Final Exam – 140A-1: Geometric Analysis

Due on 12/22

Part I: Complete 5 problems from Problems 1-6.

Problem 1. Let $f \colon \mathbb{R}P^3 \to T^3 := (\mathbb{R}/2\pi\mathbb{Z})^3$ be a smooth map. Show that f cannot be an immersion.

Problem 2. Let M be a smooth manifold of dimension n. Suppose α is a closed nowhere-zero (n-1)-form on M. Show that for every $p \in M$ there exists a neighborhood U of p and a smooth chart $\varphi = (x_1, \dots, x_n) \colon U \to \mathbb{R}^n$ near p such that in this chart we have

$$\alpha|_U = dx_2 \wedge dx_3 \wedge \dots \wedge dx_n.$$

Problem 3. Let U and V be smooth vector fields on \mathbb{R}^3 defined by

$$U(x, y, z) = \frac{\partial}{\partial x}$$
 and $V(x, y, z) = F(x, y, z) \frac{\partial}{\partial y} + G(x, y, z) \frac{\partial}{\partial z}$

where F(x, y, z) and G(x, y, z) are smooth functions on \mathbb{R}^3 . Show that there exists a proper foliation of \mathbb{R}^3 by 2-dimensional embedded submanifolds such that the vector fields U and V everywhere span the tangent spaces of these submanifolds if and only if

$$F(x, y, z) = f(y, z)e^{h(x, y, z)}$$
 and $G(x, y, z) = g(y, z)e^{h(x, y, z)}$

for some $f, g \in C^{\infty}(\mathbb{R}^2)$ and $h \in C^{\infty}(\mathbb{R}^3)$ such that (f, g) does not vanish on \mathbb{R}^2 .

Problem 4. Let M and N be connected smooth manifolds and $\pi_1: M \times N \to M$ and $\pi_2: M \times N \to N$ the projection maps onto M and N respectively. Show directly from the definitions that the homomorphism defined by

$$\Psi \colon H^1_{\mathrm{deR}}(M) \oplus H^1_{\mathrm{deR}}(N) \to H^1_{\mathrm{deR}}(M \times N), \quad ([\alpha], [\beta]) \mapsto [\pi_1^* \alpha + \pi_2^* \beta]$$

is well-defined and an isomorphism.

Problem 5. [Poincare duality for de Rham cohomology with compact support]

Let M be an oriented manifold of dimension n and possibly non-compact. Let $\Omega_c^*(M)$ denote the cochain complexes of smooth differential forms with compact support on M such that

$$\Omega^p_c(M) = \{ \omega \in \Omega^p(M) \mid \operatorname{supp}(\omega) \subset M \text{ is compact} \}, \forall p \ge 1.$$

We denote the cohomology of this cochain complex under the exterior derivative d by the de Rham cohomology of compact support $H^*_{\text{deR,c}}(M)$ for M.

(a) Show that for each $0 \le p \le n$ the pairing

$$H^p_{\mathrm{deR}}(M) \otimes H^{n-p}_{\mathrm{deR},\mathrm{c}}(M) \to \mathbb{R}, \ [\alpha] \otimes [\beta] \to \int_M \alpha \wedge \beta$$

is well-defined.

- (b) Show that the above pairing is non-degenerate if $M = \mathbb{R}^n$.
- (c) Suppose that M has a good cover $\underline{U} = \{U_{\alpha}\}_{\alpha \in I}$ (i.e., the intersections $U_{i_1} \cap U_{i_2} \cap \cdots \cap U_{i_k}$ is either empty or diffeomorphic to \mathbb{R}^n for all k). Show that the pairing is nondegenerate for M.

Problem 6. [Gluing of sheaves] Let X be a topological space and $\underline{U} = \{U_{\alpha}\}_{\alpha \in I}$ be an open cover of X, and suppose we are given for each α a sheaf \mathscr{F}_{α} of abelian groups on U_{α} , and for each α, β we are given a sheaf isomorphism $\varphi_{\alpha\beta} : \mathscr{F}_{\beta}|_{U_{\alpha} \cap U_{\beta}} \to \mathscr{F}_{\alpha}|_{U_{\alpha} \cap U_{\beta}}$ such that

- (1) For each α , we have $\varphi_{\alpha\alpha} = id$,
- (2) (Cocycle condition) For each $\alpha, \beta, \gamma \in I$, we have $\varphi_{\beta\gamma}\varphi_{\gamma\alpha} = \varphi_{\beta\alpha}$ on all the triple intersections $U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$.

Show that there exists a unique sheaf \mathscr{F} on X together with isomorphisms $\psi_{\alpha} : \mathscr{F}|_{U_{\alpha}} \xrightarrow{\cong} \mathscr{F}_{\alpha}$ such that for all $\alpha, \beta \in I$, we have that $\psi_{\beta} = \varphi_{\beta\alpha} \circ \psi_{\alpha}$ on all double overlaps $U_{\alpha} \cap U_{\beta}$. Where is the cocycle condition used in your proof?

Part II: Complete Problems 7-9 as homework for Hodge theory.

Problem 7. [Harmonic forms on the torus] Let \mathbb{R}^n be the Euclidean space equipped with the standard Riemannian metric g on \mathbb{R}^n given by $g_p(\frac{\partial}{\partial x_i}|_p, \frac{\partial}{\partial x_j}|_p) = \delta_{ij}$ where $\frac{\partial}{\partial x_1}|_p, \dots, \frac{\partial}{\partial x_n}|_p$ are the standard basis of $T_p\mathbb{R}^n \cong \mathbb{R}^n$ and for all $p \in \mathbb{R}^n$.

(a) Derive the explicit formula for Laplacian on the smooth differential forms of \mathbb{R}^n . Deduce from this that a differential k-form of the form

$$\alpha = \sum_{I = \{i_1 < i_2 < \dots < i_k\}} \alpha_I dx_{i_1} \wedge dx_{i_2} \wedge \dots \wedge dx_{i_k}$$

is a harmonic form if and only if its coefficients α_I are harmonic functions on \mathbb{R}^n .

(b) Let $T := (\mathbb{R}/2\pi\mathbb{Z})^n$ be the standard real torus of dimension n which is the quotient of \mathbb{R}^n under the smooth action of $\Gamma = (2\pi\mathbb{Z})^n$ by translations. The metric on T is induced from the Euclidean metric g on \mathbb{R}^n . Show that the only harmonic functions on T are the constants. Deduce from this that there is a bijection between harmonic forms on T and the differential forms on \mathbb{R}^n with constant coefficients which are Γ -invariant. (See solution to Problem 2(b) of homework 5 for Γ -invariant forms).

(c) Show that $H^k_{deR}(T, \mathbb{R}) = \Lambda_k(H^1_{deR}(T, \mathbb{R})) = \Lambda_k(\mathbb{R}^n)^*$, where $\Lambda_k(H^1_{deR}(T, \mathbb{R}))$ is the *k*th exterior power of the real vector space $H^1_{deR}(T, \mathbb{R})$.

Problem 8. [Spectral decomposition of Laplacian] Let (M, g) be a compact oriented Riemannian manifold. We denote by

$$\Delta \colon \Omega^p(M) \to \Omega^p(M)$$

the Laplacian-Beltrami operator defined by g. Prove the following statements

- (a) All eigenvalues of Δ are non-negative;
- (b) Eigenfunctions corresponding to distinct eigenvalues are orthogonal with respect to the L_2 -inner product;
- (c) Eigenspaces of Δ are finite-dimensional;
- (d) The set of eigenvalues of Δ has no limit point;
- (e) Δ has infinitely many positive eigenvalues.

(Hints are given in Exercise 16 on Page 254 of Warner)

Problem 9. [Elliptic operators]

Let X be a smooth vector field on a smooth manifold M. We define

 $P \colon \Gamma(M, TM) \to \Gamma(M, TM)$ by P(Y) = [X, Y].

- (a) Show that P is a first-order differential operator.
- (b) What is the symbol of this differential operator P?
- (c) Under what conditions (on M and/or X) is the differential operator P elliptic ?

Bonus Problem(+20pts) [The exponential exact sequence and first Chern class of a complex line bundle]

Let M be a complex manifold and denote by \mathcal{O} and \mathcal{O}^* by the sheaf of holomorphic functions and sheaf of nonzero holomorphic functions on M.

(a) Prove that there is a short exact sequence of sheaves

$$0 \to \underline{\mathbb{Z}} \xrightarrow{i} \mathscr{O} \xrightarrow{\exp} \mathscr{O}^* \to 0,$$

where $i: \mathbb{Z} \to \mathcal{O}$ is the sheaf homomorphism given the inclusion of locally constant integral functions into \mathcal{O} and $\exp: \mathcal{O} \to \mathcal{O}^*$ is the sheaf homomorphism defined by $f \mapsto \exp(2\pi i f)$ for open set $U \subset M$ and $f \in \mathcal{O}(U)$. This is called the exponential exact sequence.

(b) Given the exponential exact sequence, there is a long exact sequence of Cech cohomology groups

$$\cdots \to \check{H}^1(M,\mathscr{O}) \to \check{H}^1(M,\mathscr{O}^*) \xrightarrow{\delta} \check{H}^2(M,\underline{\mathbb{Z}})) \to \check{H}^2(M,\mathscr{O}) \to \cdots$$

By homework 8 problem 4, we know that $\check{H}^1(M, GL_1(\mathscr{O})) \cong \check{H}^1(M, \mathscr{O}^*)$ classifies the isomorphism classes of holomorphic line bundles, so each holomorphic line bundle L defines a class $[L] \in \check{H}^1(M, \mathscr{O}^*)$. The 1st Chern class $c_1(L)$ of L is sometimes defined to be the image of $[L] \in \check{H}^1(M, \mathscr{O}^*)$ under the composition

$$\check{H}^1(M, \mathscr{O}^*) \xrightarrow{\delta} \check{H}^2(M, \underline{\mathbb{Z}})) \xrightarrow{\varphi_*} \check{H}^2(M, \underline{\mathbb{R}}) \cong H^2_{\mathrm{deR}}(M, \mathbb{R}) \xrightarrow{\cdot \otimes \mathbb{C}} H^2_{\mathrm{deR}}(M, \mathbb{C}),$$

where δ is the connecting homomorphism and φ_* is the homomorphism induced by the sheaf homomorphism $\varphi: \mathbb{Z} \to \mathbb{R}$ and the last homomorphism is $H^2_{\text{deR}}(M, \mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C} \cong H^2_{\text{deR}}(M, \mathbb{C}).$

(c) Let $\gamma \to \mathbb{C}P^1$ be the tautological line bundle on $\mathbb{C}P^1$. Compute $\int_{\mathbb{C}P^1} c_1(\gamma^*)$, where $\mathbb{C}P^1$ has its canonical orientation as a complex manifold (i.e. $\Lambda_{top}(T\mathbb{C}P)$ has a canonical trivialization as a real line bundle) and $c_1(\gamma^*)$ is the 1st Chern class of the dual line bundle γ^* to the tautological line bundle.