Final Exam - 140A-1: Geometric Analysis

Due on $12 / 22$

Part I: Complete 5 problems from Problems 1-6.
Problem 1. Let $f: \mathbb{R} P^{3} \rightarrow T^{3}:=(\mathbb{R} / 2 \pi \mathbb{Z})^{3}$ be a smooth map. Show that f cannot be an immersion.

Problem 2. Let M be a smooth manifold of dimension n. Suppose α is a closed nowhere-zero $(n-1)$-form on M. Show that for every $p \in M$ there exists a neighborhood U of p and a smooth chart $\varphi=\left(x_{1}, \cdots, x_{n}\right): U \rightarrow \mathbb{R}^{n}$ near p such that in this chart we have

$$
\left.\alpha\right|_{U}=d x_{2} \wedge d x_{3} \wedge \cdots \wedge d x_{n}
$$

Problem 3. Let U and V be smooth vector fields on \mathbb{R}^{3} defined by

$$
U(x, y, z)=\frac{\partial}{\partial x} \text { and } V(x, y, z)=F(x, y, z) \frac{\partial}{\partial y}+G(x, y, z) \frac{\partial}{\partial z}
$$

where $F(x, y, z)$ and $G(x, y, z)$ are smooth functions on \mathbb{R}^{3}. Show that there exists a proper foliation of \mathbb{R}^{3} by 2-dimensional embedded submanifolds such that the vector fields U and V everywhere span the tangent spaces of these submanifolds if and only if

$$
F(x, y, z)=f(y, z) e^{h(x, y, z)} \text { and } G(x, y, z)=g(y, z) e^{h(x, y, z)}
$$

for some $f, g \in C^{\infty}\left(\mathbb{R}^{2}\right)$ and $h \in C^{\infty}\left(\mathbb{R}^{3}\right)$ such that (f, g) does not vanish on \mathbb{R}^{2}.
Problem 4. Let M and N be connected smooth manifolds and $\pi_{1}: M \times N \rightarrow M$ and $\pi_{2}: M \times N \rightarrow N$ the projection maps onto M and N respectively. Show directly from the definitions that the homomorphism defined by

$$
\Psi: H_{\mathrm{deR}}^{1}(M) \oplus H_{\mathrm{deR}}^{1}(N) \rightarrow H_{\mathrm{deR}}^{1}(M \times N), \quad([\alpha],[\beta]) \mapsto\left[\pi_{1}^{*} \alpha+\pi_{2}^{*} \beta\right]
$$

is well-defined and an isomorphism.
Problem 5. [Poincare duality for de Rham cohomology with compact support]
Let M be an oriented manifold of dimension n and possibly non-compact. Let $\Omega_{c}^{*}(M)$ denote the cochain complexes of smooth differential forms with compact support on M such that

$$
\Omega_{c}^{p}(M)=\left\{\omega \in \Omega^{p}(M) \mid \operatorname{supp}(\omega) \subset M \text { is compact }\right\}, \forall p \geq 1 .
$$

We denote the cohomology of this cochain complex under the exterior derivative d by the de Rham cohomology of compact support $H_{\text {deR,c }}^{*}(M)$ for M.
(a) Show that for each $0 \leq p \leq n$ the pairing

$$
H_{\mathrm{deR}}^{p}(M) \otimes H_{\mathrm{deR}, \mathrm{c}}^{n-p}(M) \rightarrow \mathbb{R}, \quad[\alpha] \otimes[\beta] \rightarrow \int_{M} \alpha \wedge \beta
$$

is well-defined.
(b) Show that the above pairing is non-degenerate if $M=\mathbb{R}^{n}$.
(c) Suppose that M has a good cover $\underline{U}=\left\{U_{\alpha}\right\}_{\alpha \in I}$ (i.e., the intersections $U_{i_{1}} \cap U_{i_{2}} \cap \cdots \cap U_{i_{k}}$ is either empty or diffeomorphic to \mathbb{R}^{n} for all k). Show that the pairing is nondegenerate for M.

Problem 6. [Gluing of sheaves] Let X be a topological space and $\underline{U}=\left\{U_{\alpha}\right\}_{\alpha \in I}$ be an open cover of X, and suppose we are given for each α a sheaf \mathscr{F}_{α} of abelian groups on U_{α}, and for each α, β we are given a sheaf isomorphism $\varphi_{\alpha \beta}:\left.\left.\mathscr{F}_{\beta}\right|_{U_{\alpha} \cap U_{\beta}} \rightarrow \mathscr{F}_{\alpha}\right|_{U_{\alpha} \cap U_{\beta}}$ such that
(1) For each α, we have $\varphi_{\alpha \alpha}=i d$,
(2) (Cocycle condition) For each $\alpha, \beta, \gamma \in I$, we have $\varphi_{\beta \gamma} \varphi_{\gamma \alpha}=\varphi_{\beta \alpha}$ on all the triple intersections $U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$.

Show that there exists a unique sheaf \mathscr{F} on X together with isomorphisms $\psi_{\alpha}: \mathscr{F}_{U_{\alpha}} \cong \mathscr{F}_{\alpha}$ such that for all $\alpha, \beta \in I$, we have that $\psi_{\beta}=\varphi_{\beta \alpha} \circ \psi_{\alpha}$ on all double overlaps $U_{\alpha} \cap U_{\beta}$. Where is the cocycle condition used in your proof?

Part II: Complete Problems 7-9 as homework for Hodge theory.
Problem 7. [Harmonic forms on the torus] Let \mathbb{R}^{n} be the Euclidean space equipped with the standard Riemannian metric g on \mathbb{R}^{n} given by $g_{p}\left(\left.\frac{\partial}{\partial x_{i}}\right|_{p},\left.\frac{\partial}{\partial x_{j}}\right|_{p}\right)=\delta_{i j}$ where $\left.\frac{\partial}{\partial x_{1}}\right|_{p},\left.\cdots \frac{\partial}{\partial x_{n}}\right|_{p}$ are the standard basis of $T_{p} \mathbb{R}^{n} \cong \mathbb{R}^{n}$ and for all $p \in \mathbb{R}^{n}$.
(a) Derive the explicit formula for Laplacian on the smooth differential forms of \mathbb{R}^{n}. Deduce from this that a differential k-form of the form

$$
\alpha=\sum_{I=\left\{i_{1}<i_{2}<\cdots<i_{k}\right\}} \alpha_{I} d x_{i_{1}} \wedge d x_{i_{2}} \wedge \cdots \wedge d x_{i_{k}}
$$

is a harmonic form if and only if its coefficients α_{I} are harmonic functions on \mathbb{R}^{n}.
(b) Let $T:=(\mathbb{R} / 2 \pi \mathbb{Z})^{n}$ be the standard real torus of dimension n which is the quotient of \mathbb{R}^{n} under the smooth action of $\Gamma=(2 \pi \mathbb{Z})^{n}$ by translations. The metric on T is induced from the Euclidean metric g on \mathbb{R}^{n}. Show that the only harmonic functions on T are the constants. Deduce from this that there is a bijection between harmonic forms on T and the differential forms on \mathbb{R}^{n} with constant coefficients which are Γ-invariant. (See solution to Problem 2(b) of homework 5 for Γ-invariant forms).
(c) Show that $H_{\mathrm{deR}}^{k}(T, \mathbb{R})=\Lambda_{k}\left(H_{\mathrm{deR}}^{1}(T, \mathbb{R})\right)=\Lambda_{k}\left(\mathbb{R}^{n}\right)^{*}$, where $\Lambda_{k}\left(H_{\mathrm{deR}}^{1}(T, \mathbb{R})\right)$ is the k th exterior power of the real vector space $H_{\mathrm{deR}}^{1}(T, \mathbb{R})$.

Problem 8. [Spectral decomposition of Laplacian]
Let (M, g) be a compact oriented Riemannian manifold. We denote by

$$
\Delta: \Omega^{p}(M) \rightarrow \Omega^{p}(M)
$$

the Laplacian-Beltrami operator defined by g. Prove the following statements
(a) All eigenvalues of Δ are non-negative;
(b) Eigenfunctions corresponding to distinct eigenvalues are orthogonal with respect to the L_{2}-inner product;
(c) Eigenspaces of Δ are finite-dimensional;
(d) The set of eigenvalues of Δ has no limit point;
(e) Δ has infinitely many positive eigenvalues.
(Hints are given in Exercise 16 on Page 254 of Warner)

Problem 9. [Elliptic operators]
Let X be a smooth vector field on a smooth manifold M. We define

$$
P: \Gamma(M, T M) \rightarrow \Gamma(M, T M) \text { by } P(Y)=[X, Y] .
$$

(a) Show that P is a first-order differential operator.
(b) What is the symbol of this differential operator P ?
(c) Under what conditions (on M and/or X) is the differential operator P elliptic ?

Bonus Problem(+20 pts) [The exponential exact sequence and first Chern class of a complex line bundle]

Let M be a complex manifold and denote by \mathscr{O} and \mathscr{O}^{*} by the sheaf of holomorphic functions and sheaf of nonzero holomorphic functions on M.
(a) Prove that there is a short exact sequence of sheaves

$$
0 \rightarrow \underline{\mathbb{Z}} \xrightarrow{i} \mathscr{O} \xrightarrow{\exp } \mathscr{O}^{*} \rightarrow 0,
$$

where $i: \underline{\mathbb{Z}} \rightarrow \mathscr{O}$ is the sheaf homomorphism given the inclusion of locally constant integral functions into \mathscr{O} and $\exp : \mathscr{O} \rightarrow \mathscr{O}^{*}$ is the sheaf homomorphism defined by $f \mapsto \exp (2 \pi i f)$ for open set $U \subset M$ and $f \in \mathscr{O}(U)$. This is called the exponential exact sequence.
(b) Given the exponential exact sequence, there is a long exact sequence of Čech cohomology groups

$$
\left.\cdots \rightarrow \check{H}^{1}(M, \mathscr{O}) \rightarrow \check{H}^{1}\left(M, \mathscr{O}^{*}\right) \xrightarrow{\delta} \check{H}^{2}(M, \underline{\mathbb{Z}})\right) \rightarrow \check{H}^{2}(M, \mathscr{O}) \rightarrow \cdots
$$

By homework 8 problem 4, we know that $\check{H}^{1}\left(M, G L_{1}(\mathscr{O})\right) \cong \check{H}^{1}\left(M, \mathscr{O}^{*}\right)$ classifies the isomorphism classes of holomorphic line bundles, so each holomorphic line bundle L defines a class $[L] \in \breve{H}^{1}\left(M, \mathscr{O}^{*}\right)$. The 1st Chern class $c_{1}(L)$ of L is sometimes defined to be the image of $[L] \in \breve{H}^{1}\left(M, \mathscr{O}^{*}\right)$ under the composition

$$
\left.\check{H}^{1}\left(M, \mathscr{O}^{*}\right) \xrightarrow{\delta} \check{H}^{2}(M, \underline{\mathbb{Z}})\right) \xrightarrow{\varphi_{*}} \check{H}^{2}(M, \underline{\mathbb{R}}) \cong H_{\mathrm{deR}}^{2}(M, \mathbb{R}) \xrightarrow{\bullet \otimes \mathbb{C}} H_{\mathrm{deR}}^{2}(M, \mathbb{C}),
$$

where δ is the connecting homomorphism and φ_{*} is the homomorphism induced by the sheaf homomorphism $\varphi: \underline{\mathbb{Z}} \rightarrow \mathbb{R}$ and the last homomorphism is $H_{\mathrm{deR}}^{2}(M, \mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C} \cong$ $H_{\mathrm{deR}}^{2}(M, \mathbb{C})$.
(c) Let $\gamma \rightarrow \mathbb{C} P^{1}$ be the tautological line bundle on $\mathbb{C} P^{1}$. Compute $\int_{\mathbb{C} P 1} c_{1}\left(\gamma^{*}\right)$, where $\mathbb{C} P^{1}$ has its canonical orientation as a complex manifold (i.e. $\Lambda_{\text {top }}(T \mathbb{C} P)$ has a canonical trivialization as a real line bundle) and $c_{1}\left(\gamma^{*}\right)$ is the 1st Chern class of the dual line bundle γ^{*} to the tautological line bundle.

