Solution 4

Due on $10 / 19$

Problem 1.

Proof. For (a), Given a point $p=(x, y)$ in \mathbb{T}^{2} and let U be any open set that contains p. We want to show that $\operatorname{Im}(\phi) \cap U \neq \emptyset$, where ϕ is the smooth map

$$
\phi: \mathbb{R} \rightarrow S^{1} \times S^{1}, t \mapsto\left(e^{2 \pi i t}, e^{2 \pi i \alpha t}\right) \text { for } \alpha \in \mathbb{R}-\mathbb{Q}
$$

This is equivalent to the fact that there exists $t_{0} \in \mathbb{R}$ such that $x=e^{2 \pi i t_{0}}$ and $\left\{e^{2 \pi i \alpha\left(t_{0}+k\right)}\right\}_{k \in \mathbb{Z}}$ intersect arbitrary open set of y in S^{1}, that is, the set $\left\{e^{2 \pi i \alpha\left(t_{0}+k\right)}\right\}_{k \in \mathbb{Z}}$ is dense in S^{1}. To see this, it suffices to prove the following Lemma.
Lemma 0.1. Let $x \in \mathbb{R}$ and we denote by $[x]$ the decimal part of the real number x. Then we have that

$$
A=\{[n x] \mid n \in \mathbb{Z} \text { and } x \in \mathbb{R}-\mathbb{Q}\}
$$

is dense in $[0,1)$.
Proof of Lemma (based on Te Cao's solution): First, one notices that A is an infinite set. This is because if $n, m \in \mathbb{Z}$ and $n \neq m$ then we have that $[n x] \neq[m x]$. Otherwise, $n x-m x \in \mathbb{Z}$ which contradicts to the fact that $x \in \mathbb{R}-\mathbb{Q}$. Using that fact that A is infinite, we will show that given any $\epsilon \in(0,1)$, there exits $n_{\epsilon} \in \mathbb{Z}$ such that $\left[n_{\epsilon} \alpha\right] \in[0, \epsilon)$ as follows. Given any $k \in \mathbb{N}^{*}$, we can subdivide the interval equally $[0,1]$ into k pieces given by

$$
\left[0, \frac{1}{k}\right) \cup\left[\frac{1}{k}, \frac{2}{k}\right) \cup \cdots \cup\left[\frac{k-1}{k}, 1\right)
$$

Since the cardinality of A is infinite, there must exist two distinct elements $m_{k}, n_{k} \in \mathbb{Z}$ (depending on k) such that $\left[n_{k} x\right]$ and $\left[m_{k} x\right]$ lie in the same interval, that is, we have that $\left[\left(n_{k}-m_{k}\right) x\right] \in\left(0, \frac{1}{k}\right)$. Given any $\epsilon \in(0,1)$, we can take $n_{\epsilon}=n_{k}-m_{k}$ for $k \in \mathbb{N}^{*}$ and $\frac{1}{k} \leq \epsilon$. Now for any $p \in[0,1)$ and an arbitrary open neighbourhood U of p, we can find an interval $I \subset U$ of length ϵ_{0} centered at p for some $\epsilon_{0} \in(0,1)$. Then we have that $\left[k \cdot n_{\frac{\epsilon_{0}}{2}} \alpha\right] \in A$. This shows that A is dense in $[0,1)$.

For (b): For a fixed $\beta \in S^{1}$, we first show that $f_{\beta}(t)=\left(\beta e^{2 \pi i t}, e^{2 \pi i \alpha t}\right)$ is an injective immersion. Suppose $f_{\beta}\left(t_{1}\right)=f_{\beta}\left(t_{2}\right)$, we have $e^{2 \pi i t_{1}}=e^{2 \pi i t_{2}}$ and $e^{2 \pi i \alpha t_{1}}=e^{2 \pi i \alpha t_{2}}$, which implies that $t_{1}-t_{2} \in \mathbb{Z}$ and $\alpha t_{1}-\alpha t_{2} \in \mathbb{Z}$. Since $\alpha \in \mathbb{R}-\mathbb{Q}$, we conclude that $t_{1}=t_{2}$. We also have that f_{β} is an immersion because the differential

$$
\left(d f_{\beta}\right)_{t}: T_{t} \mathbb{R} \rightarrow T_{f_{\beta}(t)} \mathbb{T}^{2}, \quad\left(d f_{\beta}\right)_{t}=\left[2 \pi i \beta e^{2 \pi i t}, 2 \pi i e^{2 \pi i \alpha t}\right]^{T}
$$

is nonsingular (i.e. has full rank) for all $t \in \mathbb{R}$. To see $\mathbb{T}^{2}=\bigcup_{\beta \in S^{1}} \operatorname{Im}\left(f_{\beta}\right)$, given any point $p=(x, y)$ in \mathbb{T}^{2}, there exist a unique β such that $(x, y)=\left(\beta e^{2 \pi i t}, e^{2 \pi i \alpha t}\right)$. In fact, we can solve $\beta=x \cdot\left(e^{2 \pi i t}\right)^{-1}$ for the unique $t \in S^{1}$ satisfying $y=e^{2 \pi i \alpha t}$. However, this foliation is NOT proper because for each $\beta \in S^{1}$, the image of f_{β} is NOT homeomorphic to \mathbb{R} by part (a) (since $\overline{\operatorname{Im}(\phi)}=\mathbb{T}^{2}$). Hence f_{β} is not an embedding. Furthermore, the leaves f_{β} of this foliation intersect each other and hence they do NOT partition \mathbb{T}^{2}.

Problem 2.

Proof. For (a), we compute $i_{X} \eta$ as follows.

$$
\begin{aligned}
i_{X} \eta & =i_{X}(d x) \wedge d y \wedge d z-d x \wedge i_{X}(d y) \wedge d z+d x \wedge d y \wedge i_{X}(d z) \\
& =x d y \wedge d z+y d z \wedge d x+z d x \wedge d z=\omega
\end{aligned}
$$

For (b), there is a typo in the original homework problem: The spherical coordinates (ρ, ϕ, θ) in \mathbb{R}^{3} is given by

$$
(x, y, z)=(\rho \sin (\phi) \cos (\theta), \rho \sin (\phi) \sin (\theta), \rho \cos (\phi))
$$

We express ω in spherical coordinates as follows. The differentials satisfying

$$
\begin{aligned}
d x & =\sin (\phi) \cos (\theta) d \rho+\rho \cos (\phi) \cos (\theta) d \phi-\rho \sin (\phi) \sin (\theta) d \theta \\
d y & =\sin (\phi) \sin (\theta) d \rho+\rho \cos (\phi) \sin (\theta) d \phi+\rho \sin (\phi) \cos (\theta) d \theta \\
d x & =\cos (\phi) d \rho-\rho \sin (\phi) d \phi
\end{aligned}
$$

Using the fact that $d x \wedge d x=0$ and $d x \wedge d y=-d y \wedge d x$, we obtain

$$
\begin{aligned}
& d y \wedge d z=-\rho \sin (\theta) d \rho \wedge d \phi-\rho \sin (\phi) \cos (\phi) \cos (\theta) d \rho \wedge d \theta+\rho^{2} \sin ^{2}(\phi) \cos (\theta) d \phi \wedge d \theta \\
& d z \wedge d x=\rho \cos (\theta) d \rho \wedge d \phi-\rho \sin (\phi) \cos (\phi) \sin (\theta) d \rho \wedge d \theta+\rho^{2} \sin ^{2}(\phi) \sin (\theta) d \phi \wedge d \theta \\
& d x \wedge d y=\rho \sin ^{2}(\phi) d \rho \wedge d \theta+\rho^{2} \cos (\phi) \sin (\phi) d \phi \wedge d \theta
\end{aligned}
$$

\Longrightarrow

$$
\begin{aligned}
& x d y \wedge d z+y d z \wedge d x+x d x \wedge d y \\
& =\left(-\rho^{2} \sin (\phi) \cos (\theta) \sin (\theta)+\rho^{2} \sin (\phi) \sin (\theta) \cos (\theta)\right) d \rho \wedge d \phi \\
& +\left(-\rho^{2} \sin ^{2}(\phi) \cos ^{2}(\theta) \cos (\phi)-\rho^{2} \sin ^{2}(\phi) \sin ^{2}(\theta) \cos (\phi)+\rho^{2} \cos (\phi) \sin ^{2}(\phi)\right) d \rho \wedge d \theta \\
& +\left(\rho^{3} \sin ^{3}(\phi) \cos ^{2}(\theta)+\rho^{3} \sin ^{3}(\phi) \sin ^{2}(\theta)+\rho^{3} \cos ^{2}(\phi) \sin (\phi)\right) d \phi \wedge d \theta \\
& =\rho^{3} \sin (\phi) d \phi \wedge d \theta
\end{aligned}
$$

For (c), the expression of $d \omega$ in Cartesian coordinates is

$$
d \omega=d x \wedge d y \wedge d z+d y \wedge d z \wedge d x+d z \wedge d x \wedge d y=3 d x \wedge d y \wedge d z
$$

In spherical coordinates, we have

$$
d \omega=3 \rho^{2} \sin (\phi) d \rho \wedge d \phi \wedge d \theta
$$

We verify that we represent the same 3-form

$$
\begin{aligned}
3 d x \wedge d y \wedge d z & =3\left(\rho \sin ^{2}(\phi) d \rho \wedge d \theta+\rho^{2} \cos (\phi) \sin (\phi) d \phi \wedge d \theta\right) \wedge(\cos (\phi) d \rho-\rho \sin (\phi) d \phi) \\
& =3 \rho^{2} \sin (\phi)\left(\sin ^{2}(\phi)+\cos ^{2}(\phi)\right) d \rho \wedge d \phi \wedge d \theta \\
& =3 \rho^{2} \sin (\phi) d \rho \wedge d \theta \wedge d \theta
\end{aligned}
$$

For (d), when restricting to the unit n-sphere, we have $\rho=1$

$$
(x, y, z)=(\sin (\phi) \cos (\theta), \sin (\phi) \sin (\theta), \cos (\phi)) .
$$

On the set where the spherical coordinates are well-defined when $\phi \in(0, \pi)$, we have

$$
\left.\omega\right|_{S^{2}}=\sin (\phi) d \phi \wedge d \theta
$$

For (e), Let $N=(0,0,1)$ and $S=(0,0,-1)$ be the North and South poles of S^{2}, on the open set $S^{2}-\{N, S\}$ the volume form is nowhere zero because $\sin (\phi) \neq 0$ when $\phi \in(0, \pi)$.

Problem 3.

Proof. Let $\alpha \in \Omega^{k}(M)$ be a k-form and $X_{0}, X_{1}, \cdots, X_{k} \in \Gamma(M, T M)$ be smooth vector field. We will verify that

$$
\begin{align*}
d \alpha\left(X_{0}, X_{1}, \cdots, X_{k}\right) & =\sum_{i=0}^{k}(-1)^{i} X_{i}\left(\alpha\left(X_{0}, \cdots, X_{i-1}, \widehat{X}_{i}, X_{i+1}, \cdots, X_{k}\right)\right) \\
& +\sum_{0 \leq i<j \leq k}(-1)^{i+j} \alpha\left(\left[X_{i}, X_{j}\right], X_{0}, X_{1}, \cdots, \widehat{X}_{i}, \cdots, \widehat{X}_{j}, \cdots, X_{k}\right) . \tag{0.1}
\end{align*}
$$

The general strategy to prove tensor identities: Verify both sides are tensorial and check the equality locally using local coordinates for (r, s)-tensors.

In our case as a $(k+1)$-form, we know that the $d \omega$ is tensorial, that is,
(1) For each point $p \in M$, the value of $d \omega\left(X_{0}, \cdots, X_{k}\right)$ depends only on the value of $\left.d \omega\right|_{p}$ and $\left.\left(X_{i}\right)\right|_{p}$ for $i=0,1, \cdots, k$.
(2) The $(k+1)$-form depends an alternating $C^{\infty}(M)$-multilinear functional

$$
d \omega: \Gamma(M, T M)^{k+1} \rightarrow C^{\infty}(M) .
$$

We will prove the equation (0.1) by first verifying the right hand side of (0.1) is also tensorial. Hence it defines differential $(k+1)$-form. Then we check the equality in local coordinates. The first term satisfies

$$
\begin{align*}
& \sum_{i=0}^{k}(-1)^{i} X_{i}\left(\alpha\left(f X_{0}, \cdots, X_{i-1}, \widehat{X}_{i}, X_{i+1}, \cdots, X_{k}\right)\right) \\
& =(-1)^{0}\left(f X_{0}\right)\left(\alpha\left(X_{1}, \cdots, X_{k}\right)\right)+\sum_{i=1}^{k}(-1)^{i} X_{i}\left(f \alpha\left(X_{0}, \cdots, \widehat{X}_{i}, \cdots, X_{k}\right)\right) \\
& =\sum_{i=1}^{k}(-1)^{i} X_{i}(f) \alpha\left(X_{0}, \cdots, \widehat{X}_{i}, \cdots, X_{k}\right)+f \sum_{i=0}^{k}(-1)^{i} X_{i}\left(\alpha\left(X_{0}, \cdots, \widehat{X}_{i}, \cdots, X_{k}\right)\right), \tag{0.2}
\end{align*}
$$

where we have used that fact that α is $C^{\infty}(M)$-linear in each input as a k-form in the second equality and product rule for the last equality. Similar, we check the second term on the right hand side.

$$
\begin{align*}
& \sum_{j=1}^{k}(-1)^{j} \alpha\left(\left[f X_{0}, X_{j}\right], X_{1}, \cdots, \widehat{X}_{j}, \cdots, X_{k}\right)+\sum_{1 \leq i<j \leq k}(-1)^{i+j} \alpha\left(\left[X_{i}, X_{j}\right], f X_{0}, \cdots, \widehat{X}_{i}, \cdots, \widehat{X}_{j}, \cdots, X_{k}\right) \\
& =\sum_{j=1}^{k}(-1)^{j} \alpha\left(f \cdot\left[X_{0}, X_{j}\right]-X_{i}(f) X_{0}, X_{1}, \cdots, \widehat{X}_{j}, \cdots, X_{k}\right)+f \sum_{1 \leq i<j \leq k}(-1)^{i+j} \alpha\left(\left[X_{i}, X_{j}\right], X_{0}, \cdots, \widehat{X}_{i}, \cdots, \widehat{X}_{j}, \cdots, X_{k}\right) \\
& =-\sum_{j=1}^{k}(-1)^{j} X_{j}(f) \alpha\left(X_{0}, \cdots, \widehat{X}_{j}, \cdots, X_{k}\right)+f \sum_{0 \leq i<j \leq k}(-1)^{i+j} \alpha\left(\left[X_{i}, X_{j}\right], X_{0}, \cdots, \widehat{X}_{i}, \cdots, \widehat{X}_{j}, \cdots, X_{k}\right) . \tag{0.3}
\end{align*}
$$

Combining equations (0.2) and (0.3), we see that the right hand side also defines a $C^{\infty}(M)$-linear multilinear functional on $\Gamma(M, T M)^{k}$ (technically one needs to check that each input is $C^{\infty}(M)$, the proof is completely analogous which we omit). By definition, we see that the right hand side of (0.1) is alternating. For fixed $p \in M$, we have that the right hand side of (0.1) at a point p depends only on the value of $\left.X_{i}\right|_{p}$. Having checked both sides are tensorial, it suffices to check equality locally, i.e., we write

$$
\alpha=f d x_{I}:=f d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}, i_{1}<\cdots<i_{k}, \text { and } X_{j}=\frac{\partial}{\partial x_{i_{j}}} .
$$

Because that $\left[X_{i}, X_{j}\right]=0$ in a local coordinate chart and $d \alpha=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} d x_{i} \wedge d x_{I}$. Then the left hand side becomes

$$
\begin{equation*}
d \alpha\left(\frac{\partial}{\partial x_{j_{0}}}, \cdots \frac{\partial}{\partial x_{j_{k}}}\right)=\sum_{i=1}^{n} \sum_{l=0}^{k}(-1)^{l} \frac{\partial f}{\partial x_{i}} d x_{i}\left(\frac{\partial}{\partial x_{j_{l}}}\right) d x_{I}\left(\frac{\partial}{\partial x_{j_{0}}}, \cdots, \frac{\widehat{\partial}}{\partial x_{j_{l}}}, \cdots \frac{\partial}{\partial x_{j_{k}}}\right), \tag{0.4}
\end{equation*}
$$

and the first term on the right hand side (as the second term vanishes) becomes

$$
\begin{equation*}
\sum_{l=0}^{k}(-1)^{l} \frac{\partial}{\partial x_{j_{l}}}\left(f d x_{I}\left(\frac{\partial}{\partial x_{j_{0}}}, \cdots, \frac{\widehat{\partial}}{\partial x_{j_{l}}}, \cdots, \frac{\partial}{\partial x_{j_{k}}}\right)\right) \tag{0.5}
\end{equation*}
$$

After simplications, one verifies that both (0.4) and (0.5) reduces to the expression

$$
\sum_{l=0}^{k}(-1)^{l}\left(\frac{\partial f}{\partial x_{j_{l}}}\right) \delta_{I,\left(j_{0}, \cdots, \widehat{j_{l}}, \cdots, j_{k}\right)}
$$

where $\delta_{I,\left(j_{0}, \cdots, \widehat{j_{l}}, \cdots, j_{k}\right)}$ is zero unless $I=\left(j_{0}, \cdots, \widehat{j_{l}}, \cdots, j_{k}\right)$ as order sets. This completes the proof.

Problem 4.

Proof. For identity (1): We check it on 0-forms first. Given $f \in C^{\infty}(M)$, we have $L_{X}(f)=X(f)$ and

$$
d \circ i_{X}(f)+i_{X} \circ d f=0+X(f)
$$

where we have use the fact that $i_{X}(f)=0$. This implies the Cartan formula holds for $f \in \Omega^{*}(M)$. Since both sides commutate with the exterior derivative d and defines derivations on $\Omega^{*}(M)$. We check it on k-forms $(k \geq 1)$ in local coordinates. For $\alpha \in \Omega^{1}(M)$, it suffices to assume that $\alpha=f d x_{i}$, then we have the left hand side is

$$
L_{X}\left(f d x_{i}\right)=f L_{X}\left(d x_{i}\right)+d x_{i} L_{X}(f)=f d L_{X}\left(x_{i}\right)+d x_{i}(X(f))=f d\left(X\left(x_{i}\right)\right)+d x_{i} X(f) .
$$

The right hand side is

$$
\begin{aligned}
d i_{X}\left(f d x_{i}\right)+i_{X} d\left(f d x_{i}\right) & \left.=d\left(f d x_{i}(X)\right)+i_{X}\left(d f \wedge d x_{i}\right)\right) \\
& =d\left(f\left(X\left(x_{i}\right)\right)+d f(X) d x_{i}+(-1) X\left(x_{i}\right) d f\right. \\
& \left.=X\left(x_{i}\right)(d f)+f d\left(X\left(x_{i}\right)\right)+X(f) d x_{i}-X\left(x_{i}\right)\right)(d f) \\
& =f d\left(X\left(x_{i}\right)\right)+X(f) d x_{i}=L_{X}\left(f d x_{i}\right)
\end{aligned}
$$

Now for $\alpha \in \Omega^{k}(M)$ for $k>1$ we can assume that $\alpha=f d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}$ for some $i_{1}<\cdots<i_{k}$ and since both sides are derivation of $\Omega^{*}(M)$, we conclude that $L_{X}=d i_{X}+i_{X} d$ holds on $\Omega^{k}(M)$ for all k.

Next, we will the proof of the identity

$$
\iota_{[X, Y]}=L_{X} \circ i_{Y}-i_{Y} \circ L_{X}
$$

For 0 -forms: given $f \in C^{\infty}(M)$, we have that

$$
0=\iota_{[X, Y]}(f)=L_{X} \circ i_{Y}(f)-i_{Y} \circ L_{X}(f)=0+i_{Y}(X(f))=0
$$

For 1-forms: given $\alpha \in \Omega^{1}(M)$, we assume that $\alpha=f d x_{i}$ and we have

$$
\begin{aligned}
\left(L_{X} \circ i_{Y}-i_{Y} \circ L_{X}\right)\left(f d x_{i}\right) & =L_{X}\left(f Y\left(x_{i}\right)\right)-i_{Y}\left(f d\left(X\left(x_{i}\right)\right)+d x_{i} X(f)\right) \\
& =X(f) Y\left(x_{i}\right)+f X Y\left(x_{i}\right)-f Y X\left(x_{i}\right)-Y\left(x_{i}\right) X(f) \\
& =f\left([X, Y]\left(x_{i}\right)\right)=\iota_{[X, Y]}\left(f d x_{i}\right)
\end{aligned}
$$

Since both sides are graded derivations on $\Omega^{*}(M)$, we conclude that the identity holds for $\Omega^{k}(M)$ for all $k \geq 0$.
This last identity

$$
\left[L_{X}, L_{Y}\right]:=L_{X} \circ L_{Y}-L_{Y} \circ L_{X}=L_{[X, Y]}
$$

impliest that there is Lie algebra homomorphism from the space of smooth vector fields $(\Gamma(M, T M),[\cdot, \cdot])$ equipped with Lie bracket of vector fields to the space of derivations on $A:=\Omega^{*}(M)$ equipped with the commutator bracket $\left[D_{1}, D_{2}\right]=D_{1} \circ D_{2}-D_{2} \circ D_{1}$. (Check yourself that commutator of a derivation is still a derivation on A.)
We prove the last identity using the first two identities

$$
\begin{aligned}
L_{[X, Y]}(\alpha) & =d i_{[X, Y]}(\alpha)+i_{[X, Y]}(d \alpha) \\
& =d\left(L_{X} i_{Y}-i_{Y} L_{X}\right)(\alpha)+\left(L_{X} i_{Y}-i_{Y} L_{X}\right)(d \alpha) \\
& =\left(d i_{X} d i_{Y}-d i_{Y} d i_{X}-d i_{Y} i_{X} d\right)(\alpha)+\left(d i_{X} i_{Y} d+i_{X} d i_{Y} d-i_{Y} d i_{X} d\right)(\alpha) \\
& =\left(d i_{X} d i_{Y}+d i_{X} i_{Y} d+i_{X} d i_{Y} d\right)(\alpha)-\left(d i_{Y} d i_{X}+d i_{Y} i_{X} d+i_{Y} d i_{X} d\right)(\alpha) \\
& =L_{X} \circ L_{Y}(\alpha)-L_{Y} \circ L_{X}(\alpha) .
\end{aligned}
$$

Problem 5.

Proof. For (a), for each $p \in T_{p} M$ the symplectic forms restricts to a nondegenerate skew-symmetric bilinear form ω_{p} on each tangent space $T_{p} M$. Then we apply the structure Theorem for skew-symmetric bilinear form in linear algebra, which says that there exists a basis v_{1}, \cdots, v_{n} for $T_{p} M$ such that under this basis, the symplectic form has the standard form, i.e.,

$$
\left(\begin{array}{cccc}
J & 0 & \ldots & 0 \\
0 & J & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & J
\end{array}\right)
$$

where $J=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and this implies that every symplectic manifold is even dimensional. The procedure to find such a basis is the following: given a nonzero vector $v_{1} \in T_{p} M$, as ω_{p} is non-degenerate, there is a nonzero vector v_{2} such that $\omega_{p}\left(v_{1}, v_{2}\right)=1$. Then we defined the ω-orthogonal complement to $\operatorname{Span}_{\mathbb{R}}\left\langle v_{1}, v_{2}\right\rangle$ in $T_{p} M$ by

$$
\left\{v \in T_{p} M \mid \omega_{p}\left(v_{i}, v\right)=0 \text { for } i=1,2\right\} .
$$

By definition, this is a $(\operatorname{dim}(M)-2)$-dimensional symplectic subspace of $T_{p} M$. Then we inductively apply the above procedure to find such a basis $v_{1}, v_{2}, \cdots, v_{n}$.
For (b), we define a homomorphism by

$$
\psi: T M \rightarrow T^{*} M, X \mapsto i_{X} \omega
$$

Since the 2 -form ω is smooth, so this map is smooth. Now if $v \in T_{p} M$, then $i_{v} \omega_{p} \in T_{p}^{*} M$, which implies that ψ commutes with the projections to the base. If $v_{1}, v_{2}, u \in T_{p} M$ and $a, b \in \mathbb{R}$, then we have that

$$
\left(i_{a v_{1}+b v_{2}} \omega_{p}\right)(u)=\omega_{p}\left(a v_{1}+b v_{2}, u\right)=a \omega_{p}\left(v_{1}, u\right)+b \omega_{p}\left(v_{2}, u\right)=a\left(i_{v_{1}} \omega_{p}\right)(u)+b\left(i_{v_{2}} \omega_{p}\right)(u)
$$

which implies that ψ is linear on each fiber. So we conclude that ψ is a bundle homomorphism. By definition of ω being non-degenerate, we have that for $v \in T_{p} M$ and $v \neq 0$, there exists $u \in T_{p} M$ such that

$$
\left(i_{v} \omega\right)(u)=\omega_{p}(X, Y) \neq 0 \Longrightarrow i_{v} \omega_{p} \neq 0 \in T_{p}^{*} M
$$

This non-degeneracy condition implies that the bundle homomorphism ψ is injective and therefore this is a bundle isomorphism as the rank of $T M$ and $T^{*} M$ are the same.
For (c): We have not use the fact that $d \omega=0$ so far for part (a) and (b), in fact a nondegenerate 2-form that is not necessarily closed is called an almost symplectic form for which part (a) and (b) still apply. For a symplectic form, the fact $d \omega=0$ implies that

$$
\begin{equation*}
L_{X_{H}}\left(\varphi_{t}^{*} \omega\right)=\left(i_{X_{H}} \circ d+d \circ i_{X_{H}}\right)\left(\varphi_{t}^{*} \omega\right)=i_{X_{H}} \varphi_{t}^{*} d \omega+d \circ i_{X_{H}} \varphi_{t}^{*} \omega=0+d\left(\varphi_{t}^{*}\left(i_{d \phi_{t}\left(X_{H}\right)} \omega\right)\right) \tag{0.6}
\end{equation*}
$$

Now since φ_{t} is the flow of the Hamiltonian vector field X_{H}, we have that

$$
d_{p} \varphi_{t}\left(X_{H}\right)=d_{p} \varphi_{t}\left(\left.\frac{d}{d s} \varphi_{s}(p)\right|_{s=0}\right)=\left.\frac{d}{d s}\left(\varphi_{t} \circ \varphi_{s}(p)\right)\right|_{s=0}=X_{H}\left(\varphi_{t}(p)\right)
$$

This implies that $i_{d \phi_{t}\left(X_{H}\right)} \omega=i_{X_{H}} \omega=d H$ in equation (0.6). Therefore, one has

$$
L_{X_{H}}\left(\varphi_{t}^{*} \omega\right)=d\left(\varphi_{t}^{*} d H\right)=\varphi_{t}^{*} d^{2} H=0
$$

. On the other hand, by the definition of Lie derivative,

$$
L_{X_{H}}\left(\varphi_{t}^{*} \omega\right)=\lim _{s \rightarrow 0} \frac{\left(\varphi_{t+s}^{*} \omega\right)_{p}-\left(\varphi_{t}^{*} \omega\right)_{p}}{s}=\left.\frac{d}{d s}\left(\left(\varphi_{t+s}^{*} \omega\right)_{p}\right)\right|_{s=0}=\left.\frac{d}{d s}\left(\left(\varphi_{s}^{*} \omega\right)_{p}\right)\right|_{s=t}=0
$$

for all $t \in \mathbb{R}$ and $p \in M$. This is equivalent to the fact $\varphi_{t}^{*} \omega=\omega$, which completes the proof.

