
Homework 1 Solution

Due on 09/12

Problem 1. If F = {(R, id : R→ R)} and F ′ = {(R, f : R→ R, t 7→ t3)}. Show that as
collection of charts for R, we have F 6= F ′.

Proof. We first prove that F 6= F ′ as collections of charts. Since we know that id ∈ F , it
is sufficient to show id /∈ F ′. Suppose that id : R→ R is another chart in F ′. Consider the
overlap map

id ◦ f−1 : f(R ∩ R) = R→ id(R ∩ R) = R,

one observes that this function id ◦ f−1(t) = t
1
3 is not smooth at t = 0. Hence we conclude

that id : R→ R is NOT a smooth chart for R when equipping with the smooth structure F ′.
Now we define the map h(t) = t

1
3 : (R,F)→ (R,F ′) and we will show that h is a diffeomor-

phism. It is sufficient to check that

f ◦ h ◦ id−1 = f ◦ h = f(t
1
3 ) = t and id ◦ h−1 ◦ f−1(t) = h−1(t3) = t

are both smooth. This completes the proof.

Remark 0.1. We observe that in the above proof, it suffices to check smoothness of f ◦h◦id−1
and id−1 ◦h ◦ f , because for any other charts φ : U → R in F and ψ : V → R in F ′, we know
that id ◦φ−1, φ ◦ id−1 and f ◦ψ−1, ψ ◦ f−1 are smooth by maximality. This implies that, for
instance,

(ψ ◦ f−1) ◦ (f ◦ h ◦ id−1) ◦ (id ◦ φ−1) = ψ ◦ h ◦ φ−1

is smooth because composition of smooth functions is smooth.
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Problem 2. We will assume that Sn and CP n are n-dimensional and 2n-dimensional
topological manifolds and describe their smooth and complex structures respectively.

Proof. (a) Let (x0, x1, · · · , xn) be the coordinates on Rn+1 and set the coordinates of ”north
pole” and ”south pole” to be

N = {(0, 0, · · · , 0, 1)} and S = {(0, · · · , 0,−1)}

Then the smooth structure is defined by F = {(Sn − {N}, pN), (Sn − {S}, pS)}, where pN
and pS are stereographic projection maps to N and S. For instance, the map pN sends
p0 ∈ Sn − {N} to the intersection of Rn = {xn+1 = 0} ⊂ Rn+1 with the line defined by N
and p0. Explicitly, the stereographic projection maps are given by

pN : Sn → Rn, (x1, · · · , xn+1) 7→ (
x1

1− xn+1

,
x2

1− xn+1

, · · · , xn
1− xn+1

),

pS : Sn → Rn, (x1, · · · , xn+1) 7→ (
x1

1 + xn+1

,
x2

1 + xn+1

, · · · , xn
1 + xn+1

).

Their inverses can be computed to be

p−1N : Rn → Sn, (y1, · · · , yn) 7→ (
2y1

y21 + · · ·+ y2n + 1
, · · · , 2yn

y21 + · · ·+ y2n + 1
,
y21 + · · ·+ y2n − 1

y21 + · · ·+ y2n + 1
),

p−1S : Rn → Sn, (y1, · · · , yn) 7→ (
2y1

1 + y21 + · · ·+ y2n
, · · · , 2yn

1 + y21 + · · ·+ y2n
,
1− y21 − · · · − y2n
1 + y21 + · · ·+ y2n

).

Now if suffices to check yourself that on the overlap Sn − {N,S}, the transition functions

pS ◦ p−1N and pN ◦ p−1S
are smooth functions (we omit the computations here). This completes the proof.

(b) Let (z0, z1, · · · , zn) be the complex coordinates on Cn+1. The complex projective
space is the quotient of Cn+1 − {0} by the diagonal action by C∗

λ · (z0, z1, · · · , zn) 7→ (λz0, λz1, · · · , λzn), λ ∈ C∗,

this means that we declare (z0, z1, · · · , zn) and (λz0, λz1, · · · , λzn) to be equivalent whenever
λ ∈ C∗. Denote the equivalence class by [z0 : z1 : · · · : zn]. This defines so-called homogeneous
coordinates on CP n. Set Ui = {zi 6= 0} for i = 0, 1, · · · , n. We define the i-th chart to be

φi : Ui → Cn, [z0 : z1 : · · · : zn] 7→
(z0
zi
,
z1
zi
, · · · , zi−1

zi
,
zi+1

zi
, · · · , zn

zi

)
.

Now on the overlap Ui ∩ Uj for i 6= j, say i < j, then we check that

φi ◦ φ−1j (w0, · · · , wj−1, wj+1, · · · , wn)

= φi[w0 : · · · : wj−1 : 1 : wj+1 : · · · : wn]

=
(w0

wi
,
w1

wi
, · · · , wi−1

wi
,
wi+1

wi
, · · · , wj−1

wi
,

1

wi
,
wj+1

wi
, · · · , wn

wi

)
.

which is a holomorphic functions on Ui ∩ Uj = {zi 6= 0 and zj 6= 0}. Similarly for φj ◦ φ−1i .
This completes the proof.
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Problem 3.

Proof. (a) We will prove that M = M̃/G admits a smooth structure

F := {(π(U), φ ◦ (π|U)−1) | (U, φ) ∈ FM̃ , π|U is injective}

by checking the axioms (S1) and (S2) in the definitions of smooth manifolds:

(S1): Since G acts properly discontinuously on M̃ , then we know that π is a covering map.
Hence if U is open in M̃ , then π(U) is open in M . Also, for all p ∈ M̃ there exists a
chart (U, φ) ∈ FM̃ near p such that π|U is injective by the covering property. Hence if⋃
Ui = M̃ and π|Ui

is injective for all i, then
⋃
π(Ui) = M .

(S2) For any two charts (π(U), φ ◦ (π|U)−1) and (π(V ), ψ ◦ (π|V )−1) in F , we will prove that
the composition

φUV :=
(
φ ◦ (π|U)−1

)
◦
(
π|V ◦ ψ−1

)
: ψ
(
(π|V )−1(π(U))

)
→ φ

(
(π|U)−1(π(V ))

)
is smooth by showing (π|U)−1 ◦ π|V is a diffeomorphism. This is due to the following
Lemma.

Lemma 0.2. If U and V are open sets in M̃ and π|U and π|V are injective, then the
composition

πUV := (π|U)−1 ◦ π|V : (π|V )−1(π(U))→ (π|U)−1(π(V ))

is a diffeomorphism

• First, the map πUV is a homoemorphism as π|U : U → π(U) and π|V : V → π(V )
are. Hence it suffices to show that for any point p ∈ (π|V )−1(π(U)) there is a
neighborhood Vp ⊂ (π|V )−1(π(U)) such that πUV |Vp is a diffeomorphism.

• Because G acts properly discontinuously, we have that for any p ∈ π−1|V (π(U))
and q = πUV (p), there exists a unique g ∈ G such that q = g · p as π : M̃ →M is
a covering map.

• One can verify that in this neighborhood Vp ⊂ (π|V )−1(π(U)) of p, we have
πUV |Vp = g|Vp . Now because by definition g ∈ G acts by diffeomorphism, we know
g|Vp is a diffeomorphism and so is πUV .
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Proof. (b) In fact, we will show that this smooth structure is the unique one on M satisfying
either of the following two conditions :
(i) the projection map π is a local diffeomorphism (∀p ∈ M̃ and π(p) ∈ M , ∃Up, Vπp such
that π|Up : Up → Vπp is a diffeomorphism).
(ii) If N is another smooth manifold, a continuous map f : M → N is smooth if and only if
the map f ◦ π : M̃ → N is smooth.

For (i): (=⇒) With respect to this smooth structure, we have that the transition functions
φUV := φ◦πUV ◦ψ−1 is a diffeomorphism whenever (π(U), φ◦(π|U)−1), (π(V ), ψ◦(π|V )−1) ∈ F .
(⇐=) Suppose that F is another smooth structure on M such that π is a local diffeomor-
phism. We will show that F ⊂ F . as follows. For (U, φ), (V, ψ) ∈ FM̃ and π|U and π|V are
injective, we have the composition

φ ◦ (π|U)−1 ◦ (ψ ◦ (π|V )−1)−1 = φ ◦ (π|U)−1 ◦ π|V ◦ ψ−1

is a diffeomorphism because (π|U)−1 ◦ π|V is a diffeomorphism. This implies that F ⊂ F
then by maximality condition we conclude that F = F .

For (ii):(=⇒) With respect to this smooth structure, a continuous map f : M → N is
smooth if for any local charts (π(U), φ◦(π|U)−1) on M and (V, ψ) on N we have ψ◦f◦π|U◦φ−1
is smooth, which is equivalent to the fact that f ◦ π is smooth.
(⇐=) Now given another smooth structure F on M satisfying (ii). Again by maximality
condition, it suffices to show that F ⊂ F . This is because, any charts (U, φ) ∈ F on M ,

(π−1|U , φ) on M̃ and (V, ψ) on N , the fact that F satisfying (ii) implies that ψ ◦ f ◦ φ−1 is
smooth if and only if ψ ◦ f ◦ π|U ◦ φ−1 is smooth. Hence we can conclude that

φ ◦ π|−1U ◦ φ
−1

and φ ◦ π|U ◦ φ−1

are smooth (which implies that F ⊂ F), because the compositions of smooth functions are
smooth (

ψ ◦ f ◦ π|U ◦ φ−1
)
◦
(
φ ◦ π|−1U ◦ φ

−1)
= ψ ◦ f ◦ φ−1,(

ψ ◦ f ◦ φ−1
)
◦
(
φ ◦ π|U ◦ φ−1

)
= ψ ◦ f ◦ π|U ◦ φ−1.
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Problem 4. Prove that a bijective immersion is a diffeomorphism.

Proof. Let dimM = m and dimN = n. Since f is an immersion, then differential

df |m : TmM → Tf(m)N

is injective for all m ∈ M . We can conclude that n ≤ k, Suppose that n = k, then
df |m is an isomorphism for all m ∈ M , then by the Inverse Function Theorem f is a local
diffeomorphism for all m ∈ M . Now since f is also bijective, this implies that f is in fact a
diffeomorphism.
Now it suffices to assume m < n. Let (V, ψ) be a fixed chart on N such that ψ(V ) = Rn.
Then f−1(V ) is a smooth m-manifold. We will show that in this case f is not surjective. It
suffices to prove that f−1(V ) is not all of V , or equivalently, the map g := ψ ◦ f : V → R
is not surjective. Because f−1(V ) ⊂ M is second-countable, one can choose a collection of
charts {(Ui, φi : Ui → Wi ⊂ Rm)}i∈Z on f−1(V ) such that

⋃
i∈Z
Ui = f−1(V ). Then we have

that
g(f−1(W )) = g(

⋃
i∈Z

φ−1i (Wi)) =
⋃
i∈Z

g(φ−1i (Wi)) ⊂ Rn.

Now by Proposition 1.35 (Slice Lemma), since f : M → N is an immersion, then with loss of
generality we can assume the coordinate charts (Ui, φi) and (V, ψ) can be chosen such that
ψ ◦f ◦φ−1i (x1, · · · , xm) = (x1, · · · , xm, Cm+1, · · · , Cn) for some fixed constants Cm+1, · · · , Cn
depending on i ∈ Z. This implies that the image of g(φ−1i (Wi)) is nowhere dense (in fact even
measure zero) subset in Rn for each i. Now by the Baire category theorem, such countable
union of nowhere dense subsets cannot be the entire Rm, hence f is not surjective which give
rise to a contradiction.

Remark 0.3. This shows that there is no smooth surjective map f : R → Rn for n > 1. On
the other hand, there does exist continuous surjective map f : R→ Rn for n > 1.
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Problem 5. Show that dψ|mv is a well-defined element of Tψ(m)N for all v ∈ TmM , i.e.,

it defines a linear derivation of F̃ψ(m).

Proof. • We first check that dψ|mv is a well-defined linear map from F̃ψ(m) to R.
Given U and V are open neighborhoods of ψ(m) in N . Suppose there are smooth
functions f : U → R and g : V → R and open subset W ⊂ U ∩V such that f |W = g|W ,
i.e., f, g ∈ F̃ψ(m). We claim that dψ|mv(f) = dψ|mv(g). This is because

f ◦ ψ−1 : ψ−1(U)→ R and g ◦ ψ−1 : ψ−1(V )→ R

are smooth functions near m and on ψ−1(W ) ⊂ ψ−1(U) ∩ ψ−1(V ) we have that

(f ◦ ψ)|ψ−1(W ) = (g ◦ ψ)|ψ−1(W ) =⇒ v(f ◦ ψ) = v(g ◦ ψ) for f ◦ ψ, g ◦ ψ ∈ F̃m.

• Then we check that dψ|mv is a R-linear map. If f and g are smooth function defined
on neighbourhoods of ψ(m) in N and a, b ∈ R, for f, g ∈ F̃ψ(m) we have that

dψ|mv(af + bg) = dψ|mv(af + bg) = v
(
(af + bg) ◦ ψ

)
= av(f ◦ ψ) + bv(g ◦ ψ) = a{dψ|mv}(f) + b{dψ|mv}(g).

• Finally, we check that dψ|mv is a derivation, that is, satisfies the Leibniz rule.

dψ|mv(f · g) = v((f · g) ◦ ψ) = v((f ◦ ψ) · (g ◦ ψ))

= f ◦ ψ(m)v(g ◦ ψ) + g ◦ ψ(m)v(f ◦ ψ)

= f(ψ(m)){dψ|mv}(g) + g(ψ(m)){dψ|mv}(f)
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