Solution 3

Due on $10 / 03$

Problem 1.

(a) We first check that for $p \in M$, the tangent vector defined by $[X, Y]_{p}$ gives a derivation on the space of germs of smooth function at $p \in M$. (We will write f for the equivalence class of its germ \underline{f}_{p} below.)
For $f, g \in C^{\infty}(M)$, we have that

$$
\begin{aligned}
{[X, Y]_{p}(f g) } & =X_{p}(Y(f g))-Y_{p}(X(f g))=X_{p}(f Y(g)+g Y(f))-Y_{p}(f X(g)+g X(f)) \\
& =\left(f(p) X_{p}(Y(g))+g(p) X_{p}(Y(f))+Y_{p}(g) X_{p}(f)+Y_{p}(f) X_{p}(g)\right) \\
& -\left(\left(f(p) Y_{p}(X(g))+g(p) Y_{p}(X(f))+X_{p}(g) Y_{p}(f)+X_{p}(f) Y_{p}(g)\right)\right. \\
& =f(p)[X, Y]_{p}(g)+g(p)[X, Y]_{p}(f) .
\end{aligned}
$$

Let U be a neighborhood of $p \in M$ such that $\left.f\right|_{U}=\left.g\right|_{U}$, then we have $\left.X(f)\right|_{U}=\left.(X g)\right|_{U}$ and $\left.Y(f)\right|_{U}=\left.Y(g)\right|_{U}$ as smooth functions defined on U. Now we know that X_{p} and Y_{p} depends only on the germs of function at $p \in U$, one concludes that

$$
[X, Y]_{p} f=[X, Y]_{p} g
$$

By Proposition 1.43 we know that $X(f), Y(f), X(Y(f))$ and $Y(X(f))$ are smooth functions, so one concludes that $[X, Y](f)=X(Y(f))-Y(X(f))$ is a smooth function and hence $[X, Y]$ defines a smooth vector field.
(b) By (a), it suffices to check for $f, g \in C^{\infty}(M)$ we have that

$$
\begin{aligned}
{[f X, g Y](h) } & =f X(g Y(h))-g Y(f X(h)) \\
& =f X(g) Y(h)+f g(X(Y(h))-g Y(f) X(h)-g f Y(X(h)) \\
& =f g[X, Y](h)+f X(g) Y(h)-g(Y f) X(h) .
\end{aligned}
$$

(c) Similarly, we have $[X, Y](f)=X(Y(f))-Y(X(f))=-[Y, X](f)$.
(d) For $f \in C^{\infty}(M)$, one has

$$
\begin{aligned}
{[[X, Y], Z](f) } & =[X, Y](Z f)-Z([X, Y](f)) \\
& =(X(Y(Z f))-Y(X(Z(f))))-(Z(X(Y(f)-Y(X f)) \\
& =X(Y(Z f))-Y(X(Z f))-Z(X(Y f))+Z(Y(X(f))
\end{aligned}
$$

We can Cyclicly permute X, Y and Z in the above equation

$$
\begin{aligned}
& {[[Y, Z], X] f=Y(Z(X(f))-Z(Y(X(f))-X(Y(Z(f))+X(Z(Y f))} \\
& {[[Z, X], Y] f=Z(X(Y(f))-X(Z(Y(f))-Y(Z(X(f))+Y(X(Z f))}
\end{aligned}
$$

and they sum up to zero.

Problem 2. Let M be a smooth manifold and $\gamma:(a, b) \rightarrow M$ be any maximal integral curve of a given vector field $X \in \Gamma(M, T M)$. We want to show that $(a, b)=\mathbb{R}$.

One can take a sequence $t_{n} \in(a, b)$ converging to the value $b \in \mathbb{R}$. We know M is compact, so there is a subsequence of $\gamma\left(t_{n}\right)$ converges to some point $p \in M$. By part (2) of Theorem 1.48, one has the local flow of X near p is defined

$$
(-\epsilon, \epsilon) \times U \rightarrow M, \quad(t, q) \mapsto \phi_{t}(q), \quad \epsilon \in(0,|a|) .
$$

Now we choose t_{n} in this sequence such that $b-t_{n}<\epsilon$ and $\gamma\left(t_{n}\right) \in U$. Let $\beta:(-\epsilon, \epsilon) \rightarrow M$ be the unique integral curve of X such that $\beta(0)=\gamma\left(t_{n}\right)$. Then we can define another integral curve as the composite of $\gamma(t)$ and $\beta(t)$ by

$$
\alpha:\left(a, t_{n}+\epsilon\right) \rightarrow M, \quad \alpha(t)=\left\{\begin{array}{l}
\gamma(t), \text { if } t \in(a, b) \tag{1}\\
\beta\left(t-t_{n}\right), \text { if } t \in\left(t_{n}-\epsilon, t_{n}+\epsilon\right) .
\end{array}\right.
$$

By definition, one checks that $\tilde{\gamma}(t)=\gamma\left(t+t_{n}\right)$ is an integral curve of X for $t \in\left(-\epsilon, b-t_{n}\right)$ and hence $\tilde{\gamma}=\beta$ on $\left(-\epsilon, b-t_{n}\right)$ by uniqueness of integral curves. This implies that $\alpha:\left(a, t_{n}+\epsilon\right) \rightarrow M$ is a well-defined integral curve of X. However we have that $t_{n}+\epsilon>b$ and $\left.\alpha\right|_{(a, b)}=\gamma$, this will contradicts the fact that γ is the maximal integral curve of X unless $b=\infty$. We can prove that $a=-\infty$ similarly by applying this argument to the vector field $-X$. This shows that $(a, b)=\mathbb{R}$ for any vector field X defined on a compact manifold M.

Problem 3. Given an integral curve $\gamma:(a, b) \subset \mathbb{R} \rightarrow M$ such that $\gamma^{\prime}\left(t_{0}\right)=0$ for some $t_{0} \in(a, b)$ and set $p:=\gamma\left(t_{0}\right)$, we have that

$$
X(p)=X\left(\gamma\left(t_{0}\right)\right)=\gamma^{\prime}\left(t_{0}\right)=0
$$

Let $\tilde{\gamma}:(a, b) \subset \rightarrow M$ be the constant curve defined by $\tilde{\gamma}(t)=p$ for all $t \in(a, b)$, we have $\tilde{\gamma}$ also satisfies

$$
\tilde{\gamma}^{\prime}(t)=X(p)=X(\tilde{\gamma}(t)), \quad \forall t \in(a, b) .
$$

By uniqueness Theorem for first-order ODE with initial conditions we have $\gamma=\tilde{\gamma}$ on (a, b). Hence γ is the constant map.

Problem 4. Let M be a smooth manifold M and $X, Y \in \Gamma(M, T M))$ and X_{t} and Y_{t} denote the flow of X and Y for $t \in(-\epsilon, \epsilon)$. Show that for $f \in C^{\infty}(M)$ and $p \in M$, we have

$$
\lim _{s, t \rightarrow 0} \frac{f\left(Y_{-s}\left(X_{-t}\left(Y_{s}\left(X_{t}(p)\right)\right)\right)\right)-f(p)}{s t}=[X, Y]_{p} f \in \mathbb{R}
$$

Remark: This problems says that the "rate of change of" the "difference between $Y_{s} \circ X_{t}(p)$ and $X_{t} \circ Y_{s}(p) "$ for $p \in M$ is measured by the Lie bracket.

Proof. For a fixed $p \in M$, by part (3) of Theorem 1.48, we know that there exist $\epsilon>0$ and an open neighborhood U of p such that the flow of X is defined on

$$
(-\epsilon, \epsilon) \times U \rightarrow M, \quad(t, p) \mapsto X_{t}(p) .
$$

Similarly, by shrinking $(-\epsilon, \epsilon)$ and U if necessary (we will still denote them as $\epsilon>0$ and U), we can conclude that there is a well-defined smooth map

$$
(-\epsilon, \epsilon)^{4} \times U, \quad(a, b, c, d, x) \mapsto Y_{a} \circ X_{b} \circ Y_{c} \circ X_{d}(p) .
$$

Given a smooth function $f \in C^{\infty}(M)$ near p, we will consider the composition

$$
\begin{aligned}
& F:(-\epsilon, \epsilon)^{4} \subset \mathbb{R}^{4} \rightarrow \mathbb{R}, \quad(a, b, c, d) \mapsto f\left(Y_{a} \circ X_{b} \circ Y_{c} \circ X_{d}(p)\right), \\
& \text { and } G:(-\epsilon, \epsilon)^{2} \subset \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad G(s, t)=F(-s,-t, s, t) .
\end{aligned}
$$

Now the left hand side of the equation becomes

$$
\lim _{s, t \rightarrow 0} \frac{f\left(Y_{-s}\left(X_{-t}\left(Y_{s}\left(X_{t}(p)\right)\right)\right)\right)-f(p)}{s t}=\lim _{s, t \rightarrow 0} \frac{G(s, t)-G(0,0)}{s t},
$$

Since we know that $X_{0}=Y_{0}=i d_{M}, X_{-t} \circ X_{t}=i d_{\mathcal{D}(X)}$ and $Y_{-s} \circ Y_{s}=i d_{\mathcal{D}(Y)}$, this implies that $G(s, 0) \equiv G(0, t) \equiv 0$ and $G(0,0)=0$. Now one has

$$
\begin{aligned}
\lim _{s, t \rightarrow 0} \frac{G(s, t)-G(0,0)}{s t} & =\lim _{s, t \rightarrow 0} \frac{G(s, t)-G(s, 0)+G(s, 0)-G(0,0)}{s t}=\lim _{s, t \rightarrow 0} \frac{G(s, t)-G(s, 0)}{s t} \\
& =\lim _{s \rightarrow 0}\left(\lim _{t \rightarrow 0} \frac{G(s, t)-G(s, 0)}{t}\right) \cdot \frac{1}{s}=\left.\frac{\partial^{2} G}{\partial_{s} \partial_{t}}\right|_{(0,0)}
\end{aligned}
$$

where we have use the fact that G is a smooth function on $(-\epsilon, \epsilon)^{2}$ to conclude the above limits exists and are well-defined. Now we write this as

$$
\left.\frac{\partial^{2} G}{\partial_{s} \partial_{t}}\right|_{(0,0)}=\left.\frac{\partial^{2} F}{\partial_{a} \partial_{b}}\right|_{(0,0,0,0)}-\left.\frac{\partial^{2} F}{\partial_{a} \partial_{d}}\right|_{(0,0,0,0)}-\left.\frac{\partial^{2} F}{\partial_{b} \partial_{c}}\right|_{(0,0,0,0)}+\left.\frac{\partial^{2} F}{\partial_{c} \partial_{d}}\right|_{(0,0,0,0)} .
$$

We compute the first term as follows

$$
\begin{aligned}
\left.\frac{\partial^{2} F}{\partial a \partial b}\right|_{(0,0,0,0)} & \left.=\left.\frac{\partial}{\partial b}\left(\frac{\partial}{\partial a} f\left(Y_{a} \circ X_{b}(p)\right)\right)\right|_{a=0}\right)\left.\right|_{b=0}=\left.\frac{\partial}{\partial b}\left(\left.d_{X_{b}(p)} f\left(\frac{\partial}{\partial a} Y_{a}\left(X_{b}(p)\right)\right)\right|_{a=0}\right)\right|_{b=0} \\
& =\left.\frac{\partial}{\partial b}\left(d_{X_{a}(p)} f\left(\left.Y\right|_{X_{a}(p)}\right)\right)\right|_{b=0}=\left.\frac{\partial}{\partial b}\left((Y f)\left(X_{b}(p)\right)\right)\right|_{b=0}=X_{p}(Y f)
\end{aligned}
$$

For the other terms, we claim that similar calculations give the following equations

$$
\left.\frac{\partial^{2} F}{\partial a \partial d}\right|_{(0,0,0,0)}=X_{p}(Y f),\left.\quad \frac{\partial^{2} F}{\partial b \partial c}\right|_{(0,0,0,0)}=Y_{p}(X f), \text { and }\left.\frac{\partial^{2} F}{\partial c \partial d}\right|_{(0,0,0,0)}=X_{p}(Y f)
$$

This completes the proof since $[X, Y]_{p}(f)=X_{p}(Y f)-Y_{p}(X f)$ by definition for $p \in M$ and $f \in C^{\infty}(M)$.

Problem 5. Let $\mathbb{C} P^{n}$ be the complex projective n-space and $\gamma_{n} \rightarrow \mathbb{C} P^{n}$ be the tautological line bundle. Prove that there is a short exact sequences of complex vector bundles

$$
0 \rightarrow \mathbb{C} P^{n} \times \mathbb{C} \xrightarrow{i}(n+1) \gamma_{n}^{*} \xrightarrow{q} T \mathbb{C} P^{n} \rightarrow 0
$$

We give two solutions to this problem as follows. I encourage you to read Solution 2.
Solution 1: (Define explicit bundle maps in local charts). We first define the bundle maps i and q explicitly as follows. We consider $i=\left(f_{0}, f_{1}, \cdots f_{n}\right): \mathbb{C} P^{n} \times \mathbb{C} \rightarrow(n+1) \gamma_{n}^{*}$ componentwise given by

$$
f_{j}: \mathbb{C} P^{n} \times \mathbb{C} \rightarrow \gamma_{n}^{*}, \quad f_{j}(l, \lambda)\left(v_{0}, v_{1}, \cdots, v_{n}\right)=\lambda \cdot v_{j}, \quad \forall v=\left(v_{0}, v_{1}, \cdots, v_{n}\right) \in\left(\gamma_{n}\right)_{l} .
$$

Locally in the chart U_{i}, the map i can be explicitly written as

$$
i(l, \lambda)=\left(l, \lambda \cdot \frac{X_{0}}{X_{i}}, \cdots, \lambda \cdot \frac{X_{n}}{X_{i}}\right), \text { where } l=\left[X_{0}: X_{1}: \cdots: X_{n}\right] .
$$

The map i is fibre-wise linear. Because if for $\left.v \in\left(\gamma_{n}\right)\right|_{l} \subset \mathbb{C}^{n+1}-\{0\}$, there exists a nonzero component v_{i} for some i. This implies that the corresponding dual vector $f_{j}(l, \lambda)$ is nonzero, that is, f_{i} is not the zero map. This proves that i is an injective vector bundle homomorphism.

To specify the bundle map $q:(n+1) \gamma_{n}^{*} \rightarrow T \mathbb{C} P^{n}$, we define it locally on each U_{i} as follows. Recall that there is a local trivialization of γ_{n} given by $h_{i}^{-1}: U_{i} \times\left.\mathbb{C} \rightarrow \gamma_{n}\right|_{U_{i}}$.

$$
h_{i}^{-1}\left(\left[X_{0}: X_{1}: \cdots: X_{n}\right], c\right) \mapsto\left(\left[X_{0}: X_{1}: \cdots: X_{n}\right],\left(c \frac{X_{0}}{X_{i}}, \cdots, c \frac{X_{n}}{X_{i}}\right)\right)
$$

We let $z_{i j}:=\frac{X_{j}}{X_{i}}$ for $0 \leq j \leq n$ and $i \neq j$ and set $\mathbf{z}_{i}:=\left(z_{i 0}, z_{i 1}, \cdots, z_{i n}\right)$, then we have

$$
\left(i d, \mathbf{z}_{i}\right): U_{i} \rightarrow U_{i} \times\left.\gamma_{n}\right|_{U_{i}}
$$

defines a section of γ_{n} locally over U_{i}. Now given $(n+1)$ local sections $\left(f_{0}, \cdots, f_{n}\right)$ of γ_{n}^{*} over U_{i}, we define the bundle map

$$
\begin{equation*}
\left.q\right|_{U_{i}}:\left.\left.(n+1) \gamma^{*}\right|_{U_{i}} \rightarrow T \mathbb{C} P^{n}\right|_{U_{i}}, \quad q\left(l, f_{0}, f_{1}, \cdots, f_{n}\right) \mapsto \sum_{i \neq j}\left(f_{j}\left(l, \mathbf{z}_{i}(l)\right)-z_{i j} f_{i}\left(l, \mathbf{z}_{i}(l)\right)\right) \partial_{z_{i j}} \tag{2}
\end{equation*}
$$

This map defines a surjective vector bundle homomorphism because $\left.q\right|_{U_{i}}$ is surjective for all i by definition.

To check exactness of the short exact sequences, it suffices to check it locally in each U_{i}, we have $\operatorname{ker}\left(\left.q\right|_{U_{i}}\right)=\operatorname{im}\left(\left.i\right|_{U_{i}}\right)$. This is true because that $\left.q\right|_{U_{i}}\left(l, f_{0}, f_{1}, \cdots, f_{n}\right)=0$ if and only if $f_{j}\left(l, \mathbf{z}_{i}(l)\right)-z_{i j} f_{i}\left(l, \mathbf{z}_{i}(l)\right)=0$ which implies that $f_{j}=z_{i j} f_{i}$ and hence $\operatorname{ker}\left(\left.q\right|_{U_{i}}\right)=\operatorname{im}\left(\left.i\right|_{U_{i}}\right)$ for each i

To see in fact q is well-defined globally, we check that the above definition of q is invariant under transition maps. For $k \neq i$, by definition we have that $z_{k l}=z_{i k}^{-1} \cdot z_{i l}$, this implies that for partial derivatives, one has

$$
\frac{\partial}{\partial z_{i j}}=\sum_{k \neq l} \frac{\partial z_{k l}}{\partial z_{i j}} \frac{\partial}{\partial z_{k l}}=\left\{\begin{array}{l}
z_{i k}^{-1} \frac{\partial}{\partial z_{k j}}, \quad \text { if } j \neq k \\
-z_{i k}^{-2}\left(\frac{\partial}{\partial z_{k i}}+\sum_{l \neq i, k} z_{i l} \frac{\partial}{\partial z_{k l}}\right), \quad \text { if } j=k .
\end{array}\right.
$$

Now we need to check two cases, if $j \neq i, k$, we have

$$
\begin{equation*}
\left.z_{k i}^{-1} f_{j}\left(l, \mathbf{z}_{k}(l)\right)-z_{k i}^{-2} z_{k j} f_{i}\left(l, z_{k}(l)\right)\right) z_{i k}^{-1} \frac{\partial}{\partial z_{k j}}=\left(f_{j}\left(l, \mathbf{z}_{k}(l)\right)-z_{i j} f_{i}\left(l, \mathbf{z}_{k}(l)\right)\right) \frac{\partial}{\partial z_{k j}} \tag{3}
\end{equation*}
$$

which is exactly the j th component in the summation $j \neq i$ in (2) when $j \neq k$. Now if $j=k$, we have

$$
\begin{array}{r}
\left(z_{k i}^{-1} f_{k}\left(l, \mathbf{z}_{k}(l)\right)-z_{k i}^{-2} f_{i}\left(l, \mathbf{z}_{k}(l)\right)\right) \cdot\left(-z_{i k}^{-2} \frac{\partial}{\partial z_{k i}}-\sum_{j \neq i, k} \frac{z_{i j}}{z_{i k}^{2}} \frac{\partial}{\partial z_{k j}}\right) \\
=\left(f_{i}\left(l, \mathbf{z}_{k}(l)\right)-z_{k i} f_{k}\left(l, \mathbf{z}_{k}(l)\right)\right) \cdot\left(\frac{\partial}{\partial z_{k i}}+\sum_{j \neq i, k} z_{i j} \frac{\partial}{\partial z_{k j}}\right) . \tag{4}
\end{array}
$$

Combining terms in (3) and (4), we obtain exactly definition (2) with index i replaced by k in the expression. Hence q gives rise to a well-defined bundle map.

Remark 0.1. In fact, we have shown that the Euler exact sequence is a short exact sequence of holomorphic vector bundles on $\mathbb{C} P^{n}$ (where $\mathbb{C} P^{n}$ is equipped with the standard holomorphic structure defined in Homework 1 solution 2). A holomorphic vector bundle of rank k admits trivializations $\left\{\left(U_{\alpha}, h_{\alpha}\right)\right\}_{\alpha \in \mathcal{A}}$, where $h_{\alpha}:\left.V\right|_{U_{\alpha}} \rightarrow U_{\alpha} \times \mathbb{C}^{k}$ are biholomorphisms. Equivalently, we require that the transition maps $g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G L(n, \mathbb{C})$ are holomorphic maps for all $\alpha, \beta \in \mathcal{A}$. A holomorphic vector bundle homomorphism is a holomorphic map $f: V \rightarrow W$ which is fibre-wise \mathbb{C}-linear and given local trivializations $h_{i}:\left.V\right|_{U_{i}} \rightarrow U_{i} \times \mathbb{C}^{k}$ and $\bar{h}_{j}:\left.W\right|_{U_{j}} \rightarrow$ $U_{j} \times \mathbb{C}^{l}$, one has on the overlap $U_{i} \cap U_{j}$

$$
\bar{h}_{j} \circ h_{i}^{-1}: U_{i} \times \mathbb{C}^{k} \rightarrow U_{j} \times \mathbb{C}^{l}
$$

are holomorphic maps with respect to the given complex structures.
Solution 2: (A geometric interpretation of the Euler sequence). The complex projective space $\mathbb{C} P^{n}$ is the quotient of the \mathbb{C}^{*}-action on $\mathbb{C}^{n+1}-\{0\}$ given by

$$
\left.p:=\left(X_{0}, X_{1}, \cdots, X_{n}\right)\right) \mapsto \lambda \cdot p:=\left(\lambda \cdot X_{0}, \lambda \cdot X_{1}, \cdots, \lambda \cdot X_{n}\right), \lambda \in \mathbb{C}^{*} .
$$

We denote the quotient map by

$$
\pi: \mathbb{C}^{n+1}-\{0\} \rightarrow \mathbb{C} P^{n}
$$

Let $\widetilde{E}=\sum_{i=0}^{n} X_{i} \frac{\partial}{\partial X_{i}}$ be the "radial" vector field on \mathbb{C}^{n+1}. One notices that \widetilde{E} is invariant under the \mathbb{C}^{*}-action, i.e, $\widetilde{E}(p)=\widetilde{E}(\lambda \cdot p)$ (because for $W_{i}=\lambda X_{i}$, we have $\left.\frac{\partial}{\partial W_{i}}=\frac{1}{\lambda} \frac{\partial}{\partial X_{i}}\right)$. This means that \widetilde{E} descends to a well-defined vector field on $\mathbb{C} P^{n}$, called the Euler vector field. As a quotient space, one has the differential $d \pi_{p}: T_{p}\left(\mathbb{C}^{n+1}-\{0\}\right) \rightarrow T_{\pi(p)} \mathbb{C} P^{n}$ is surjective for all p and the tangent space of $\mathbb{C} P^{n}$ at $\pi(p)$ is spanned by

$$
d \pi_{p}\left(\left.\frac{\partial}{\partial X_{i}}\right|_{p}\right), \quad i=0,1, \cdots, n
$$

The kernel of $d \pi_{p}$ is isomorphic to the \mathbb{C}-linear span of $\left.\widetilde{E}\right|_{p}=\left.\sum_{i} X_{i}(p) \frac{\partial}{\partial X_{i}}\right|_{p}$. This is because the flow of \widetilde{E} generates the \mathbb{C}^{*}-action on $\mathbb{C}^{n+1}-\{0\}$, which implies that the distribution spanned by \widetilde{E} is tangent to the integral manifolds which are the orbits of the \mathbb{C}^{*}-action.

Now given any linear functional $f \in \operatorname{Hom}_{\mathbb{C}}\left(\mathbb{C}^{n+1}, \mathbb{C}\right)$, we can define a vector field on \mathbb{C}^{n+1} by

$$
\tilde{v}_{i}(p)=f(p) \frac{\partial}{\partial X_{i}}, \quad i=0,1, \cdots, n .
$$

One checks that $d \pi_{p}\left(\tilde{v}_{i}(p)\right)=d \pi_{\lambda \cdot p}\left(\tilde{v}_{i}(\lambda \cdot p)\right)$, which means that \tilde{v}_{i} always descends to a vector field on $\mathbb{C} P^{n}$. The fibre of γ_{n}^{*} at $l=\pi(p) \in \mathbb{C} P^{n}$ consists of those linear functionals σ defined on the line $l \in \mathbb{C} P^{n}$. For example, for $l=\left[X_{0}: X_{1}: \cdots: X_{n}\right] \in \mathbb{C} P^{n}$, the homogeneous coordinate X_{i} defines a section of γ_{n}^{*} by

$$
X_{i}(l)(v)=v_{i}, \quad \text { where } v=\left(v_{0}, v_{1}, \cdots, v_{n}\right) \in l \subset \mathbb{C}^{n+1} \text { and } i=0,1, \cdots, n .
$$

We can define maps between spaces of (holomorphic) sections of the above vector bundles

$$
\begin{aligned}
& i: \Gamma\left(\mathbb{C} P^{n} \times \mathbb{C}\right) \rightarrow \Gamma\left((n+1) \gamma_{n}^{*}\right), \quad 1 \mapsto\left(X_{0}, X_{1}, \cdots, X_{n+1}\right) \\
& q: \Gamma\left((n+1) \gamma_{n}^{*}\right) \rightarrow \Gamma\left(T \mathbb{C} P^{n}\right), \quad\left(\sigma_{0}, \sigma_{1}, \cdots, \sigma_{n}\right) \mapsto d \pi\left(\sum_{i=0}^{n} \sigma_{i}(p) \frac{\partial}{\partial X_{i}}\right) .
\end{aligned}
$$

In fact, the maps i and q are homomorphism of $\mathcal{O}_{\mathbb{C} P^{n} \text {-modules, where }} \mathcal{O}_{\mathbb{C} P^{n}}$ denotes the ring of holomorphic functions on $\mathbb{C} P^{n}$. One has that i is injective by definition and q is surjective since the quotient map π is a submersion and $\operatorname{ker}(q)=\operatorname{Im}(i)$. In fact, we have shown that there is short exact sequence of $\mathcal{O}_{\mathbb{C} P^{n}}$-modules.

$$
0 \rightarrow \Gamma\left(\mathbb{C} P^{n} \times \mathbb{C}\right) \rightarrow \Gamma\left((n+1) \gamma_{n}^{*}\right) \rightarrow \Gamma\left(T \mathbb{C} P^{n}\right) \rightarrow 0
$$

where $\Gamma(V)$ here denotes the space of holomorphic section of a holomorphic vector bundle V. We will see later in the class this statement is equivalent to the exactness of (holomorphic) vector bundles

$$
0 \rightarrow \mathbb{C} P^{n} \times \mathbb{C} \rightarrow(n+1) \gamma_{n}^{*} \rightarrow T \mathbb{C} P^{n} \rightarrow 0
$$

