(Sn,B,�̂B) does not depend on m. Further, the
distribution of V lo(Sn,B,�̂B) conditional on V lo(Sn,B,�̂B) being finite is trivially tight.
Hence, conditional on the event that V lo(Sn,B,�̂B) is finite, our argument above for
compact sets C implies that

Pr
�
V lo(Sn,m,�̂) = V lo(Sn,B,�̂B)|V lo(Sn,B,�̂B) finite

 
! 1.

On the other hand, when V lo(Sn,B,�̂B) is infinite, we know that

c = �̂0
✓
Sn,m,�̂ +

⌃�̂

�̂0⌃�̂
c

◆
= max

�2V B
F,B

�0
✓
Sn,m,�̂ +

⌃�̂

�̂0⌃�̂
c

◆

for all c sufficiently small. Hence, (26) implies that when V lo(Sn,B,�̂B) = �1, V lo(Sn,m,�̂)!p

�1 as well.
We can apply the same argument for Vup (Sn,m,�̂) . Note, however, that the condi-

tional critical value is a continuous function of V lo (Sn,m�̂) and Vup (Sn,m,�̂) , including
at V lo (Sn,m,�̂) = �1 and Vup (Sn,m,�̂) = 1. Thus, by the continuous mapping theo-
rem, we see that

(⌘̂, c↵,C
�
�̂,V lo(Sn,m,�̂),Vup(Sn,m,�̂),⌃

�
)

converge in distribution to their analogs calculated based on the moments B alone,

(⌘̂B, c↵,C
�
�̂B,V lo(Sn,B,�̂B),Vup(Sn,B,�̂B),⌃B

�
).

Assumption 1 implies that the variance of �0Yn is strictly positive for all �B 2 VF,B.
Hence, �0BYn,B is continuously distributed and independent of V lo(Sn,B,�̂B), Vup(Sn,B,�̂B),
from which it follows that V lo(Sn,B,�B) < Vup(Sn,B,�B) with probability one. Hence,
since VF,B is finite,

⌘̂B � c↵,C
�
�̂B,V lo(Sn,B,�̂B),Vup(Sn,B,�̂B),⌃B

�
,
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is continuously distributed, and the result follows from the continuous mapping the-
orem. ⇤

Proof of Proposition 4 Follows immediately from Lemma 10 and Propositions 5
and 7.

Proof of Lemma 8 This result follows from standard duality results for linear
programming. Note, in particular, that the primal problem (10) is equivalent to

�⌘̂ = max✓�e01✓
subject to Yn,j �Wn,j✓  0 8j.

for ✓ = (⌘, �). The duality theorem for linear programming (see e.g. (24) in Chapter
7.4 of Schrijver (1986)) implies that if the optimum in this problem is finite, it is equal
to the solution in the dual problem

�⌘̂ = min� ��0Yn

subject to � � 0, �W 0
n
� = �e1.

However, we see that the optimal value ⌘̂ in this problem is in turn equal to that in
(21). ⇤

Proof of Lemma 9 The result follows from the argument in Section 5.1 of Fithian
et al. (2017), but we provide a separate proof for completeness.

The set of values Yn such that

Y 0
n
� =

max�̃ �̃0Yn

subject to �̃ � 0, W 0
n
�̃ = e1

(27)

is convex. This follows from the fact that if (27) holds for both Yn and Y ⇤
n
, then we

know that both Y 0
n
� � Y 0

n
�̃ and Y ⇤0

n
� � Y ⇤0

n
�̃ for all �̃ � 0 with W 0

n
�̃ = e1, which

implies that (↵Yn + (1� ↵)Y ⇤
n
)0 � � (↵Yn + (1� ↵)Y ⇤

n
)0 �̃ as well.

Thus, once we condition on Sn, the set of values �0Yn such that (27) holds is an
interval. To derive the form of the endpoints, note that

V lo (s) = min
Yn:Sn=s

(
Y 0
n
� :

Y 0
n
� = max�̃ �̃0Yn

subject to �̃ � 0, W 0
n
�̃ = e1

)
.
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Using the definition of Sn, this is equivalent to:

V lo (s) = min
Yn:Sn=s

(
Y 0
n
� :

Y 0
n
� = max�̃ �̃0

⇣
s+ ⌃�

�0⌃�
Y 0
n
�
⌘

subject to �̃ � 0, W 0
n
�̃ = e1

)
.

Finally, this is equivalent to

V lo (s) = min

(
c :

c = max�̃ �̃0
⇣
s+ ⌃�

�0⌃�
c
⌘

subject to �̃ � 0, W 0
n
�̃ = e1

)
,

if the support of Y 0
n
� equals R. The linear structure of the problem implies that this

holds if and only if � 6= 0, which we know to be the case since W 0
n
� = e1 6= 0. The

expression for Vup follows by the same argument.
Independence of �0Yn and Sn then implies that the conditional distribution of Y 0

n
�

given Sn and (27) is truncated normal. ⇤

Proof of Proposition 5 The Kuhn-Tucker conditions for optimality of � in the dual
problem (which are necessary and sufficient since the problem is a linear program) are
that there exist

⇣
✓̂, �̂
⌘

such that

Yn + �̂�Wn✓̂ = 0

�̂ � 0, �̂j�j = 0 8j.

From the complementary slackness conditions �̂j�j = 0 8j, we see that �̂j = 0 for
all j 2 B. Thus, for MB again the matrix which selects rows B, and MBc which
selects the remaining rows, Yn,B = MBYn and Yn,Bc = MBcYn, Yn,B � Wn,B ✓̂ = 0.

Since the strictly positive elements of � correspond to linearly independent rows of
Wn by assumption, we know that Wn,B has full rank. Thus, ✓̂ = W�1

n,B
Yn,B. For such

✓̂, however, there exists �̂ satisfying the conditions above if and only if

Yn,Bc �Wn,Bc ✓̂  0.

Note that any such ✓̂ is a solution to the primal problem, with ✓̂ = (⌘̂, �̂0)0. In
particular, in the dual problem we know that �0Yn = �0

B
M 0

B
Yn,B and W 0

n,B
MB�B = e1,

so MB�B =
�
W 0

n,B

��1
e1 (where �B is as defined in Lemma 6) and the optimal value
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in the dual problem is e01W
�1
n,B

Yn,B. If we consider the value implied by ✓̂, we again
obtain

⌘̂ = e01✓̂ = e1W
�1
n,B

Yn,B.

By Lemma 8, the optimal objective value of the primal is equal to that of the dual, so ✓̂
achieves the optimum for the primal, and we argued above that the primal constraints
are satisfied at ✓̂ when � solves the dual. We have thus verified a solution to the primal
with B binding and �n,B = � whenever � 2 bV .

Finally, recall from the proof of Lemma 5 that if Wn,B is invertible and there is
a solution to the primal with B binding, then the Kuhn-Tucker conditions hold with
MB� = (W 0

n,B
)�1e1 and the other entries of � equal to zero, so by the sufficiency of

the Kuhn-Tucker conditions, � solves the primal whenever B is binding in the dual.
It follows that {Yn such that B is binding in the primal} = {Yn such that � 2 bV }.
Observing that when � 2 bV , Sn,� = Sn,B, it is then immediate from Lemmas 6 and
9 that the definition of V lo and Vup in equations (14) and (15) coincides with that in
equations (22) and (23). ⇤

Proof of Lemma 10 Uniqueness and non-degeneracy of the solution ✓̂ implies that
|B| = p + 1. To see that this is the case, note that if |B| < p + 1 then there exists
a nonzero vector v such that Wn,Bv = 0. If e01v = 0 then for ↵ sufficiently small
✓̂ + ↵ · v is also a solution to the primal problem, contradicting our assumption of
uniqueness. If instead e01v 6= 0, then for sufficiently small ↵ > 0, ✓̂ � ↵ · sign (e01v) v

also satisfies the constraints of the primal problem and attains a smaller value of
the objective, contradicting the optimality of ✓̂. Likewise, if |B| > p + 1, since Wn

has p + 1 columns the rows of Wn,B cannot be linearly independent, violating our
assumption of non-degeneracy. Thus, our assumptions imply that Wn,B must be a
full-rank (p+ 1)⇥ (p+ 1) matrix.

We next show that there must be p+1 strictly positive multipliers. Note that from
the complementary slackness conditions, �j = 0 for j 62 B, so there can be at most
p + 1 strictly positive multipliers. Let �̂ be a solution to the dual problem (21). By
(21) in Section 10.4 of Schrijver (1986), non-degeneracy of the primal problem implies
that for v in an open neighborhood of zero,

min✓ e01✓

subject to (Yn + v)�Wn✓  0
= e01✓̂ + �̂0v, (28)
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so �̂ gives the marginal change in the objective for small changes in Yn.

Uniqueness of ✓̂ implies that for �̂B the elements of �̂ corresponding to B, �̂B > 0.

To see that this is the case, suppose not. Then there exists ĵ 2 B with �̂
ĵ
= 0. In

this case, note that for e
ĵ

the vector with a one in entry ĵ and zeros everywhere else,
�̂0e

ĵ
= 0. We know that for ↵ sufficiently small, there continues to be a unique solution

with only constraints B binding after we perturb Yn by ↵ · e
ĵ
, and thus that we can

write

✓̂
�
↵ · e

ĵ

�
=

argmin✓ e01✓

subject to
�
Yn + ↵ · e

ĵ

�
�Wn✓  0

= W�1
n,B

�
Yn,B + ↵ ·MBeĵ

�
,

for MB the selection matrix that selects rows in B. Further, by (28) we know that
e01✓̂
�
↵ · e

ĵ

�
= ✓̂ (0) = ⌘̂, so this perturbation does not affect the objective. Let us

define ✓̃ (↵) = ✓̂ + ↵ ·W�1
n,B

MBeĵ. Note that e01✓̃ (↵) = ⌘̂, while

Yn �Wn✓̃ (↵) = Yn �Wn✓̂ � ↵WnW
�1
n,B

MBej.

However, for all ↵ � 0

MB

⇣
Yn �Wn✓̃ (↵)

⌘
= Yn,B�Wn,B ✓̂�↵Wn,BW

�1
n,B

MBej = Yn,B�Wn,B ✓̂�↵MBej  0.

Since the other rows of Yn�Wn✓̂ are not binding, they remain nonbinding for ↵ suffi-
ciently small. Thus, there exists ↵⇤ > 0 such that Yn�Wn✓̃ (↵⇤)  0 and e01✓̃ (↵

⇤) = ⌘̂.

There is thus another solution to the primal problem, which contradicts our assump-
tion of uniqueness. ⇤

Proof of Proposition 6 Monotonicity of the conditional distribution in �0µn im-
plies that the test has conditional size ↵ given � 2 bV and Sn,� = s for almost every s.
For this section only, we make the dependence of V lo and Vup on � explicit, writing
V lo(s, �) and Vup(s, �). Note that for all V 2 V , Lemma 11 implies

V lo(Sn,�j , �j) = V lo(Sn,�k
, �k)8�j, �k 2 V

Vup(Sn,�j , �j) = Vup(Sn,�k
, �k)8�j, �k 2 V,
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and in particular, however the value �̂ is selected from bV ,

Prµn

n
c↵,C

⇣
�,V lo(Sn,� , �),Vup(Sn,� , �),⌃

⌘
= c↵,C

⇣
�̂,V lo(Sn,�̂ , �̂),Vup(Sn,�̂ , �̂),⌃

⌘
|� 2 bV

o
= 1.

Lemma 9, the monotonicity of the conditional distribution in �0µn, Assumption 1, and
the fact (argued in the proof of Proposition 3) that Prµn

�
V lo(Sn,� , �) < Vup(Sn,� , �)

 
=

1 imply that for almost every s in the support of Sn, given � 2 bV and Sn = s,

sup
µn2M0

Prµn

n
⌘̂ > c↵,C

�
�,V lo(Sn,� , �),Vup(Sn,� , �),⌃

�
|� 2 bV , Sn = s

o
= ↵,

from which it follows that

sup
µn2M0

Prµn

n
⌘̂ > c↵,C

�
�̂,V lo(Sn,�̂, �̂),Vup(Sn,�̂, �̂),⌃

�
|� 2 bV , Sn = s

o
= ↵,

and thus that

sup
µn2M0

Eµn

h
�C |�̃ 2 bV , Sn = s

i
= E0

h
�C |�̃ 2 bV , Sn = s

i
= ↵.

For the first equality we have used the fact that the sup is achieved at µ = 0, which
again follows monotonicity of the conditional distribution. The law of iterated expec-
tations then immediately implies the first result in the proposition,

sup
µn2M0

Eµn

h
�C |�̃ 2 bV

i
= E0

h
�C |�̃ 2 bV

i
= ↵.

To obtain the second part of the proposition, note that by Lemma 11 the events
bV = Vj, j 2 {1, ...,m} are disjoint, and their union occurs with probability one. Thus,

Eµn [�C ] =
mX

j=1

Prµn

n
bV = Vj

o
Eµn

h
�C |bV = Vj

i
.

By Lemma 11, however,

Eµn

h
�C |bV = Vj

i
= Eµn

h
�C |�̃ 2 bV

i
8�̃ 2 bV .
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Thus, the argument above implies that

sup
µn2M0

E [�C ] = E0 [�C ] = ↵.

⇤

Proof of Proposition 7 Size control conditional on ⌘̂  c,LF (Xn,⌃) and � 2 bV
holds by the same argument as the proof of Proposition 6, replacing Vup with Vup,H

as in the text.
To prove unconditional size control, note that

Eµn [�H ] =

Eµn [�H |⌘̂  c,LF (Xn,⌃)]Prµn {⌘̂  c,LF}+Eµn [�H |⌘̂ > c,LF (Xn,⌃)]Prµn {⌘̂ > c,LF} .

From the first part of the proposition and the law of iterated expectations we know
that Eµn [�H |⌘̂  c,LF (Xn,⌃)] is bounded above by ↵�

1�
while by the construction of

the hybrid test we know that Eµn [�H |⌘̂ > c,LF (Xn,⌃)] = 1. Thus, we see that for
µn 2 H0,

Eµn [�H ] 
↵� 
1� Prµn {⌘̂  c,LF}+ 1� Prµn {⌘̂  c,LF} .

This expression is decreasing in Prµn {⌘̂  c,LF}, so to obtain an upper bound
we need to make Prµn {⌘̂  c,LF} as small as possible. By Proposition 1 we know
Prµn {⌘̂  c,LF} � 1�  under the null, which yields

sup
µn2H0

Eµn [�H ] 
↵� 
1�  (1� ) +  = ↵.

Note, further, that both of the bounds we used above are tightest at µn = 0, and
both bind in this case provided ⌘̂ is continuously distributed. However, Assumption
1 implies that ⌘̂ is continuously distributed, so E0 [�H ] = ↵. ⇤

Proof of Lemma 11 Each element of bV is also a vertex of the feasible set

F = {� : � � 0, W 0
n
� = e1} .
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Again denoting the vertices of the feasible set by VF , we thus see that bV has support
equal to a subset of the power set of VF . Note, however, that if we consider two values
�1, �2 2 VF , then since Yn is normally distributed,

Pr {�01Yn = �02Yn} 2 {0, 1} . (29)

Thus, a given set of optimal vertices V in the dual problem (21) either always or never
arise together. From this, and the finiteness of the power set of VF , it follows that
there exists a finite set

V = {V1, V2, ..., Vm}

such that Vj 6= Vk for j 6= k, Pr
n
bV 2 V

o
= 1, and Pr

n
bV = Vj

o
> 0 for all j, which

establishes the first part of the result.
To complete the proof, note that the restriction that each Vj must arise with

positive probability together with (29) implies that Vj \ Vk = ; for all j 6= k. To see
that this is the case, suppose there exists an element � 2 Vj \Vk. The restrictions that
Pr
n
bV = Vj

o
> 0 and Pr

n
bV = Vk

o
> 0 together with (29) imply that

Pr
�
�0Yn = �0

j
Yn = �0

k
Yn 8(�j, �k) 2 Vj ⇥ Vk

 
= 1.

However, this is inconsistent with the restriction that Pr
n
bV = Vj

o
> 0 and Vj 6= Vk.

Thus, we see that Vj \ Vk = ;. ⇤

D Asymptotics

In Sections 4 and 5 of the main text, we derived finite-sample results in the normal
model (7), which we motivated in Section 3 as an asymptotic approximation. In this
section, we show that these finite sample results translate to asymptotic validity of
our proposed tests over a large class of data generating processes. In particular, we
establish uniform asymptotic validity of least favorable and least favorable projection
tests under minimal conditions. We likewise establish the uniform asymptotic validity
of conditional and hybrid tests over classes of data generating processes implying
different µn values, but these results impose more stringent conditions on Xn and ⌃.
Specifically, our conditions for these results imply that the dual linear program (21)
has a unique solution with probability tending to one, which in turn implies that the
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primal problem (10) has a non-degenerate solution with probability tending to one.35

We conduct our analysis conditional on a sequence of values for the instruments,
{Zi} = {Zi}1i=1 , and assume that conditional on {Zi}1i=1 the data are independent
but potentially not identically distributed

Di ? Di0 | {Zj}1j=1 for all i 6= i0.

We further assume that for some common conditional distribution PD|Z ,

Di|Zi = z ⇠ PD|Z (z) ,

where the conditional distribution belongs to a family PD|Z of conditional distribu-
tions, PD|Z 2 PD|Z . We explore conditions on PD|Z under which the procedures we
suggest are uniformly asymptotically valid.

We first assume that the average conditional variance of Yi given Zi converges
uniformly to some limit which may depend on PD|Z , and that this limit is uniformly
bounded over PD|Z .

Assumption 2 For some ⌃
�
PD|Z

�
,

lim
n!1

sup
PD|Z2PD|Z

����
1

n

X
V arPD|Z (Yi|Zi)� ⌃

�
PD|Z

�����! 0. (30)

Further, for all PD|Z 2 PD|Z ,

⌃
�
PD|Z

�
2 ⇤ =

⇢
⌃ : 1/�̄  min

j

⌃jj  max
j

⌃jj  �̄

�

where �̄ is a finite constant.

To justify this assumption, note that for an iid sample from P, if the conditional
distribution of Di|Zi is PD|Z , the strong law of large numbers implies that for almost
every sequence {Zi}1i=1 ,

1

n

X
V arPD|Z (Yi|Zi)! EP

h
V arPD|Z (Yi|Zi)

i
,

35Note, however, that uniqueness of the dual solution holds automatically if ⌃ has full rank, and
can be ensured by adding full-rank, mean-zero noise to Yn. Moreover, since our results are uniform in
µn, they allow that the “population” version of (21), with Yn = µn, may have a non-unique solution
as in one of our simulation specifications.
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provided the right hand side exists and is finite. Thus, the convergence in (30) holds
pointwise under minimal conditions, and we merely strengthen it to hold uniformly
over PD|Z 2 PD|Z . The second part of the assumption then requires that the average
conditional variance of each of the moments be bounded above and below, which is
again a mild condition. We do not require the matrix ⌃

�
PD|Z

�
to have full rank,

which is important since it allows us to accommodate moment equalities represented
as pairs of moment inequalities.

We next suppose that we have a uniformly consistent estimator of the variance
⌃
�
PD|Z

�
. We discuss primitive conditions for this assumption in Section D.3 below,

but for the moment take the existence of suitable estimator b⌃ as given.

Assumption 3 We have an estimator b⌃ for the average conditional variance ⌃
�
PD|Z

�

which is uniformly consistent in the sense that for all " > 0,

lim
n!1

sup
PD|Z2PD|Z

PrPD|Z

n���b⌃� ⌃
�
PD|Z

���� > "
o
= 0.

We further assume that the scaled sample average Yn is uniformly asymptotically
normal once recentered around µn. To state this assumption we use the fact that
uniform convergence in distribution is equivalent to uniform convergence in bounded
Lipschitz metric (see Theorem 1.12.4 of Van der Vaart & Wellner (1996)).

Assumption 4 For BL1 the class of Lipschitz functions which are bounded in abso-
lute value by one and have Lipschitz constant bounded by one, and ⇠PD|Z ⇠ N

�
0,⌃

�
PD|Z

��
,

lim
n!1

sup
PD|Z2PD|Z

sup
f2BL1

���EPD|Z [f (Yn � µn)]� E
h
f
⇣
⇠PD|Z

⌘i��� = 0.

Under Assumption 2, Assumption 4 holds whenever the average conditional dis-
tribution of Yi � µi given Zi is uniformly integrable over PD|Z 2 PD|Z .

Lemma 12 Under Assumption 2, if for all " > 0,

lim sup
n!1

sup
PD|Z2PD|Z

1

n

X

i

EPD|Z

⇥
kYi � µik 1

�
kYi � µik > "

p
n
 
|Zi

⇤
= 0,

then Assumption 4 holds.
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D.1 Uniform Validity of Least Favorable Tests

Assumptions 2-4 imply the uniform asymptotic validity of feasible least favorable and
least favorable projection tests which replace ⌃ by the estimator b⌃ in all expressions.
To formally state this result, it is helpful to define P0

D|Z as the class of conditional
distributions consistent with our conditional moment restriction,

P0
D|Z =

n
PD|Z 2 PD|Z : 9� s.t. EPD|Z [Yi �Xi�|Zi]  0 for all i

o
.

Proposition 8 Under Assumptions 2-4, the least favorable projection test is uni-
formly asymptotically valid

lim sup
n!1

sup
PD|Z2P0

D|Z

PrPD|Z

n
⌘̂ > c↵,LF (�)

⇣
b⌃
⌘o
 ↵.

The least favorable test is likewise uniformly valid once the critical value is increased
by an arbitrarily small amount. In particular, for any " > 0

lim sup
n!1

sup
PD|Z2P0

D|Z

PrPD|Z

n
⌘̂ > c↵,LF

⇣
Xn, b⌃

⌘
+ "
o
 ↵.

We adjust the critical value in the least favorable test by " to accommodate the
possibility that the distribution of b⌘ may become degenerate asymptotically. D. An-
drews & Shi (2013) termed this an infinitesimal uniformity factor. We next discuss
assumptions which rule out such degeneracy, and so ensure asymptotic validity of least
favorable tests with " = 0.

Continuity of the Limit Distribution We next consider assumptions which en-
sure a continuous limiting distribution for ⌘̂. These assumptions restrict the behavior
of Xn and ⌃

�
PD|Z

�
but, critically, impose no restrictions on µn, and so allow any

combination of binding and non-binding moments.
We first assume that Xn, appropriately scaled, converges to some limit as n!1.

Assumption 5 X⇤
n
= 1p

n
Xn ! X for a constant matrix X.

As with Assumption 2, if the data are drawn iid from some distribution P with
EP [Xi] finite, then the strong law of large numbers implies that this assumption holds
for almost every {Zi}1i=1 if we take X = EP [Xi] .
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Our next assumption concerns the vertices VF (X,⌃) of the feasible region

F (X,⌃) =
n
� : � � 0,W

0
� = e1

o

in the dual problem, where as in (12) Wj =
h p

⌃jj Xj

i
.

Assumption 6 For all PD|Z 2 PD|Z , ⌃
�
PD|Z

�
2 S where S ✓ ⇤ is a compact set of

matrices. Moreover, for some finite J ,

VF (X,⌃) =
�
�1(X,⌃), ..., �J(X,⌃)

 

where each �j(X,⌃) is unique and continuous in both arguments on B (X)⇥S for
B (X) an open neighborhood of X.

This assumption requires that the vertices VF (X,⌃) of the feasible region be con-
tinuous at the limiting pair (X,⌃) . This will generally fail if the columns of W are
multi-collinear, since in this case some of the constraints in W

0
� = e1 are redundant,

and the dimension of the feasible region F (X,⌃) changes discontinuously in (X,⌃) .

This assumption thus implies an asymptotic rank condition, requiring that the dif-
ferent elements of the nuisance parameter vector � have distinguishable effects on the
vector of moments, and can in this sense be understood as an identification condition
on �.

Our final condition restricts the relationship between the variance matrix ⌃ and
the vertices V (X,⌃).

Assumption 7 For all ⌃ 2 S and all �1, �2 2 VF (X,⌃) with �1 6= �2,

1. 1/�̄  �01⌃�1

2. (�1 � �2)0 ⌃ (�1 � �2) � 1
�̄
.

To interpret this assumption, recall that

⌘̂ = max
�2VF (Xn,b⌃)

�0Yn,

where the asymptotic variance of Yn is ⌃. Thus, ⌘̂ is a (data-dependent) linear com-
bination of the elements of Yn. The first part of Assumption 7, 1/�̄  �01⌃�1, bounds
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the asymptotic variance of these linear combinations away from zero, and can be in-
terpreted as an asymptotic analog of Assumption 1 in the main text. The second
part of Assumption 7, (�1 � �2)0 ⌃ (�1 � �2) � 1

�̄
, ensures that �01Yn and �02Yn are not

perfectly correlated asymptotically.
Both conditions hold automatically if we bound the minimal eigenvalue of ⌃ away

from zero. As noted above, however, we do not wish to rule out moment equalities
represented as pairs of inequalities, and so do not impose this condition. More broadly,
this assumption implies the existence of a unique solution in the dual problem (21),
and thus non-degeneracy of the primal solution, with probability going to one. While
this does not require uniqueness in the primal problem (see Corollary 1 in Tijssen &
Sierksma (1998)), it rules out the sort of exact primal degeneracy which Appendix A
shows can be accommodated in the normal model.

It is worth contrasting Assumption 7 with conditions used elsewhere in the litera-
ture on subvector inference. Gafarov (2019), Cho & Russell (2019), and Flynn (2019)
all impose versions of the linear independence constraint qualification, which requires
that the Jacobian of the binding moments have full rank in a population problem.36

This rules out degenerate solutions. The linear programs studied in these papers
differ from ours, in that they aim to minimize or maximize a parameter of interest
subject to moment constraints in the population, while we aim to minimize ⌘ subject
to constraints in the sample. Assumption 7 then rules out degenerate solutions to
our primal problem in-sample. The distinction between the sample and population
problems is important, however, since Assumption 7 imposes no restrictions on µn,

and as we note above can be made to hold mechanically by adding full-rank normal
noise to the moments.

With these conditions, we obtain asymptotic validity of �LF with " = 0,

Corollary 1 Under Assumptions 2-7, the least favorable test is uniformly valid with-
out an increase in the critical value,

lim sup
n!1

sup
PD|Z2P0

D|Z

PrPD|Z

n
⌘̂ > c↵,LF

⇣
Xn, b⌃

⌘o
 ↵.

36See Kaido et al. (2019) on the role of constraint qualifications for inference for partially identified
models.
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D.2 Uniform Validity of Conditional and Hybrid Tests

We next turn to the asymptotic properties of conditional and hybrid tests. Note that
the feasible conditional test based on the estimated variance b⌃ can be written as

�C = 1
n
�̂0Yn > c↵,C

⇣
�̂,V lo (Sn,�̂) ,Vup (Sn,�̂) , b⌃

⌘o
,

where
�̂ 2 argmax

�2VF (Xn,b⌃)�
0Yn.

We make the following additional assumption, which ensures that the vertices of
the feasible set VF (X,⌃) are either zero or nonzero on a neighborhood of (X,⌃).

Assumption 8 For all ⌃ 2 S and all � (X,⌃) 2 VF (X,⌃) , 1 {�j (X,⌃) = 0} is
constant on B (X)⇥ B (⌃) for all j.

Recall that �̂ can be interpreted as the vector of Lagrange multipliers in the primal
problem (12). This condition requires that when we consider the set of potential
Lagrange multipliers VF (X,⌃) , the elements do not switch from zero to nonzero at
(X,⌃) . Critically, since the realized multiplier �̂ is also determined by Yn, this still
allows the distribution of the realized �̂ to vary depending on µn, which remains
unrestricted.

To prove our asymptotic results, we use a modified version of the conditional test
which never rejects if ⌘̂ < �C for C a large positive constant. We do this for technical
reasons, since when µn diverges to �1, both ⌘̂ and our conditional critical values may
likewise diverge, and size control for the unmodified test �C requires that we control
the relative rates of divergence. At the same time, this modification is reasonable
on substantive grounds, since when ⌘̂ is very small it is clear from the data that the
moments hold, and rejections of the null in this case reflect extreme realizations of the
conditional critical values.

Proposition 9 Under Assumptions 2-8, the modified conditional test

�⇤
C
= �C1 {⌘̂ � �C}

is uniformly asymptotically valid,

lim sup
n!1

sup
PD|Z2P0

D|Z

PrPD|Z {�⇤
C
= 1}  ↵.
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Analogously, we can write the feasible hybrid test as

�H = 1
n
�̂0Yn > c↵�

1� ,H

⇣
�̂,V lo (Sn,�̂) ,Vup (Sn,�̂) , b⌃

⌘o
.

Once we modify the test to never reject if ⌘̂ < �C, asymptotic validity follows under
the same conditions.

Corollary 2 Under Assumptions 2-8, the modified hybrid test

�⇤
H
= �H1 {⌘̂ � �C}

is uniformly asymptotically valid

lim sup
n!1

sup
PD|Z2P0

D|Z

PrPD|Z {�⇤
H
= 1}  ↵.

D.3 Asymptotic Variance Estimation

Our asymptotic results have thus far taken as given the existence of a uniformly
consistent estimator b⌃ for the conditional variance ⌃

�
PD|Z

�
. Here, we establish the

uniform consistency of a particular estimator under mild conditions.
Following Abadie et al. (2014), we consider the nearest-neighbor variance estimator

b⌃ =
1

2n

nX

i=1

�
Yi � Y`Z(i)

� �
Yi � Y`Z(i)

�0 (31)

where for ⌅n a positive-definite matrix,

`Z (i) = argmin
j2{1,...,n},j 6=i

(Zi � Zj)
0 ⌅n (Zi � Zj)

selects the index for the observation j with Zj as close as possible to Zi in distance
defined by ⌅n. One natural choice of ⌅n is the inverse of the sample variance, ⌅n =
dV ar (Zi)

�1 , provided the sample variance has full rank. For ease of exposition we
assume that Zi has at least one continuously distributed dimension, so that `Z (i) is
unique for all i. If instead Zi is entirely discrete, one can estimate b⌃ using the average
of the sample conditional variances.

The intuition for the estimator b⌃ is straightforward. Provided the conditional
mean and variance of Yi given Zi are continuous in Zi, if Z`Z(i) is close to Zi it will
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have nearly the same mean and variance. Hence, the variance of Yi � Y`Z(i) will be
approximately twice the variance of Yi, and the approximation error will vanish as
Z`Z(i) approaches Zi. If the support of Zi is compact, however, then with a large
enough sample we are guaranteed to have observations quite “close” to almost all of
our observations, and b⌃ will converge to the average conditional variance ⌃

�
PD|Z

�
.

The next assumption formalizes the conditions needed for this argument.

Assumption 9 For �max (A) the maximal eigenvalue of a matrix A, the following
conditions hold

1. {Zi}1i=1 ⇢ Z1 for Z a compact set

2. lim sup
n!1 sup

PD|Z2PD|Z
1
n

P
EPD|Z

⇥
kYik4 |Zi

⇤
is finite

3. µPD|Z (z) = EPD|Z [Yi|Zi = z] is Lipschitz in z with Lipschitz constant uniformly
bounded over PD|Z 2 PD|Z, and is uniformly bounded over PD|Z 2 PD|Z

4. VPD|Z (z) = EPD|Z [YiY 0
i
|Zi = z] is Lipschitz in z with Lipschitz constant uni-

formly bounded over PD|Z 2 PD|Z

5. sup
PD|Z2PD|Z

sup
z2Z �max

⇣
V arPD|Z (Yi|Zi = z)

⌘
is finite

6. ⌅n ! ⌅ for a positive-definite limit ⌅

Assumption 9(1) is used only to establish that the average distance between Zi and
Z`Z(i) converges to zero, 1

n

P��Zi � Z`Z(i)

��! 0. Hence, one may instead assume this
condition directly. Assumption 9(2) and (5) restrict the variance and second moment
of Yi, and are satisfied under a wide range of data generating processes. Assumption
9(3) and (4) impose Lipschitz continuity on the mean and second moment of Yi,
consistent with the heuristic argument given above. Finally, 9(6) requires only that
⌅n converge to a positive-definite limit.

Proposition 10 Under Assumptions 2 and 9, for b⌃ as defined in (31), and all " > 0

lim
n!1

sup
PD|Z2PD|Z

PrPD|Z

n���b⌃� ⌃
�
PD|Z

���� > "
o
= 0,

so Assumption 3 holds.
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E Proofs for Asymptotic Results

This section collects the proofs for the asymptotic results stated in Section D, along
with the statements and proofs of some auxiliary results. Section E.1 proves Propo-
sition 8, while Section E.2 proves Proposition 9, and Section E.3 proves Proposition
10.

Proof of Lemma 12 Towards contradiction, suppose the conclusion of the lemma
fails. Then there exists a sequence of distributions and sample sizes (PD|Z,m, nm) and
a constant " > 0 such that

lim inf
m!1

sup
f2BL1

���EPD|Z,m
[f (Ynm � µnm)]� E

h
f
⇣
⇠PD|Z,m

⌘i��� > ". (32)

Since the set ⇤ specified in Assumption 2 is compact, there exists a subsequence of
distributions and sample sizes (PD|Z,l, nl) along which ⌃

�
PD|Z,l

�
! ⌃ for ⌃ 2 ⇤.

Under this subsequence, however, the Linderberg Feller Central Limit Theorem (see
e.g. Proposition 2.27 in Van der Vaart 1998), along with the assumptions of the
lemma, implies that

Ynl
� µnl

!d N (0,⌃) ,

and thus that

lim
l!1

sup
f2BL1

���EPD|Z,l
[f (Ynl

� µnl
)]� E

h
f
⇣
⇠PD|Z,l

⌘i��� = 0.

This contradicts (32), completing the proof. ⇤

E.1 Proof of Validity For Least Favorable Tests

As a preliminary step, we show that for test statistics R (⇠,⌃) which are (a) constant
outside compact sets of values ⇠ and (b) bounded Lipschitz in both arguments, the
critical value function is likewise bounded Lipschitz. To prove this statement, we use
the metric

d (⌃1,⌃2) =
���⌃

1
2
1 � ⌃

1
2
2

���+ k⌃1 � ⌃2k

for kAk the Euclidean norm if A is a vector, and the operator norm if A is a matrix.
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Lemma 13 Suppose R (⇠,⌃) is (a) constant in ⇠ when maxj
�
|⇠j| /

p
⌃jj

 
> C for

some constant C and (b) bounded Lipschitz in both arguments for ⌃ 2 ⇤ with Lipschitz
constant K. Then for c↵ (⌃) the 1�↵ quantile of R (⇠,⌃) under ⇠ ⇠ N (0,⌃) , c↵ (⌃)

is bounded Lipschitz with a constant that depends only on C, K, and �̄.

Proof of Lemma 13 That c↵ (⌃) is bounded follows immediately from boundedness
of R (⇠,⌃) . Next, note that we can write R (⇠,⌃) = R

⇣
⌃

1
2 ⇣,⌃

⌘
for ⇣ ⇠ N (0, I) . Since

R
⇣
⌃

1
2 ⇣,⌃

⌘
is constant for ⇣ outside a compact set C, it suffices to limit attention to

(⇣,⌃) 2 C ⇥ ⇤. Note further that for any pair ⌃1, ⌃2 2 ⇤ and any ⇣ 2 C,

R
⇣
⌃

1
2
1 ⇣,⌃1

⌘
�R

⇣
⌃

1
2
2 ⇣,⌃2

⌘
 K k⌃1 � ⌃2k+K

���⌃
1
2
1 � ⌃

1
2
2

���+K
���
⇣
⌃

1
2
1 � ⌃

1
2
2

⌘
⇣
���

 K k⌃1 � ⌃2k+K
���⌃

1
2
1 � ⌃

1
2
2

���+K
���⌃

1
2
1 � ⌃

1
2
2

��� k⇣k

 K k⌃1 � ⌃2k (1 + k⇣k) +K
���⌃

1
2
1 � ⌃

1
2
2

���+K
���⌃

1
2
1 � ⌃

1
2
2

��� k⇣k

 K (1 + kCk) d (⌃1,⌃2)

for kCk = sup
⇣2C k⇣k , where the second line follows from the definition of the operator

norm, the third line adds a weakly positive term to the RHS, and the final line uses
the definition of the metric and takes a supremum.

Thus, we see that

1� ↵ = Pr {R (⇠1,⌃1)  c↵ (⌃1)}

 Pr {R (⇠2,⌃2)  c↵ (⌃1) +K (1 + kCk) d (⌃1,⌃2)} ,

and hence that c↵ (⌃2)  c↵ (⌃1) + K (1 + kCk) d (⌃1,⌃2) . Repeating the argument
in the other direction, we obtain that

|c↵ (⌃1)� c↵ (⌃2)|  K (1 + kCk) d (⌃1,⌃2) ,

and hence that c↵ (⌃) is Lipschitz in ⌃, as we aimed to show. ⇤
Lemma 13 applies only to test statistics that are (a) globally Lipschitz and (b)

constant for ⇠ large. Our next result builds on this lemma to establish asymptotic
validity for tests based on a much wider range of statistics.
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Assumption 10 For all constants C, R (⇠,⌃) is bounded Lipschitz in (⇠,⌃) for
⇢
(⇠,⌃) : ⌃ 2 ⇤, max

j

n
|⇠j| /

p
⌃jj

o
 C

�

with Lipschitz constant K (C).

Lemma 14 Under Assumptions 2- 4, for any " > 0 and any sequence of test statistics
Rn satisfying Assumption 10 for a common K (C), and corresponding critical values
c↵,n

⇣
b⌃
⌘
,

lim
n!1

sup
PD|Z2PD|Z

PrPD|Z

n
Rn

⇣
Yn � µn, b⌃

⌘
� c↵,n

⇣
b⌃
⌘
+ "
o
 ↵.

Proof of Lemma 14 For constants (C1, C2) with 0 < C1 < C2 let us define
& (⇠,⌃) = maxj

�
|⇠j| /

p
⌃jj

 
and

 (R, ⇠,⌃, C1, C2) =

✓
1 {& (⇠,⌃) < C1}+

C2 � & (⇠,⌃)
C2 � C1

1 {C1  & (⇠,⌃) < C2}
◆
R (⇠,⌃) .

 (R, ⇠,⌃, C1, C2) is equal to R (⇠,⌃) when & (⇠,⌃) is small, and continuously censors
to zero when & (⇠,⌃) is large. Note that for any (C1, C2), the assumptions of the lemma
and the fact that products of bounded Lipschitz functions are bounded Lipschitz imply
that  (R, ⇠,⌃, C1, C2) is bounded Lipschitz in (⇠,⌃) for ⇠ unrestricted and ⌃ 2 ⇤.

By Lemma 13, if we define c↵,n (⌃, C1, C2) as the 1�↵ quantile of  (Rn, ⇠,⌃, C1, C2)

under ⇠ ⇠ N (0,⌃) , we see that c↵,n (⌃, C1, C2), and thus the difference

 (Rn, ⇠,⌃, C1, C2)� c↵,n (⌃, C1, C2)

is bounded Lipschitz as well.
Towards contradiction, suppose the conclusion to the lemma fails. Then there

exists a sequence of distributions
�
PD|Z,m

 
⇢ PD|Z , sample sizes nm, and a constant

⌫ > 0 such that

lim inf
m!1

PrPD|Z,m

n
Rnm

⇣
Ynm � µnm , b⌃

⌘
> c↵,nm

⇣
b⌃
⌘
+ "
o
� ↵ + ⌫.
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Let us choose C1 > 0 such that

sup
⌃2⇤

Pr⌃

⇢
& (⇠,⌃) � 1

2
C1

�
<
⌫

4
.

Since Rnm (⇠,⌃) and  (Rnm , ⇠,⌃, C1, C2) are equal when & (⇠,⌃)  C1, we see that

c↵+⌫/4,nm (⌃, C1, C2)  c↵,nm (⌃)  c↵�⌫/4,nm (⌃, C1, C2) .

Assumptions 2-4 imply that

lim sup
m!1

PrPD|Z,m

n
&
⇣
Ynm � µnm , b⌃

⌘
> C1

o
<
⌫

4
. (33)

To see that this is the case, note that since the set of matrices ⇤ is compact, for
any sequence of distributions and sample sizes (PD|Z,s, ns) there exists a subsequence
(PD|Z,st , nst) such that ⌃(PD|Z,st) ! ⌃ for some ⌃ 2 ⇤. Under this subsequence,
Ynst
� µnst

!d N(0,⌃), b⌃!p ⌃, and

lim sup
t!1

PrPD|Z,st

n
&
⇣
Ynst
� µnst

, b⌃
⌘
> C1

o
<
⌫

4

by the continuous mapping theorem and the portmanteau Lemma (see Lemma 2.2 of
Van der Vaart (2000)). Since such a subsequence can be extracted for any sequence,
the claim follows.

Since Rnm

⇣
Ynm � µnm , b⌃

⌘
and  

⇣
Rnm , Ynm � µnm , b⌃, C1, C2

⌘
are equal for &

⇣
Ynm � µnm , b⌃

⌘


C1, this implies that

lim sup
m!1

PrPD|Z ,m

n
Rnm

⇣
Ynm � µnm , b⌃

⌘
6=  

⇣
Rnm , Ynm � µnm , b⌃, C1, C2

⌘o
<
⌫

4
.

Thus,

lim sup
m!1

PrPD|Z,m

n
 
⇣
Rnm , Ynm � µnm , b⌃, C1, C2

⌘
> c↵,nm

⇣
b⌃
⌘
+ "
o
� ↵ +

3

4
⌫.

Since we have shown that c↵,nm (⌃) � c↵+⌫/4,nm (⌃, C1, C2) , this implies that

lim sup
m!1

PrPD|Z,m

n
 
⇣
Rnm , Ynm � µnm , b⌃, C1, C2

⌘
> c↵+⌫/4,nm

⇣
b⌃, C1, C2

⌘
+ "
o
� ↵+

3

4
⌫.
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Let
Tm =  

⇣
Rnm , Ynm � µnm , b⌃, C1, C2

⌘
� c↵+⌫/4,nm

⇣
b⌃, C1, C2

⌘

and
Tm,1 =  (Rnm , ⇠,⌃, C1, C2)� c↵+⌫/4,nm (⌃, C1, C2) ,

for ⇠ ⇠ N
�
0,⌃

�
PD|Z,m

��
. The difference between Tm and Tm,1 is that the former uses

the finite-sample distribution of Ynm�µnm and b⌃ while the latter uses the asymptotic
normal distribution for ⇠ and the exact value of ⌃. Our arguments above show that,
viewed as a function of

⇣
Yn � µn, b⌃

⌘
, Tm is bounded Lipschitz. Since compositions of

bounded Lipschitz functions are bounded Lipschitz, Assumptions 3 and 4 imply that

lim
m!1

sup
f2BL1

|E [f (Tm)]� E [f (Tm,1)]| = 0. (34)

Since Tm is a sequence of bounded variables, by Prohorov’s theorem there exists
a subsequence ms and a random variable T such that Tms !d T . By (34) and the
Portmanteau lemma (see Lemma 2.2 of Van der Vaart (2000)), however, we also have
Tm,1 !d T . From the Portmanteau lemma, it follows that

↵+
3

4
⌫  lim sup

s!1
Pr {Tms � "}  Pr {T � "}  Pr {T > 0}  lim inf

s!1
Pr {Tms,1 > 0} .

However, Pr {Tms,1 > 0}  ↵+ ⌫

4 for all m by the definition of the quantile function.
Thus, since ⌫ > 0 we have arrived at a contradiction. ⇤

Lemma 15 Provided
inf
�

max
j

{Xn,j�} 6= �1,

the statistic

min
�

S (⇠ �Xn�,⌃) = min
�

max
j

n
(⇠j �Xn,j�) /

p
⌃jj

o

satisfies Assumption 10 with Lipschitz constants independent of Xn.

Proof of Lemma 15 Note, first, that for any fixed � the statistic

S̃ (⇠, Xn,⌃; �) = max
j

n
(⇠j �Xn,j�) /

p
⌃jj

o
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is Lipschitz in (⇠,⌃) for ⌃ 2 ⇤ and ⇠ such that maxj
�
|⇠j| /

p
⌃jj

 
 C, with a

Lipschitz constant that does not depend on � or Xn. Since the minimum of a collection
of functions with a common Lipschitz constant is Lipschitz with the same constant,
this implies that

S̃ (⇠, Xn,⌃) = min
�

S̃ (⇠, Xn,⌃; �)

is Lipschitz with the same constant.
To see that the statistic is bounded observe that the assumption that inf� maxj {Xn,j�} 6=

�1 implies that
S̃ (⇠, Xn,⌃) � min

j

n
⇠j/
p
⌃jj

o
,

since otherwise the span of Xn must contain a strictly negative vector, and hence
inf� maxj {Xn,j�} = �1. On the other hand, by construction

S̃ (⇠, Xn,⌃)  S̃ (⇠, Xn,⌃; 0) = max
j

n
⇠j/
p

⌃jj

o
.

Thus, we see that for maxj
�
|⇠j| /

p
⌃jj

 
 C for any constant C, S̃ (⇠, Xn,⌃) is

bounded between �C and C. ⇤
We next build on these preliminary results to prove uniform size control for the

least favorable test.

Proof of Proposition 8 If Xn is such that inf� maxj {Xn,j�} = �1 then ⌘̂ = �1
with probability one, and our tests never reject. For the remainder of the proof we
thus assume that inf� maxj {Xn,j�} 6= �1.

For the least favorable projection test, note that this test rejects if and only if

S
⇣
Yn �Xn�, Xn, b⌃

⌘
> c↵,H0(�)

⇣
b⌃
⌘

for all �. Note that under the null, there exists a value �⇤ such that µn �Xn�⇤  0.

Hence,

1
n
S
⇣
Yn �Xn�

⇤, Xn, b⌃
⌘
> c↵,H0(�)

⇣
b⌃
⌘o
 1

n
S
⇣
Yn � µn, Xn, b⌃

⌘
> c↵,H0(�)

⇣
b⌃
⌘o

.

Note, however, that S
⇣
Yn � µn, Xn, b⌃

⌘
is the (scaled) maximum of a finite number

of normal random variables with nonzero variance, and is Lipschitz in (Yn � µn,⌃) for
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⌃ 2 ⇤ and Yn � µn bounded. Lemma 14 thus implies that for any " > 0,

lim sup
n!1

sup
PD|Z2P0

D|Z

PrPD|Z

n
S
⇣
Yn � µn, Xn, b⌃

⌘
> c↵,H0(�)

⇣
b⌃
⌘
+ "
o
 ↵. (35)

Moreover, for ⇠ ⇠ N (0,⌃), S (⇠, Xn,⌃) is continuously distributed with density
bounded uniformly over ⌃ 2 ⇤ (see e.g. Theorem 3 of Chernozhukov et al. (2015)).
Thus, since (35) holds for all " > 0, it follows that is also holds for " = 0.

To establish size control for least favorable tests, we note that since the test statistic
is monotonically increasing in Yn, the fact that µn  0 under the null implies that

1
n
⌘̂ > c↵

⇣
Xn, b⌃

⌘
+ "
o
 1

n
min
�

S
⇣
Yn � µn �Xn�, Xn, b⌃

⌘
> c↵

⇣
Xn, b⌃

⌘
+ "
o
.

Thus, if we can prove that the right hand side has asymptotic rejection probability
less than or equal to ↵ under the null, the left hand side must as well. Since Lemma 15
shows that min� S (⇠ �Xn�, Xn,⌃) satisfies the conditions of Lemma 14 with Lipschitz
constants that do not depend on Xn, Lemma 14 immediately implies that

lim sup
n!1

sup
PD|Z2P0

D|Z

PrPD|Z

n
min
�

S
⇣
Yn � µn, Xn, b⌃

⌘
� c↵,n

⇣
b⌃
⌘
+ "
o
 ↵,

as we aimed to show. ⇤

Proof of Corollary 1 As in the proof of Lemma 14, let us assume the result fails.
Then there exists a sequence of distributions

�
PD|Z,m

 
⇢ PD|Z , sample sizes nm, and

a constant ⌫ > 0 such that, for S̃ defined as in the proof of Lemma 15,

lim inf
m!1

PrPD|Z,m

n
S̃
⇣
Ynm � µnm , Xnm , b⌃, Xnm

⌘
> c↵,LF

⇣
b⌃, Xnm

⌘o
� ↵ + ⌫.

Let us choose C1 > 0 such that

sup
⌃2⇤

Pr⌃

⇢
& (⇠,⌃) � 1

2
C1

�
<
⌫

4
,

where we again define & (⇠,⌃) = maxj
�
|⇠j| /

p
⌃jj

 
.

As argued in the proof of Lemma 14, this implies that (for  as defined in that
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proof)

lim sup
m!1

PrPD|Z ,m

n
S̃
⇣
Ynm � µnm , b⌃

⌘
6=  

⇣
S̃, Ynm � µnm , b⌃, C1, C2

⌘o
<
⌫

4
.

and

lim sup
m!1

PrPD|Z,m

n
 
⇣
S̃, Ynm � µnm , b⌃, C1, C2

⌘
> c↵,LF

⇣
b⌃, Xnm

⌘o
� ↵ +

3

4
⌫.

and thus that

lim sup
m!1

PrPD|Z,m

n
 
⇣
S̃, Ynm � µnm , b⌃, C1, C2

⌘
> c↵+⌫/4,nm

⇣
b⌃, C1, C2

⌘o
� ↵ +

3

4
⌫,

for c↵+⌫/4,nm

⇣
b⌃, C1, C2

⌘
the 1� ↵� ⌫/4 quantile of S̃ (⇠, Xnm ,⌃) for ⇠ ⇠ N(0,⌃).

Since the set ⇤ is compact, we can extract a further subsequence ns along which
⌃
�
PD|Z,ns

�
! ⌃.37 We see, however, that along this subsequence the continuous

mapping theorem implies

S̃
⇣
Yns � µns , Xns , b⌃

⌘
!d max

�2VF (X,⌃)
�0⇠,

and c↵+⌫/4,ns

⇣
b⌃, C1, C2

⌘
!p c↵+⌫/4,ns (⌃, C1, C2) , where we have used the continuity

of S̃ (⇠, X,⌃) implied by Lemma 19 below, as well as the continuity of the critical
value implied by Lemma 13.

The proof of Lemma 20 below then implies that

S̃
⇣
Yns � µns , Xns , b⌃

⌘
� c↵+⌫/4,ns

⇣
b⌃, C1, C2

⌘
(36)

converges in distribution to a continuous random variable. Note, however, that the
total variation distance between (36) and

Ts =  
⇣
S̃, Yns � µns , b⌃, C1, C2

⌘
� c↵+⌫/4,ns

⇣
b⌃, C1, C2

⌘

is bounded above by ⌫/4 asymptotically by the argument following (33) in the proof
37We write (s, ns) rather than (ms, nms) for readability.
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of Lemma 14. If we define

Ts,1 =  
⇣
S̃, ⇠,⌃, C1, C2

⌘
� c↵+⌫/4,ns (⌃, C1, C2) ,

then as in the proof of Lemma 14 we know that

lim
s!1

sup
f2BL1

|E [f (Ts)]� E [f (Ts,1)]| = 0.

As in the proof of Lemma 14, by Prohorov’s Theorem we know there exists a
further subsequence st along with Tst ! T for a random variable T . Moreover, we
know that Tst,1 converges to the same limit, and thus that by the Portmanteau lemma

↵ +
3

4
⌫  lim sup

t!1
Pr {Tst � 0}  Pr {T � 0}

and
Pr {T > 0}  lim inf

t!1
Pr {Tst,1 > 0}  ↵ + ⌫/4

by the definition of the critical value. Thus, we see that Pr {T = 0} � ⌫

2 . However,
we have argued that for large t, Tst is within total variation distance ⌫

4 of a sequence
of random variables that converge in distribution to a continuous limit, which implies
that Pr {T = 0}  ⌫

4 . Thus, we have reached a contradiction. ⇤

E.2 Proof of Validity for Conditional and Hybrid Tests

We next turn to the proof of Proposition 9. Let us define

T
⇣
Yn, Xn, b⌃

⌘
= �̂0Yn � c↵,C

⇣
�̂,V lo (Sn,�̂) ,Vup (Sn,�̂) , b⌃

⌘
(37)

for
�̂ = argmax

�2VF (Xn,b⌃)�
0Yn.

Note that ⌘̂ exceeds the conditional critical value if and only if T
⇣
Yn, Xn, b⌃

⌘
is strictly

positive. As in the last section, we begin by proving several auxiliary lemmas.

Lemma 16 For all �̃ 2 Rp,

T
⇣
Yn, Xn, b⌃

⌘
= T

⇣
Yn +X⇤

n
�̃, X⇤

n
, b⌃
⌘
,
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where again X⇤
n
= 1p

n
Xn.

Proof of Lemma 16 Recall that the feasible region F (X,⌃) is the set of points
� � 0 such that

p
diag(⌃)

0
� = 1 and X 0� = 0. It follows that F (Xn,⌃) = F (X⇤

n
,⌃),

and hence that the set of vertices VF

⇣
Xn, b⌃

⌘
= VF

⇣
X⇤

n
, b⌃
⌘
. From this we see

immediately that T
⇣
Yn, Xn, b⌃

⌘
= T

⇣
Yn, X⇤

n
, b⌃
⌘
. Since �0X⇤

n
= 0, we also see that �̂

calculated with Yn is the same as �̂ calculated with Yn +X⇤
n
�̃, and

�̂0Yn = �̂0
⇣
Yn +X⇤

n
�̃
⌘
.

Likewise, for all �̂, � 2 VF

⇣
X⇤

n
, b⌃
⌘
,

�0Sn,�̂ = �0Yn �
�0b⌃�̂
�̂0b⌃�̂

�̂0Yn = �0
⇣
Yn +X⇤

n
�̃
⌘
� �0b⌃�̂
�̂0b⌃�̂

�̂0
⇣
Yn +X⇤

n
�̃
⌘
.

Thus, �0Sn,�̂ calculated with Yn is equal to �0Sn,�̂ calculated with Yn+X⇤
n
�̃. From (22)

and (23), it is thus clear that V lo(s) and V up(s) are the same when calculated with
Yn as with Yn +X⇤

n
�̃. This suffices to establish the result. ⇤

Lemma 17 Under Assumptions 6 and 7, for all µ⇤ with µ⇤
j
2 [�1, 0] for all j,

�̂ (⇠, X,⌃) = argmax
�2VF (X,⌃)�

0 (⇠ + µ⇤) ,

�̂ (⇠, X,⌃) is almost surely continuous at (⇠, X,⌃) for ⇠ ⇠ N (0,⌃) and (X,⌃) non-
stochastic, where we define 0 ·1 = 0.

Proof of Lemma 17 To prove this result, note first that Assumption 7 implies that
for any pair �1, �2 2 VF (X,⌃), (�1 � �2)0 ⇠ has a non-degenerate normal distribution.
By Assumption 6, the same also holds on a neighborhood of (X,⌃) . This implies,
however, that on a neighborhood of (X,⌃) , �̂ (⇠, X,⌃) is unique with probability one.
Almost everywhere continuity of �̂ (⇠, X,⌃) then follows from Assumption 6. ⇤

Lemma 18 Under Assumptions 6 and 7, the conditional critical value

c↵,C
⇣
�̂ (⇠, X,⌃) ,V lo

⇣
S̃n,�̂(⇠,X,⌃)

⌘
,Vup

⇣
S̃n,�̂(⇠,X,⌃)

⌘
,⌃
⌘
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is almost surely continuous at (⇠, X,⌃) when computed with

S̃n,�̂(⇠,X,⌃) =

✓
I � ⌃�̂ (⇠, X,⌃) �̂ (⇠, X,⌃)0

�̂ (⇠, X,⌃)0 ⌃�̂ (⇠, X,⌃)

◆
(⇠ + µ⇤)

when ⇠ ⇠ N (0,⌃) and µ⇤ is as in Lemma 17.

Proof of Lemma 18 For brevity of notation we abbreviate �̂ (⇠, X,⌃) by �̂. To
prove the result, recall that

c↵,C
�
�,V lo (Sn,�) ,Vup (Sn,�) ,⌃

�

=
p
�0⌃� · ��1

✓
(1� ↵)�

✓
Vup (Sn,�)p

�0⌃�

◆
+ ↵�

✓
V lo (Sn,�)p

�0⌃�

◆◆
.

That
p
�̂0⌃�̂ and 1/

p
�̂0⌃�̂ are almost everywhere continuous follows from Assumption

6 and Lemma 17.
Note, next, that provided �0⌃� is nonzero,

��1

✓
(1� ↵)�

✓
Vup

p
�0⌃�

◆
+ ↵�

✓
V lo

p
�0⌃�

◆◆

is continuous in
�
V lo,Vup

�
on (R [ {�1,1})2 . This is obvious when at least one of

�
V lo,Vup

�
is finite. When V lo ! �1 and Vup !1,

��1

✓
(1� ↵)�

✓
Vup

p
�0⌃�

◆
+ ↵�

✓
V lo

p
�0⌃�

◆◆
! ��1 (1� ↵) = ��1 ((1� ↵)� (1) + ↵� (�1)) ,

while when both V lo,Vup ! �1,

��1

✓
(1� ↵)�

✓
Vup

p
�0⌃�

◆
+ ↵�

✓
V lo

p
�0⌃�

◆◆
! �1 = ��1 ((1� ↵)� (�1) + ↵� (�1))

and when both V lo,Vup !1,

��1

✓
(1� ↵)�

✓
Vup

p
�0⌃�

◆
+ ↵�

✓
V lo

p
�0⌃�

◆◆
!1 = ��1 ((1� ↵)� (1) + ↵� (1)) .

To complete the argument, it suffices to show that
⇣
V lo

⇣
S̃n,�̂

⌘
,Vup

⇣
S̃n,�̂

⌘⌘
are
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continuous at almost every (⇠, X,⌃). To see that this is the case, recall that �̂ is
almost everywhere continuous by Lemma 17. Note, next, that for a given �̂,

V lo

⇣
S̃n,�̂

⌘
= min

⇢
c : c = max

�2VF (X,⌃)
�0
✓
S̃n,�̂ +

⌃�̂

�̂0⌃�̂
c

◆�

= min

⇢
c : 0 = max

�2VF (X,⌃)
â� + b̂�c

�

for â� = �0S̃n,�̂ and b̂� = �
0⌃�̂

�̂0⌃�̂
�1. Note that â�̂ = b̂�̂ = 0, so 0  max�2VF (X,⌃) â� + b̂�c

for all c. Moreover, for c = �̂0Yn the max is attained at �̂ by construction. Hence, the
set over which we are minimizing is non-empty.

Intuitively, if we plot â� + b̂�c as a function of c, each � 2 VF (X,⌃) defines a line,
and we are interested in the set of values c such that zero lies on the upper envelope
of this collection of lines. As this characterization suggests, to find the lower bound
V lo it suffices to limit attention to � 2 VF (X,⌃) with b̂�  0.

For given �̂, V lo

⇣
S̃n,�̂

⌘
thus is equal to either �1 or the largest solution to

c = �0
✓
S̃n,�̂ +

⌃�̂

�̂0⌃�̂
c

◆

for � in VF (X,⌃) with �0⌃�̂ < �̂0⌃�̂. Among � with �0⌃�̂ 6= �̂0⌃�̂, this largest solution
is well-defined and continuous. Matters are more delicate for � with �0⌃�̂ = �̂0⌃�̂:
in this case we may have discontinuities in ⌃, but only if �̂0S̃n,�̂ = �0S̃n,�̂. However,
�̂0S̃n,�̂ = �0S̃n,�̂ with positive probability if and only if �0⇠ � �̂0⇠ = 0 with positive
probability, which for � 6= �̂ is ruled out by Assumption 7. Hence, we see that
V lo

⇣
S̃n,�̂

⌘
is almost everywhere continuous in the limit problem, as desired. The

analogous argument applies for Vup

⇣
S̃n,�̂

⌘
, so overall we obtain that the critical value

function is almost everywhere continuous, as we wanted to show. ⇤

Lemma 19 Under Assumptions 6-8, for µ⇤ such that µ⇤
j
2 [�1, 0] for all j,

max
�2VF (X,⌃)

�0 (⇠ + µ⇤)

is almost everywhere continuous at (⇠, X,⌃) for ⇠ ⇠ N (0,⌃) and (X,⌃) constant.

Proof of Lemma 19 To see that this is the case, note, first, that almost everywhere
continuity of �̂0⇠ is immediate from Lemma 17. Thus, what remains is to show almost
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everywhere continuity of �̂0µ⇤ =
P
�̂jµ⇤

j
. For those elements µj that are finite, almost

everywhere continuity of �̂jµ⇤
j

is again immediate from Lemma 17. To complete the
proof we need only to show that �̂jµ⇤

j
is almost everywhere continuous when µ⇤

j
= �1.

However, this follows from Assumption 8, which ensures that for every � (X,⌃) 2
VF (X,⌃) , �j (X,⌃)µ⇤

j
is constant on a neighborhood of (X,⌃) when µ⇤

j
= �1. ⇤

Lemma 20 Under Assumptions 6 and 7, for µ⇤ such that µ⇤
j
2 [�1, 0] for all j,

if max�2VF (X,⌃) �0µ⇤ is finite then T (⇠ + µ⇤, X,⌃) as defined in (37) is finite with
probability one and continuously distributed for ⇠ ⇠ N (0,⌃) and (X,⌃) constant.

Proof of Lemma 20 We first prove finiteness. In particular, note that since ⇠ is
finite with probability one and VF (X,⌃) is a finite set, finiteness of max�2VF (X,⌃) �0µ⇤

implies finiteness of ⌘̂ = max�2VF (X,⌃) �0 (⇠ + µ⇤). Recall from the proof of Lemma
18 that the conditional critical value is infinite only if V lo(s) = V up(s) = 1 or
V lo(s) = V up(s) = �1. Since V lo

⇣
S̃n,�̂

⌘
 ⌘̂  Vup

⇣
S̃n,�̂

⌘
, however, this implies

that V lo

⇣
S̃n,�̂

⌘
is not equal to 1 and Vup

⇣
S̃n,�̂

⌘
is not equal to �1, and thus that

c↵,C
⇣
�̂,V lo

⇣
S̃n,�̂

⌘
,Vup

⇣
S̃n,�̂

⌘
,⌃
⌘

is finite. Hence, T (⇠ + µ⇤, X,⌃) is finite.
To complete the proof, note that for fixed �, �0Yn is continuously distributed and

independent of S̃n,� , and thus of
⇣
V lo

⇣
S̃n,�

⌘
,Vup

⇣
S̃n,�

⌘⌘
. In particular,

Pr
n
�0Yn = V lo

⇣
S̃n,�

⌘o
= 0.

Since VF (X,⌃) is finite, it follows that Pr
n
⌘̂ = V lo

⇣
S̃n,�̂

⌘o
= 0, and thus that

V lo

⇣
S̃n,�̂

⌘
< Vup

⇣
S̃n,�̂

⌘
with probability one. Recall that ⌘̂ lies between V lo

⇣
S̃n,�̂

⌘

and Vup

⇣
S̃n,�̂

⌘
with probability one, and conditional on �̂ and S̃n,�̂ follows a truncated

normal distribution with untruncated variance �̂0⌃�̂ > 0. Hence T (⇠ + µ⇤, X,⌃) is
continuously distributed conditional on �̂ and S̃n,�̂ for almost every �̂ and S̃n,�̂. It
follows that T (⇠ + µ⇤, X,⌃) is continuously distributed unconditionally as well. ⇤

Proof of Proposition 9 If Xn is such that inf� maxj {Xn,j�} = �1 then ⌘̂ = �1
with probability one, and our tests never reject. For the remainder of the proof we
thus assume that inf� maxj {Xn,j�} 6= �1.

As in D. Andrews et al. (2019), note that uniform asymptotic size control is equiv-
alent to asymptotic size control under all sequences of distributions PD|Z,n 2 P0

D|Z .
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Towards contradiction, assume the test �⇤
C

fails to control asymptotic size. Then there
exists a sequence of distributions PD|Z,nm , a sequence of sample sizes nm, and a value
⌫ > 0 such that

lim inf
m!1

PrPD|Z,nm
{�⇤

C
= 1} > ↵ + ⌫.

By the compactness of S, for any such sequence, there exists a subsequence nm,1

along which ⌃
�
PD|Z,nm,1

�
! ⌃ 2 S. For each n, since PD|Z,n 2 P0

D|Z we know there
exists a �n such that µn � X⇤

n
�n  0. Thus, there exists a further subsequence nm,2

along which µnm,2,1�X⇤
nm,2,1�nm,2 ! µ⇤

1 for µ⇤
1 2 [�1, 0] for µnm,2,1 the first component

of µnm,2 . Passing to further such subsequences, we see that there exists a subsequence
nm,k+1 such that ⌃

�
PD|Z,nm,k+1

�
! ⌃ and

µnm,k
�X⇤

nm,k
�nm,k

! µ⇤

where µ⇤
j
2 [�1, 0] for all j. For simplicity of notation, for the remainder of the proof

we assume that this property holds for the initial pair (m,nm) , so ⌃
�
PD|Z,nm

�
! ⌃

and µnm �X⇤
nm
�nm ! µ⇤.

Lemma 16 implies that

T
⇣
Ynm , Xnm , b⌃

⌘
= T

⇣
Ynm �X⇤

nm
�nm , X

⇤
nm

, b⌃
⌘
,

while Assumptions 2-5 imply that
⇣
Ynm �X⇤

nm
�nm , X

⇤
nm

, b⌃
⌘
!d (⇠ + µ⇤, X,⌃)

for ⇠ ⇠ N (0,⌃) . Together, Lemmas 18 and 19 imply that T (⇠ + µ⇤, X,⌃) is almost
everywhere continuous with respect to the distribution of (⇠ + µ⇤, X,⌃) , and thus, by
the continuous mapping theorem, that

T
⇣
Ynm , X

⇤
nm

, b⌃
⌘
!d T (⇠ + µ⇤, X,⌃) .

If max�2VF (X,⌃) �0µ⇤ = �1, then ⌘̂ ! �1. Hence, since the modified conditional
test never rejects for ⌘̂ < �C, this implies that limm!1 Pr {�⇤

C
= 1} = 0, contradict-

ing our assumption that size control fails. Thus, for the remainder of the argument
we assume that max�2VF (X,⌃) �0µ⇤ is finite.38 Under this assumption, Lemma 20 shows

38Recall that � 2 VF (X,⌃) implies that � � 0, so we cannot have �0µ⇤ =1.
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that T (⇠ + µ⇤, X,⌃) is continuously distributed. This implies that

lim
m!1

Pr
n
T
⇣
Ynm , X

⇤
nm

, b⌃
⌘
> 0
o
! Pr {T (⇠ + µ⇤, X,⌃) > 0} ,

and thus that
Pr {T (⇠ + µ⇤, X,⌃) > 0} � ↵ + ⌫.

However, provided max�2VF (X,⌃) �0µ⇤ is finite, Proposition 6 shows that for µ⇤  0

Pr {T (⇠ + µ⇤, X,⌃) > 0}  ↵,

so we have reached a contradiction. ⇤

Proof of Corollary 2 Note that the hybrid test is of nearly the same form as the
conditional test, except that it uses the Vup,H (Sn,�̂) = min

n
Vup (Sn,�̂) , c,LF

⇣
Xn, b⌃

⌘o

instead of Vup (Sn,�̂) , and considers a different quantile of the conditional distribution.
Building on the proof of Proposition 9, to prove asymptotic validity of �⇤

H
it thus suf-

fices to show that Vup,H (Sn,�̂) is almost-everywhere continuous when computed using
the set of limit distributions considered in that proof. However, we have already
shown that Vup (Sn,�̂) satisfies this property, so we need only show that c,LF (X,⌃)

is continuous in (X,⌃) .

Recall, however, that c,LF (X,⌃) is the 1�  quantile of max�2VF (X,⌃) �0⇠ for ⇠ ⇠
N (0,⌃) . Lemma 19 shows that under our assumptions this max is almost everywhere
continuous in (⇠, X,⌃), from which continuity of the 1� quantile follows immediately.

To complete the argument, recall that the proof of Lemma 18 shows that Vup

⇣
S̃n,�̂

⌘

is almost everywhere continuous in the limit problem, which together with the argu-
ment above shows that Vup,H

⇣
S̃n,�̂

⌘
is almost everywhere continuous. Note that the

hybrid test is unchanged if, rather than defining c↵�
1� ,C

�
�̂,V lo(Sn,�̂),Vup,H(Sn,�̂),⌃

�
to

be �1 when V lo(Sn,�̂) > Vup,H(Sn,�̂), we instead define it to be Vup,H(Sn,�̂).39 With
this modification, however, we see that c↵�

1� ,C

�
�̂,V lo(Sn,�̂),Vup,H(Sn,�̂),⌃

�
is almost-

everywhere continuous in the limit problem by the same argument as in the proof of
Lemma 18. Hence,

⌘̂ � c↵�
1� ,C

�
�̂,V lo(Sn,�̂),Vup,H(Sn,�̂),⌃

�

39Since V lo(Sn,�̂) > Vup,H(Sn,�̂) implies ⌘̂ > Vup,H(Sn,�̂).
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is almost-everywhere continuous in the limit problem by the same arguments as in the
proof of Proposition 9.

All that remains to show is that this quantity is continuously distributed. As ar-
gued in the proof of Lemma 20, however, if ⌘̂ is finite it is continuously distributed con-
ditional on �̂ and Sn,�̂ for almost every �̂ and Sn,�̂. This implies that ⌘̂ is continuously
distributed conditional on almost every realization of c↵�

1� ,C

�
�̂,V lo(Sn,�̂),Vup,H(Sn,�̂),⌃

�
,

and so proves continuity. ⇤

E.3 Proof of Variance Consistency

We first prove two auxiliary lemmas, which we then use to prove Proposition 10.

Lemma 21 Under Assumption 9,

1

n

nX

i=1

⇣
Y`Z(i)Y

0
`Z(i) � VPD|Z (Zi)

⌘
!p 0

uniformly over PD|Z 2 PD|Z .

Proof of Lemma 21 Note that we can write

1

n

nX

i=1

⇣
Y`Z(i)Y

0
`Z(i) � VPD|Z (Zi)

⌘
=

1

n

nX

i=1

⇣
Y`Z(i)Y

0
`Z(i) � VPD|Z

�
Z`Z(i)

�⌘
+

1

n

nX

i=1

⇣
VPD|Z

�
Z`Z(i)

�
� VPD|Z (Zi)

⌘
,

so to prove the result it suffices to show that both terms tend to zero. To show that
the second term tends to zero, note that by the triangle inequality and Assumption
9(4),

�����
1

n

nX

i=1

⇣
VPD|Z

�
Z`Z(i)

�
� VPD|Z (Zi)

⌘����� 
1

n

nX

i=1

���VPD|Z

�
Z`Z(i)

�
� VPD|Z (Zi)

���

 K

n

nX

i=1

��Zi � Z`Z(i)

��
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for K the upper bound on the Lipschitz constant. Note, next, that since Z is compact
by Assumption 9(1), the proof of Lemma 1 of Abadie & Imbens (2008) implies that

1

n

nX

i=1

��Zi � Z`Z(i)

��! 0.

Thus, we immediately see that 1
n

P
n

i=1

⇣
VPD|Z

�
Z`Z(i)

�
� VPD|Z (Zi)

⌘
! 0 uniformly

over PD|Z 2 PD|Z .
We next show that

1

n

nX

i=1

⇣
Y`Z(i)Y

0
`Z(i) � VPD|Z

�
Z`Z(i)

�⌘
!p 0.

To do so, note first that the number of observations that can be matched to a given
Zi, # {j : `Z (j) = i} , is bounded above by the so-called “kissing number” which is a
finite function K (dim (Zi)) of the dimension of Z (see Abadie et al. (2014)). Since Yi

is independent across i, this implies that for (A)jk the (j, k) element of a matrix A,
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By Assumption 9(2) and Chebyshev’s inequality, however, this implies that
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Y`Z(i)Y
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uniformly over PD|Z 2 PD|Z , which completes the proof. ⇤

Lemma 22 Under Assumption 9,
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YiY
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0
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uniformly over PD|Z 2 PD|Z .

Proof of Lemma 22 Note that we can write
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We first show the initial term converges in probability to zero, and then do the same
for the second term.

By independence,
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while the variance of the jkth element is
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Assumption 9(5) thus implies that for some constant C,
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which, together with Assumption 9(2) and the finiteness of the “kissing number”
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B (dim (Zi)) (see the proof of Lemma 21 above) implies that

lim sup
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uniformly over PD|Z 2 PD|Z , as we wanted to show.
To complete the proof, we need only show that
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converges to zero uniformly over PD|Z 2 PD|Z . Note, however, that by the triangle
inequality and Assumption 9(3),
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for K a Lipschitz constant and C a constant. As above, since Z is compact by
Assumption 9(1), the proof of Lemma 1 of Abadie & Imbens (2008) implies that
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��! 0,

and thus that (38) converges to zero uniformly over PD|Z 2 PD|Z . ⇤
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Proof of Proposition 10 Following proof of Lemma A.3 in Abadie et al. (2014),
note that
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Assumption 9(2) together with Chebyshev’s inequality implies that
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it suffices to prove that

1

n

nX

i=1

⇣
Y`Z(i)Y

0
`Z(i) � VPD|Z (Zi)

⌘
!p 0

and
1

n

nX

i=1

⇣
YiY

0
`Z(i) � µPD|Z (Zi)µPD|Z (Zi)

0
⌘
!p 0,

where the first statement follows from Lemma 21 and the second from Lemma 22.
Since
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uniformly over PD|Z 2 PD|Z by Assumption 2, however, the result follows by the
triangle inequality. ⇤
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F Performance Without Nuisance Parameters

This appendix discusses the simulated performance of the procedures we consider
in the simplified setting discussed in Section 5.1 of the paper. In particular, we
assume that there are no nuisance parameters (and thus no matrix Xn), and that
Yn ⇠ N (µn, I), and want to test H0 : µn  0. We simulate the power of the least
favorable, conditional, and hybrid tests. A number of other tests have been studied in
the setting without nuisance parameters, and for comparison we consider the test of
Romano et al. (2014a) (henceforth RSW).40 RSW include a simulation comparison of
their test to that of D. Andrews & Barwick (2012), while Cox & Shi (2019) compare
their test to both RSW and D. Andrews & Barwick (2012).

As noted in Section 5.1 of the paper the conditional test in this setting compares
⌘̂ = maxj Yn,j to a truncated normal critical value, truncated below at the second
largest element of Yn. The hybrid critical value considers the same test statistic but
compares it to a truncated normal critical value which adds an upper truncation point
equal to the level  least-favorable critical value.

For our simulations, we consider either two, ten, or fifty moments, k 2 {2, 10, 50}.
When k 2 {10, 50} the parameter space is very large and we are unable to fully
depict the power function. Instead, we focus on how the power varies in the first two
elements of µn, while the remaining elements are held at a fixed value. In particular,
we consider (µn,1, µn,2) 2 [�10, 10]2 , while for j > 2 we set µn,j = µ⇤ for a fixed value
µ⇤. Contours of the resulting power functions, based on 1000 simulations, are plotted
in Figures 3-7. For visibility, we also include plots of the difference in power functions
between the conditional and hybrid tests and the RSW test.

These simulations highlight a number of features discussed in the main text. Com-
paring the least favorable and conditional tests, we see that when the largest moment
is substantially larger than the second largest, the conditional test has better power
than does the least favorable test, particularly when the total number of moments is
large. By contrast, when the two largest moments are approximately the same size
the conditional test has poor power relative to the least favorable test. The hybrid
test substantially improves on the conditional test in this case, while largely retain-
ing the good performance of the conditional test in cases with many slack moments.

40Since this section considers a normal model with known variance, we consider a version of RSW
based on the normal distribution, discussed in Supplement Section S.1.2 of that paper, rather than
the bootstrap version they discuss in the main text.
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Comparing the hybrid test and the test of RSW, we see that neither test dominates
the other. The test of RSW has better power close to the diagonal, while the hybrid
test has better power somewhat further from the diagonal.

From these results, we see that while the conditional test offers a substantial im-
provement over the least favorable test in some cases, the performance deterioration
when the largest moment is not well-separated is a real problem. The hybrid testing
approach largely corrects this weakness, and attains performance roughly comparable
to the RSW approach, albeit with somewhat lower power close to the diagonal. Unlike
the approach of RSW, however, the hybrid approach extends easily to settings with
nuisance parameters, as we consider in the main text.
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Figure 3: Power of tests with k = 2.
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Figure 5: Power of tests with k = 10, µ⇤ = �10.
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Figure 6: Power of tests with k = 50, µ⇤ = 0.
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Figure 7: Power of tests with k = 50, µ⇤ = �10.

102



G Simulation Appendix

G.1 The Simulated Model

G.1.1 Competition and Firm Decisions

We consider competition between F firms, who in each period decide which set of
products to offer. As in Wollmann, the products (indexed by j) differ in their gross
weight rating gj, which can take on G possible values. The fixed cost of offering
a product in the current period depends on whether it was offered in the previous
period: if it was not previously marketed the costs are ✓c + ✓ggj. If the product was
previously marketed, the fixed costs scale down by a multiplicative factor �, so the
cost of entering a previously marketed product is �(✓c + ✓ggj).

Firm f estimates that marketing product j in period t will earn variable profits
⇡⇤
jft

, and chooses to enter the product if and only if the expected profits exceed the
fixed costs. Thus, if a firm offered product j in period t� 1, then the firm chooses to
offer j in period t iff

⇡⇤
jft
� �✓c � �✓ggj > 0.

If the firm didn’t offer the product j in period t�1, then it chooses to add product
j iff

⇡⇤
jft
� ✓c � ✓ggj > 0.

G.1.2 Distributional Assumptions

We set ⇡⇤
jft

= ⌘jt + ✏jft, the sum of a product-level shock that is common to all firms
and a firm-product idiosyncratic shock. We assume that ⌘jt ⇠ N (0, �2

⌘
). If j was not

offered in the previous period, then ✏jft ⇠ N (�µf + �✓ggj, �2
✏
); if the product was

offered previously, then ✏jft ⇠ N (µf + ✓ggj, �2
✏
). Note that the mean profitability of

marketing a product depends on a firm-specific mean, µf , which allows us to match
the firm-level market shares observed in Wollmann’s data. We also constuct the mean
of the ✏jft term to depend on the product’s weight and whether it was marketed in the
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previous period in a way that guarantees that all simulated products will be offered
with the same probability in our simulations.

While firms make their decisions using ⇡⇤
jft

, we assume that the econometrician
observes only ⇡jft = ⇡⇤

jft
+ ⌫jt + ⌫jft. The ⌫ terms represent measurement or expec-

tational errors. We assume that ⌫jt and ⌫jft are independently drawn from a normal
distribution with mean 0 and variance �2

⌫
.

G.2 Calibration

G.2.1 Exogenous Parameter Values

We set F = 9 to match the number of firms in Wollmann’s data, and G = 22 to
match the number of unique values of GWR. We use ✓c = 129.73, ✓g = �21.38, and
� = 0.386 to match the results from the estimates in the November 2018 version of
Wollman (2018).41 We set the values of g to be 22 evenly spaced points between
12,700 and 54,277 to match the lowest and highest GWR figures reported in Table II
of Wollman (2018), which gives the average GWR for different buyer types.

G.2.2 Simulating Data for Calibration

To calibrate the remaining parameters, we simulate data according to the process
described above, and set the parameters to match moments of the simulated data to
those in Wollmann’s data.

In order to simulate the data for the calibration, we first fix standard normal draws
that are used to construct the ⌘, ✏, and ⌫ shocks. These standard normals draws are
then scaled by the desired variance parameters in each simulation. Letting Jft denote
the set of products offered by firm f in period t, the simulations begin in state 0 with
Jf0 = ; for all firms. We then simulate Jft and ⇡⇤ going forward using the dynamics
described above. We discard the first 1,000 periods as burnout so as to obtain draws
from the stationary distribution, and calibrate the model using 27,000 subsequent
periods. After discarding 1,000 draws, we obtain essentially identical results if we
begin from the state where all products are in the market in rather than all products
out of the market.

41Note that Wollmann denotes by � 1
�

what we have been calling �.
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G.2.3 Calibrating the Remaining Parameters

The parameter values to calibrate are {µf}, �⌘, �✏, �⌫ .
Intuition for Calibration. The intuition for the calibration is as follows. The

firm-specific means µf affect the number of products each firm offers, and so we
calibrate these to match the market shares and total number of products offered
in Wollmann’s data. The �✏ and �⌘ terms affect how often firms add and remove
products, and so we calibrate these to match the variability of the number of products
offered over time in Wollmann’s data. Lastly, we calibrate �⌫ , which governs the
variance of the expectational/measurement error. We do not have direct measures
of the variability of firm profits in Wollmann’s data, but if markups are relatively
constant, then the variance in firm profits is one-to-one with the variance of quantity
sold, and so we calibrate �⌫ to match the variability of quantities sold assuming mark-
ups are fixed at 35%.

Technical Details for Calibration.
The calibration proceeds as follows:
1) We first calibrate (�⌘, �✏) and the µf terms to match the market shares and

variability of products offered in Wollmann. This calibration process involves an inner
and outer loop, described below.

a) The inner loop for µf . Given a guess for (�⌘, �✏), we calibrate µf to match the
market share and average number of products in Wollmann’s data. Market shares
are taken from Table III in Wollman (2018). Wollmann does not provide the mean
number of products offered by year, only the min and max, so we approximate it by
taking the midpoint between the two extremes, which gives 48 total products per year
on average.

b) In the outer loop, we calibrate (�⌘, �✏) to match a measure of the variability of
the number of products offered in Wollmann’s data. In particular, Table I in Wollman
(2018) lists 9-year averages for the total number of products offered for three 9-year
periods (he has 27 years of data). We run 1,000 simulations of 27 periods, and for
each 27-year period we calculate the average number of products offered within each
9-year subinterval, just as Wollmann does. We then calibrate �⌘ so that the average
variance in the number of products offered across three consecutive 9 year periods
matches that in Wollmann’s data.

The simulated variance comes very close to the target variance whenever �⌘ = �✏,
regardless of scaling. We therefore choose �⌘ = �✏ = 30 because this gives that the
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variance of ⇡⇤ is roughly half of the variance of ⇡.
2) Lastly, we calibrate �⌫ to match a moment implied by the variability in quantity

sold across time in Wollmann. In particular, if prices and markups are relatively
constant, then the variance in quantities will be well-approximated by a constant
times the variance in profits: V ar (⇡jft) ⇡ p̄2m̄2V ar (Qjft), where p̄ and m̄ are the
average prices and markups.42 For our calibration, we set p̄ to be the average price in
Wollmann’s data ($66,722), and set m̄ equal to 0.35. As with the number of products
offered, Wollmann does not report annual quantities, but rather the average for 3
9-year periods. We thus use a procedure analogous to that described in step 1b) to
match the variance of the 9-year averages of quantity sold.

G.2.4 Calibrated Parameters

Tables 3 and 4 show the calibrated values for the µf and variance parameters, respec-
tively.

Table 3: Calibrated µf Parameters

Firm µf

Chrysler 74.31
Ford 98.36
Daimler 114.69
GM 80.11
Hino 67.71
International 110.63
Isuzu 80.15
Paccar 114.63
Volvo 94.17

42This is because if prices and costs are constant across firms,

⇡jft = Qjft(p� c)

= Qjft

p� c

p
p

= Qjft ⇥m⇥ p.

Thus, V ar (⇡jft) = m2p2V ar (Qjft) when p and c are constant, and this holds approximately with
averages if the variance in m and p is small relative to that in Q.
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Table 4: Calibrated Variance Parameters

Parameter Value
�⌘ 30.00
�✏ 30.00
�⌫ 57.96

G.3 Details of simulations in Section 7

G.3.1 Drawing from Independent Markets

Wollmann’s original model involves observations of sequential periods from the same
market. If we were to construct moments at the product-period level in this setting,
then the sequential nature of the model would induce serial correlation in the realiza-
tions of the moments. Although ⌃ can be estimated in this setting, accounting for
serial correlation substantially complicates covariance estimation. Since covariance
estimation is not the focus of this paper, and Wollman (2018) performs inference as-
suming no serial correlation, we instead focus on a modified DGP corresponding to a
cross-section of independent markets, a common setting in the industrial organization
literature. To do this, we sample from the stationary distribution of the calibrated
DGP described above as follows. We draw a 51,000 period sequential chain, and dis-
card the first 1,000 periods as burnout. For each simulated dataset, we then randomly
subsample 500 periods from this chain.

G.3.2 Parameter Grids and Monte Carlo Draws

For all of our simulations, we conduct inference by discretizing the parameter space
for the parameter of interest. For �g and the cost of the mean-weight truck, we use
1,001 gridpoints; for �, we use 100 gridpoints. The bounds for the grid depend on the
specification, and are equal to the upper and lower bound of the x-axis shown in the
rejection probabilty figures (Figures 1 and 2 and Appendix Figure 6).

To calculate the LFP critical values, we draw a fixed matrix ⌅ of standard normal
draws of size M ⇥ 10, 000, and we use these for all of our calculations. Since the LF
procedure is more computationally intensive, we calculate it using a matrix of size
M ⇥ 1000.
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G.3.3 Handling of Numerical Precision Errors

In simulating the draws for the LF approach, in certain very rare cases we encoun-
tered computational issues in which the linear program for one of the draws did not
converge. In these cases, we treat the draw as if it were infinity, which pushes the
estimated critical value slightly higher, and makes our estimate of the rejection prob-
ability slightly conservative. However, in all specifications this happens in no more
than 0.01% of cases (of approximately 50 million simulations), and is thus unlikely to
have any substantial impact on our results.

G.3.4 Additional Simulation Results

This appendix reports additional simulation results to complement the results reported
in Section 7 of the main text. In particular, Figure 8 reports rejection probabilities
for tests of hypotheses on �g, while Tables 5-7 report the 5th and 95th percentiles of
the excess length distribution for the confidence sets we study.
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Figure 8: Rejection probabilities for 5% tests of �g

(a) 2 Parameters, 6 Moments (b) 2 Parameters, 14 Moments

(c) 4 Parameters, 14 Moments (d) 4 Parameters, 38 Moments

(e) 10 Parameters, 38 Moments (f) 10 Parameters, 110 Moments
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Table 5: Mean and Select Percentiles of Excess Length for Cost of Mean-Weight Truck

Mean of Excess Length Distribution

#Parameters #Moments LFP LF Conditional Hybrid

2 6 5.38 4.05 4.02 3.89
2 14 12.79 10.61 10.74 8.72
4 14 7.59 5.94 4.23 4.25
4 38 18.79 16.03 14.33 11.13
10 38 12.76 10.24 4.87 4.79
10 110 25.55 22.27 17.74 14.03

5th Percentile of Excess Length Distribution

#Parameters #Moments LFP LF Conditional Hybrid

2 6 3.38 2.06 2.12 1.80
2 14 7.60 5.44 4.97 3.34
4 14 5.51 3.88 2.09 2.09
4 38 15.02 11.67 7.53 3.96
10 38 10.34 7.82 2.43 2.43
10 110 22.45 18.89 11.58 7.19

Median of Excess Length Distribution

#Parameters #Moments LFP LF Conditional Hybrid

2 6 5.32 3.99 4.07 3.75
2 14 12.75 10.48 10.49 8.54
4 14 7.56 5.91 4.07 4.37
4 38 19.08 16.33 14.68 11.60
10 38 12.70 10.20 4.71 4.71
10 110 25.61 22.36 17.91 14.34

95th Percentile of Excess Length Distribution

#Parameters #Moments LFP LF Conditional Hybrid

2 6 7.45 6.16 6.02 6.02
2 14 17.99 15.99 17.97 15.85
4 14 9.78 8.07 6.32 6.48
4 38 22.07 19.77 20.05 17.61
10 38 15.22 12.63 6.98 7.31
10 110 28.43 25.58 23.11 19.70

110



Table 6: Mean and Select Percentiles of Excess Length for �g

Mean of Excess Length Distribution

#Parameters #Moments LFP LF Conditional Hybrid

2 6 5.99 4.29 4.17 3.91
2 14 6.92 5.40 4.28 4.11
4 14 7.02 5.21 4.33 4.13
4 38 8.01 6.73 4.45 4.46
10 38 8.16 6.63 4.50 4.47
10 110 9.08 7.63 4.81 4.83

5th Percentile of Excess Length Distribution

#Parameters #Moments LFP LF Conditional Hybrid

2 6 2.70 1.04 0.93 0.68
2 14 3.53 2.04 0.93 0.77
4 14 3.62 1.83 0.93 0.68
4 38 4.58 3.38 1.07 1.15
10 38 4.73 3.22 1.02 0.93
10 110 5.56 4.13 1.40 1.43

Median of Excess Length Distribution

#Parameters #Moments LFP LF Conditional Hybrid

2 6 6.02 4.28 4.18 3.93
2 14 6.91 5.40 4.43 4.18
4 14 7 5.19 4.43 4.18
4 38 7.97 6.68 4.43 4.43
10 38 8.10 6.58 4.43 4.43
10 110 9.11 7.69 5.18 5.18

95th Percentile of Excess Length Distribution

#Parameters #Moments LFP LF Conditional Hybrid

2 6 9.17 7.47 7.43 7.06
2 14 10.21 8.68 7.56 7.43
4 14 10.23 8.51 7.68 7.43
4 38 11.32 10 7.68 7.68
10 38 11.44 9.87 7.68 7.68
10 110 12.55 11.11 8.43 8.43
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Table 7: Mean and Select Percentiles of Excess Length for �

Mean of Excess Length Distribution

#Parameters #Moments LFP LF Conditional Hybrid
3 6 84.17+ 69.84+ 59.38+ 55.68+
3 14 0.74 0.58 0.48+ 0.41
5 14 13.51+ 10.45+ 10.3+ 7.87+
5 38 0.85 0.64 1.33+ 0.48

11 38 1.49 1.08 2.01+ 0.83
11 110 0.89 0.65 2.78+ 0.5

5th Percentile of Excess Length Distribution

#Parameters #Moments LFP LF Conditional Hybrid
3 6 15.15 10.1 6.31 6.31
3 14 0.35 0.25 0.15 0.1
5 14 3.54 2.3 1.06 1.06
5 38 0.5 0.35 0.25 0.05

11 38 0.81 0.5 0.2 0.2
11 110 0.56 0.35 0.66 0.03

Median of Excess Length Distribution

#Parameters #Moments LFP LF Conditional Hybrid
3 6 118.69 61.87 41.67 36.62
3 14 0.76 0.56 0.45 0.35
5 14 10.25 7.78 6.01 5.3
5 38 0.86 0.66 0.96 0.45

11 38 1.41 1.01 1.01 0.81
11 110 0.86 0.66 2.57 0.56

95th Percentile of Excess Length Distribution

#Parameters #Moments LFP LF Conditional Hybrid
3 6 123.11+ 123.11+ 123.11+ 123.11+
3 14 1.16 0.96 0.96 0.86
5 14 31.29+ 31.29+ 31.29+ 27.4
5 38 1.16 0.96 4.21+ 0.96

11 38 2.42 1.92 7.01+ 1.72
11 110 1.26 0.96 5.7+ 0.88

Note: For certain specifications and simulation draws, the rejection probability did not reach 1 at
the edge of our grid for �. In these cases, we truncate the excess length at the edge of the grid. A +

denotes statistics that are affected by this truncation.
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H Bisection Algorithm for Computing V lo
and V up

When the conditions in step 2 in Section 6.3 do not hold, V lo and V up must be
calculated by finding the minimum and maximum of the set

C =

(
c :

c = max�̃ �̃0
⇣
s+ ⌃�

�0⌃�
c
⌘

subject to �̃ � 0, W 0
n
�̃ = e1

)

Recall that the set C is convex, and its endpoints, if they are finite, can therefore be
calculated via bisection. We thus recommend the following procedure for calculating
V up. Begin by specifying a large value M , such that if V up > M , for practical purposes
we can consider V up =1.43 Then implement Algorithm 1 described in the box below.

43In our implementation, we set M = max
�
100, ⌘̂ + 20

p
�0⌃�

�
, which guarantees that M is at

least 20 standard deviations above ⌘.
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Algorithm 1 Bisection Method for Calculating V up

1: procedure computeVUP
2: if CheckIfInC(M) then

3: V up  1
4: else

5: lb ⌘
6: ub M
7: while ub� lb > TolV do

8: mid  1
2(lb+ ub)

9: if CheckIfInC(mid) then

10: lb mid
11: else

12: ub mid
13: V up  1

2(lb+ ub)

where we define the functions:
1: function LPValue(c)
2: return

max�̃ �̃0
⇣
s+ ⌃�

�0⌃�
c
⌘

subject to �̃ � 0, W 0
n
�̃ = e1

3: function CheckIfInC(c)
4: if | c� LPV alue(c)| < TolLP then

5: return True
6: else

7: return False
8:
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