
Solution 3

Due on 10/03

Problem 1.

(a) We first check that for p ∈M , the tangent vector defined by [X, Y ]p gives a derivation
on the space of germs of smooth function at p ∈M . (We will write f for the equivalence
class of its germ f

p
below.)

For f, g ∈ C∞(M), we have that

[X, Y ]p(fg) = Xp(Y (fg))− Yp(X(fg)) = Xp(fY (g) + gY (f))− Yp(fX(g) + gX(f))

=
(
f(p)Xp(Y (g)) + g(p)Xp(Y (f)) + Yp(g)Xp(f) + Yp(f)Xp(g)

)
−

(
(f(p)Yp(X(g)) + g(p)Yp(X(f)) +Xp(g)Yp(f) +Xp(f)Yp(g)

)
= f(p)[X, Y ]p(g) + g(p)[X, Y ]p(f).

Let U be a neighborhood of p ∈M such that f |U = g|U , then we have X(f)|U = (Xg)|U
and Y (f)|U = Y (g)|U as smooth functions defined on U . Now we know that Xp and
Yp depends only on the germs of function at p ∈ U , one concludes that

[X, Y ]pf = [X, Y ]pg.

By Proposition 1.43 we know that X(f), Y (f), X(Y (f)) and Y (X(f)) are smooth
functions, so one concludes that [X, Y ](f) = X(Y (f))−Y (X(f)) is a smooth function
and hence [X, Y ] defines a smooth vector field.

(b) By (a), it suffices to check for f, g ∈ C∞(M) we have that

[fX, gY ](h) = fX(gY (h))− gY (fX(h))

= fX(g)Y (h) + fg(X(Y (h))− gY (f)X(h)− gfY (X(h))

= fg[X, Y ](h) + fX(g)Y (h)− g(Y f)X(h).

(c) Similarly, we have [X, Y ](f) = X(Y (f))− Y (X(f)) = −[Y,X](f).

(d) For f ∈ C∞(M), one has

[[X, Y ], Z](f) = [X, Y ](Zf)− Z([X, Y ](f))

= (X(Y (Zf))− Y (X(Z(f))))− (Z(X(Y (f)− Y (Xf))

= X(Y (Zf))− Y (X(Zf))− Z(X(Y f)) + Z(Y (X(f)).

We can Cyclicly permute X, Y and Z in the above equation

[[Y, Z], X]f = Y (Z(X(f))− Z(Y (X(f))−X(Y (Z(f)) +X(Z(Y f))

[[Z,X], Y ]f = Z(X(Y (f))−X(Z(Y (f))− Y (Z(X(f)) + Y (X(Zf))

and they sum up to zero.
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Problem 2. Let M be a smooth manifold and γ : (a, b) → M be any maximal integral
curve of a given vector field X ∈ Γ(M,TM). We want to show that (a, b) = R.

One can take a sequence tn ∈ (a, b) converging to the value b ∈ R. We know M is
compact, so there is a subsequence of γ(tn) converges to some point p ∈ M . By part (2) of
Theorem 1.48, one has the local flow of X near p is defined

(−ε, ε)× U →M, (t, q) 7→ φt(q), ε ∈ (0, |a|).

Now we choose tn in this sequence such that b−tn < ε and γ(tn) ∈ U . Let β : (−ε, ε)→M be
the unique integral curve of X such that β(0) = γ(tn). Then we can define another integral
curve as the composite of γ(t) and β(t) by

α : (a, tn + ε)→M, α(t) =

{
γ(t), if t ∈ (a, b)

β(t− tn), if t ∈ (tn − ε, tn + ε).
(1)

By definition, one checks that γ̃(t) = γ(t + tn) is an integral curve of X for t ∈ (−ε, b− tn)
and hence γ̃ = β on (−ε, b − tn) by uniqueness of integral curves. This implies that
α : (a, tn + ε) → M is a well-defined integral curve of X. However we have that tn + ε > b
and α

∣∣
(a,b)

= γ, this will contradicts the fact that γ is the maximal integral curve of X

unless b =∞. We can prove that a = −∞ similarly by applying this argument to the vector
field−X. This shows that (a, b) = R for any vector field X defined on a compact manifold M .

Problem 3. Given an integral curve γ : (a, b) ⊂ R → M such that γ′(t0) = 0 for some
t0 ∈ (a, b) and set p := γ(t0), we have that

X(p) = X(γ(t0)) = γ′(t0) = 0.

Let γ̃ : (a, b) ⊂→ M be the constant curve defined by γ̃(t) = p for all t ∈ (a, b), we have γ̃
also satisfies

γ̃′(t) = X(p) = X(γ̃(t)), ∀t ∈ (a, b).

By uniqueness Theorem for first-order ODE with initial conditions we have γ = γ̃ on (a, b).
Hence γ is the constant map.
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Problem 4. Let M be a smooth manifold M and X, Y ∈ Γ(M,TM)) and Xt and Yt
denote the flow of X and Y for t ∈ (−ε, ε). Show that for f ∈ C∞(M) and p ∈M , we have

lim
s,t→0

f(Y−s(X−t(Ys(Xt(p)))))− f(p)

st
= [X, Y ]pf ∈ R.

Remark: This problems says that the ”rate of change of” the ”difference between Ys◦Xt(p)
and Xt ◦ Ys(p)” for p ∈M is measured by the Lie bracket.

Proof. For a fixed p ∈M , by part (3) of Theorem 1.48, we know that there exist ε > 0 and
an open neighborhood U of p such that the flow of X is defined on

(−ε, ε)× U →M, (t, p) 7→ Xt(p).

Similarly, by shrinking (−ε, ε) and U if necessary (we will still denote them as ε > 0 and U),
we can conclude that there is a well-defined smooth map

(−ε, ε)4 × U, (a, b, c, d, x) 7→ Ya ◦Xb ◦ Yc ◦Xd(p).

Given a smooth function f ∈ C∞(M) near p, we will consider the composition

F : (−ε, ε)4 ⊂ R4 → R, (a, b, c, d) 7→ f
(
Ya ◦Xb ◦ Yc ◦Xd(p)

)
,

and G : (−ε, ε)2 ⊂ R2 → R, G(s, t) = F (−s,−t, s, t).
Now the left hand side of the equation becomes

lim
s,t→0

f(Y−s(X−t(Ys(Xt(p)))))− f(p)

st
= lim

s,t→0

G(s, t)−G(0, 0)

st
,

Since we know that X0 = Y0 = idM , X−t ◦ Xt = idD(X) and Y−s ◦ Ys = idD(Y ), this implies
that G(s, 0) ≡ G(0, t) ≡ 0 and G(0, 0) = 0. Now one has

lim
s,t→0

G(s, t)−G(0, 0)

st
= lim

s,t→0

G(s, t)−G(s, 0) +G(s, 0)−G(0, 0)

st
= lim

s,t→0

G(s, t)−G(s, 0)

st

= lim
s→0

(
lim
t→0

G(s, t)−G(s, 0)

t

)
· 1

s
=
∂2G

∂s∂t

∣∣∣∣
(0,0)

,

where we have use the fact that G is a smooth function on (−ε, ε)2 to conclude the above
limits exists and are well-defined. Now we write this as

∂2G

∂s∂t

∣∣∣∣
(0,0)

=
∂2F

∂a∂b

∣∣∣∣
(0,0,0,0)

− ∂2F

∂a∂d

∣∣∣∣
(0,0,0,0)

− ∂2F

∂b∂c

∣∣∣∣
(0,0,0,0)

+
∂2F

∂c∂d

∣∣∣∣
(0,0,0,0)

.

We compute the first term as follows

∂2F

∂a∂b

∣∣∣∣
(0,0,0,0)

=
∂

∂b

( ∂
∂a
f(Ya ◦Xb(p)))

∣∣
a=0

)∣∣∣∣
b=0

=
∂

∂b

(
dXb(p)f

( ∂
∂a
Ya(Xb(p))

)
|a=0

)∣∣∣∣
b=0

=
∂

∂b
(dXa(p)f(Y |Xa(p)))

∣∣
b=0

=
∂

∂b
(
(
Y f
)
(Xb(p)))

∣∣∣∣
b=0

= Xp(Y f).
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For the other terms, we claim that similar calculations give the following equations

∂2F

∂a∂d

∣∣∣∣
(0,0,0,0)

= Xp(Y f),
∂2F

∂b∂c

∣∣∣∣
(0,0,0,0)

= Yp(Xf), and
∂2F

∂c∂d

∣∣∣∣
(0,0,0,0)

= Xp(Y f).

This completes the proof since [X, Y ]p(f) = Xp(Y f)− Yp(Xf) by definition for p ∈ M and
f ∈ C∞(M).
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Problem 5. Let CP n be the complex projective n-space and γn → CP n be the tauto-
logical line bundle. Prove that there is a short exact sequences of complex vector bundles

0→ CP n × C i−→ (n+ 1)γ∗n
q−→ TCP n → 0.

We give two solutions to this problem as follows. I encourage you to read Solution 2.

Solution 1: (Define explicit bundle maps in local charts). We first define the bundle maps i
and q explicitly as follows. We consider i = (f0, f1, · · · fn) : CP n×C→ (n+1)γ∗n component-
wise given by

fj : CP n × C→ γ∗n, fj(l, λ)(v0, v1, · · · , vn) = λ · vj, ∀v = (v0, v1, · · · , vn) ∈ (γn)l.

Locally in the chart Ui, the map i can be explicitly written as

i(l, λ) = (l, λ · X0

Xi

, · · · , λ · Xn

Xi

), where l = [X0 : X1 : · · · : Xn].

The map i is fibre-wise linear. Because if for v ∈ (γn)|l ⊂ Cn+1 − {0}, there exists a
nonzero component vi for some i. This implies that the corresponding dual vector fj(l, λ)
is nonzero, that is, fi is not the zero map. This proves that i is an injective vector bundle
homomorphism.

To specify the bundle map q : (n + 1)γ∗n → TCP n, we define it locally on each Ui as
follows. Recall that there is a local trivialization of γn given by h−1i : Ui × C→ γn|Ui .

h−1i ([X0 : X1 : · · · : Xn], c) 7→ ([X0 : X1 : · · · : Xn], (c
X0

Xi

, · · · , cXn

Xi

)).

We let zij :=
Xj
Xi

for 0 ≤ j ≤ n and i 6= j and set zi := (zi0, zi1, · · · , zin), then we have

(id, zi) : Ui → Ui × γn|Ui

defines a section of γn locally over Ui. Now given (n + 1) local sections (f0, · · · , fn) of γ∗n
over Ui, we define the bundle map

q|Ui : (n+1)γ∗|Ui → TCP n|Ui , q(l, f0, f1, · · · , fn) 7→
∑
i 6=j

(
fj(l, zi(l))−zijfi(l, zi(l))

)
∂zij , (2)

This map defines a surjective vector bundle homomorphism because q|Ui is surjective for all
i by definition.

To check exactness of the short exact sequences, it suffices to check it locally in each Ui,
we have ker(q|Ui) = im(i|Ui). This is true because that q|Ui(l, f0, f1, · · · , fn) = 0 if and only
if fj(l, zi(l))− zijfi(l, zi(l)) = 0 which implies that fj = zijfi and hence ker(q|Ui) = im(i|Ui)
for each i

To see in fact q is well-defined globally, we check that the above definition of q is invariant
under transition maps. For k 6= i, by definition we have that zkl = z−1ik · zil, this implies that
for partial derivatives, one has

∂

∂zij
=
∑
k 6=l

∂zkl
∂zij

∂

∂zkl
=

{
z−1ik

∂
∂zkj

, if j 6= k

−z−2ik ( ∂
∂zki

+
∑

l 6=i,k zil
∂
∂zkl

), if j = k.
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Now we need to check two cases, if j 6= i, k, we have

z−1ki fj(l, zk(l))− z
−2
ki zkjfi(l, zk(l)))z

−1
ik

∂

∂zkj
= (fj(l, zk(l))− zijfi(l, zk(l)))

∂

∂zkj
(3)

which is exactly the jth component in the summation j 6= i in (2) when j 6= k. Now if
j = k, we have(

z−1ki fk(l, zk(l))− z
−2
ki fi(l, zk(l))

)
·
(
− z−2ik

∂

∂zki
−
∑
j 6=i,k

zij
z2ik

∂

∂zkj

)
=
(
fi(l, zk(l))− zkifk(l, zk(l))

)
·
( ∂

∂zki
+
∑
j 6=i,k

zij
∂

∂zkj

)
. (4)

Combining terms in (3) and (4), we obtain exactly definition (2) with index i replaced by k
in the expression. Hence q gives rise to a well-defined bundle map.

Remark 0.1. In fact, we have shown that the Euler exact sequence is a short exact sequence
of holomorphic vector bundles on CP n (where CP n is equipped with the standard holomorphic
structure defined in Homework 1 solution 2). A holomorphic vector bundle of rank k admits
trivializations {(Uα, hα)}α∈A, where hα : V |Uα → Uα×Ck are biholomorphisms. Equivalently,
we require that the transition maps gαβ : Uα ∩ Uβ → GL(n,C) are holomorphic maps for all
α, β ∈ A. A holomorphic vector bundle homomorphism is a holomorphic map f : V → W
which is fibre-wise C-linear and given local trivializations hi : V |Ui → Ui×Ck and h̄j : W |Uj →
Uj × Cl, one has on the overlap Ui ∩ Uj

h̄j ◦ h−1i : Ui × Ck → Uj × Cl

are holomorphic maps with respect to the given complex structures.

Solution 2: (A geometric interpretation of the Euler sequence). The complex projective space
CP n is the quotient of the C∗-action on Cn+1 − {0} given by

p := (X0, X1, · · · , Xn)) 7→ λ · p := (λ ·X0, λ ·X1, · · · , λ ·Xn), λ ∈ C∗.

We denote the quotient map by

π : Cn+1 − {0} → CP n.

Let Ẽ =
∑n

i=0Xi
∂
∂Xi

be the ”radial” vector field on Cn+1. One notices that Ẽ is invariant

under the C∗-action, i.e, Ẽ(p) = Ẽ(λ · p) (because for Wi = λXi, we have ∂
∂Wi

= 1
λ

∂
∂Xi

). This

means that Ẽ descends to a well-defined vector field on CP n, called the Euler vector field.
As a quotient space, one has the differential dπp : Tp(Cn+1 − {0}) → Tπ(p)CP n is surjective
for all p and the tangent space of CP n at π(p) is spanned by

dπp(
∂

∂Xi

|p), i = 0, 1, · · · , n.
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The kernel of dπp is isomorphic to the C-linear span of Ẽ
∣∣
p

=
∑

iXi(p)
∂
∂Xi

∣∣
p
. This is because

the flow of Ẽ generates the C∗-action on Cn+1 − {0}, which implies that the distribution

spanned by Ẽ is tangent to the integral manifolds which are the orbits of the C∗-action.
Now given any linear functional f ∈ HomC(Cn+1,C), we can define a vector field on Cn+1

by

ṽi(p) = f(p)
∂

∂Xi

, i = 0, 1, · · · , n.

One checks that dπp(ṽi(p)) = dπλ·p(ṽi(λ·p)), which means that ṽi always descends to a vector
field on CP n. The fibre of γ∗n at l = π(p) ∈ CP n consists of those linear functionals σ defined
on the line l ∈ CP n. For example, for l = [X0 : X1 : · · · : Xn] ∈ CP n, the homogeneous
coordinate Xi defines a section of γ∗n by

Xi(l)(v) = vi, where v = (v0, v1, · · · , vn) ∈ l ⊂ Cn+1 and i = 0, 1, · · · , n.

We can define maps between spaces of (holomorphic) sections of the above vector bundles

i : Γ(CP n × C)→ Γ((n+ 1)γ∗n), 1 7→ (X0, X1, · · · , Xn+1);

q : Γ((n+ 1)γ∗n)→ Γ(TCP n), (σ0, σ1, · · · , σn) 7→ dπ(
n∑
i=0

σi(p)
∂

∂Xi

).

In fact, the maps i and q are homomorphism of OCPn-modules, where OCPn denotes the ring
of holomorphic functions on CP n. One has that i is injective by definition and q is surjective
since the quotient map π is a submersion and ker(q) = Im(i). In fact, we have shown that
there is short exact sequence of OCPn-modules.

0→ Γ(CP n × C)→ Γ((n+ 1)γ∗n)→ Γ(TCP n)→ 0,

where Γ(V ) here denotes the space of holomorphic section of a holomorphic vector bundle V .
We will see later in the class this statement is equivalent to the exactness of (holomorphic)
vector bundles

0→ CP n × C→ (n+ 1)γ∗n → TCP n → 0.
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