
Solution 4

Due on 10/19

Problem 1.

Proof. For (a), Given a point p = (x, y) in T2 and let U be any open set that contains p. We want to show
that Im(φ) ∩ U 6= ∅, where φ is the smooth map

φ : R→ S1 × S1, t 7→ (e2πit, e2πiαt) for α ∈ R−Q.

This is equivalent to the fact that there exists t0 ∈ R such that x = e2πit0 and {e2πiα(t0+k)}k∈Z intersect
arbitrary open set of y in S1, that is, the set {e2πiα(t0+k)}k∈Z is dense in S1. To see this, it suffices to prove
the following Lemma.

Lemma 0.1. Let x ∈ R and we denote by [x] the decimal part of the real number x. Then we have that

A = {[nx] | n ∈ Z and x ∈ R−Q}

is dense in [0, 1).

Proof of Lemma (based on Te Cao’s solution): First, one notices that A is an infinite set. This is because
if n,m ∈ Z and n 6= m then we have that [nx] 6= [mx]. Otherwise, nx −mx ∈ Z which contradicts to the
fact that x ∈ R − Q. Using that fact that A is infinite, we will show that given any ε ∈ (0, 1), there exits
nε ∈ Z such that [nεα] ∈ [0, ε) as follows. Given any k ∈ N∗, we can subdivide the interval equally [0, 1] into
k pieces given by

[0,
1

k
) ∪ [

1

k
,

2

k
) ∪ · · · ∪ [

k − 1

k
, 1).

Since the cardinality of A is infinite, there must exist two distinct elements mk, nk ∈ Z (depending on k)
such that [nkx] and [mkx] lie in the same interval, that is, we have that [(nk −mk)x] ∈ (0, 1k ). Given any
ε ∈ (0, 1), we can take nε = nk −mk for k ∈ N∗ and 1

k ≤ ε. Now for any p ∈ [0, 1) and an arbitrary open
neighbourhood U of p, we can find an interval I ⊂ U of length ε0 centered at p for some ε0 ∈ (0, 1). Then
we have that [k · n ε0

2
α] ∈ A. This shows that A is dense in [0, 1).

For (b): For a fixed β ∈ S1, we first show that fβ(t) = (βe2πit, e2πiαt) is an injective immersion. Suppose
fβ(t1) = fβ(t2), we have e2πit1 = e2πit2 and e2πiαt1 = e2πiαt2 , which implies that t1−t2 ∈ Z and αt1−αt2 ∈ Z.
Since α ∈ R−Q, we conclude that t1 = t2. We also have that fβ is an immersion because the differential

(dfβ)t : TtR→ Tfβ(t)T
2, (dfβ)t = [2πiβe2πit, 2πie2πiαt]T

is nonsingular (i.e. has full rank) for all t ∈ R. To see T2 =
⋃
β∈S1 Im(fβ), given any point p = (x, y) in T2,

there exist a unique β such that (x, y) = (βe2πit, e2πiαt). In fact, we can solve β = x · (e2πit)−1 for the unique
t ∈ S1 satisfying y = e2πiαt. However, this foliation is NOT proper because for each β ∈ S1, the image of fβ
is NOT homeomorphic to R by part (a) (since Im(φ) = T2). Hence fβ is not an embedding. Furthermore,
the leaves fβ of this foliation intersect each other and hence they do NOT partition T2.
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Problem 2.

Proof. For (a), we compute iXη as follows.

iXη = iX(dx) ∧ dy ∧ dz − dx ∧ iX(dy) ∧ dz + dx ∧ dy ∧ iX(dz)

= xdy ∧ dz + ydz ∧ dx+ zdx ∧ dz = ω

For (b), there is a typo in the original homework problem: The spherical coordinates (ρ, φ, θ) in R3

is given by
(x, y, z) = (ρ sin(φ) cos(θ), ρ sin(φ) sin(θ), ρ cos(φ)).

We express ω in spherical coordinates as follows. The differentials satisfying

dx = sin(φ) cos(θ)dρ+ ρ cos(φ) cos(θ)dφ− ρ sin(φ) sin(θ)dθ,

dy = sin(φ) sin(θ)dρ+ ρ cos(φ) sin(θ)dφ+ ρ sin(φ) cos(θ)dθ,

dx = cos(φ)dρ− ρ sin(φ)dφ.

Using the fact that dx ∧ dx = 0 and dx ∧ dy = −dy ∧ dx, we obtain

dy ∧ dz = −ρ sin(θ)dρ ∧ dφ− ρ sin(φ) cos(φ) cos(θ)dρ ∧ dθ + ρ2 sin2(φ) cos(θ)dφ ∧ dθ,
dz ∧ dx = ρ cos(θ)dρ ∧ dφ− ρ sin(φ) cos(φ) sin(θ)dρ ∧ dθ + ρ2 sin2(φ) sin(θ)dφ ∧ dθ,
dx ∧ dy = ρ sin2(φ)dρ ∧ dθ + ρ2 cos(φ) sin(φ)dφ ∧ dθ.

=⇒

xdy ∧ dz + ydz ∧ dx+ xdx ∧ dy
=
(
− ρ2 sin(φ) cos(θ) sin(θ) + ρ2 sin(φ) sin(θ) cos(θ)

)
dρ ∧ dφ

+
(
− ρ2 sin2(φ) cos2(θ) cos(φ)− ρ2 sin2(φ) sin2(θ) cos(φ) + ρ2 cos(φ) sin2(φ)

)
dρ ∧ dθ

+
(
ρ3 sin3(φ) cos2(θ) + ρ3 sin3(φ) sin2(θ) + ρ3 cos2(φ) sin(φ)

)
dφ ∧ dθ

= ρ3 sin(φ)dφ ∧ dθ.

For (c), the expression of dω in Cartesian coordinates is

dω = dx ∧ dy ∧ dz + dy ∧ dz ∧ dx+ dz ∧ dx ∧ dy = 3dx ∧ dy ∧ dz.

In spherical coordinates, we have
dω = 3ρ2 sin(φ)dρ ∧ dφ ∧ dθ.

We verify that we represent the same 3-form

3dx ∧ dy ∧ dz = 3(ρ sin2(φ)dρ ∧ dθ + ρ2 cos(φ) sin(φ)dφ ∧ dθ) ∧ (cos(φ)dρ− ρ sin(φ)dφ)

= 3ρ2 sin(φ)(sin2(φ) + cos2(φ))dρ ∧ dφ ∧ dθ
= 3ρ2 sin(φ)dρ ∧ dθ ∧ dθ.

For (d), when restricting to the unit n-sphere, we have ρ = 1

(x, y, z) = (sin(φ) cos(θ), sin(φ) sin(θ), cos(φ)).

On the set where the spherical coordinates are well-defined when φ ∈ (0, π), we have

ω|S2 = sin(φ)dφ ∧ dθ.

For (e), Let N = (0, 0, 1) and S = (0, 0,−1) be the North and South poles of S2, on the open set S2−{N,S}
the volume form is nowhere zero because sin(φ) 6= 0 when φ ∈ (0, π).
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Problem 3.

Proof. Let α ∈ Ωk(M) be a k-form and X0, X1, · · · , Xk ∈ Γ(M,TM) be smooth vector field. We will verify
that

dα(X0, X1, · · · , Xk) =

k∑
i=0

(−1)iXi

(
α(X0, · · · , Xi−1, X̂i, Xi+1, · · · , Xk)

)
+

∑
0≤i<j≤k

(−1)i+jα([Xi, Xj ], X0, X1, · · · , X̂i, · · · , X̂j , · · · , Xk). (0.1)

The general strategy to prove tensor identities: Verify both sides are tensorial and check the equality locally
using local coordinates for (r, s)-tensors.

In our case as a (k + 1)-form, we know that the dω is tensorial, that is,

(1) For each point p ∈ M , the value of dω(X0, · · · , Xk) depends only on the value of dω|p and (Xi)|p for
i = 0, 1, · · · , k.

(2) The (k + 1)-form depends an alternating C∞(M)-multilinear functional

dω : Γ(M,TM)k+1 → C∞(M).

We will prove the equation (0.1) by first verifying the right hand side of (0.1) is also tensorial. Hence it
defines differential (k + 1)-form. Then we check the equality in local coordinates. The first term satisfies

k∑
i=0

(−1)iXi

(
α(fX0, · · · , Xi−1, X̂i, Xi+1, · · · , Xk)

)
= (−1)0(fX0)

(
α(X1, · · · , Xk)

)
+

k∑
i=1

(−1)iXi(fα(X0, · · · , X̂i, · · · , Xk)
)

=

k∑
i=1

(−1)iXi(f)α(X0, · · · , X̂i, · · · , Xk) + f

k∑
i=0

(−1)iXi(α(X0, · · · , X̂i, · · · , Xk)), (0.2)

where we have used that fact that α is C∞(M)-linear in each input as a k-form in the second equality and
product rule for the last equality. Similar, we check the second term on the right hand side.

∑k
j=1(−1)jα([fX0, Xj ], X1, · · · , X̂j , · · · , Xk) +

∑
1≤i<j≤k(−1)i+jα([Xi, Xj ], fX0, · · · , X̂i, · · · , X̂j , · · · , Xk)

=
∑k
j=1(−1)jα(f · [X0, Xj ]−Xi(f)X0, X1, · · · , X̂j , · · · , Xk) + f

∑
1≤i<j≤k(−1)i+jα([Xi, Xj ], X0, · · · , X̂i, · · · , X̂j , · · · , Xk)

= −
∑k
j=1(−1)jXj(f)α(X0, · · · , X̂j , · · · , Xk) + f

∑
0≤i<j≤k(−1)i+jα([Xi, Xj ], X0, · · · , X̂i, · · · , X̂j , · · · , Xk).

(0.3)
Combining equations (0.2) and (0.3), we see that the right hand side also defines a C∞(M)-linear multilinear
functional on Γ(M,TM)k (technically one needs to check that each input is C∞(M), the proof is completely
analogous which we omit). By definition, we see that the right hand side of (0.1) is alternating. For fixed
p ∈ M , we have that the right hand side of (0.1) at a point p depends only on the value of Xi

∣∣
p
. Having

checked both sides are tensorial, it suffices to check equality locally, i.e., we write

α = fdxI := fdxi1 ∧ · · · ∧ dxik , i1 < · · · < ik, and Xj =
∂

∂xij
.

Because that [Xi, Xj ] = 0 in a local coordinate chart and dα =
∑n
i=1

∂f
∂xi

dxi ∧ dxI . Then the left hand side
becomes

dα(
∂

∂xj0
, · · · ∂

∂xjk
) =

n∑
i=1

k∑
l=0

(−1)l
∂f

∂xi
dxi(

∂

∂xjl
)dxI(

∂

∂xj0
, · · · , ∂̂

∂xjl
, · · · ∂

∂xjk
), (0.4)
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and the first term on the right hand side (as the second term vanishes) becomes

k∑
l=0

(−1)l
∂

∂xjl
(fdxI

( ∂

∂xj0
, · · · , ∂̂

∂xjl
, · · · , ∂

∂xjk
)
)

(0.5)

After simplications, one verifies that both (0.4) and (0.5) reduces to the expression

k∑
l=0

(−1)l
( ∂f
∂xjl

)
δI,(j0,··· ,ĵl,··· ,jk),

where δI,(j0,··· ,ĵl,··· ,jk) is zero unless I = (j0, · · · , ĵl, · · · , jk) as order sets. This completes the proof.
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Problem 4.

Proof. For identity (1): We check it on 0-forms first. Given f ∈ C∞(M), we have LX(f) = X(f) and

d ◦ iX(f) + iX ◦ df = 0 +X(f),

where we have use the fact that iX(f) = 0. This implies the Cartan formula holds for f ∈ Ω∗(M). Since both
sides commutate with the exterior derivative d and defines derivations on Ω∗(M). We check it on k-forms
(k ≥ 1 ) in local coordinates. For α ∈ Ω1(M), it suffices to assume that α = fdxi, then we have the left
hand side is

LX(fdxi) = fLX(dxi) + dxiLX(f) = fdLX(xi) + dxi(X(f)) = fd(X(xi)) + dxiX(f).

The right hand side is

diX(fdxi) + iXd(fdxi) = d(fdxi(X)) + iX(df ∧ dxi))
= d(f(X(xi)) + df(X)dxi + (−1)X(xi)df

= X(xi)(df) + fd(X(xi)) +X(f)dxi −X(xi))(df)

= fd(X(xi)) +X(f)dxi = LX(fdxi).

Now for α ∈ Ωk(M) for k > 1 we can assume that α = fdxi1 ∧ · · · ∧ dxik for some i1 < · · · < ik and since
both sides are derivation of Ω∗(M), we conclude that LX = diX + iXd holds on Ωk(M) for all k.

Next, we will the proof of the identity

ι[X,Y ] = LX ◦ iY − iY ◦ LX .

For 0-forms: given f ∈ C∞(M), we have that

0 = ι[X,Y ](f) = LX ◦ iY (f)− iY ◦ LX(f) = 0 + iY (X(f)) = 0.

For 1-forms: given α ∈ Ω1(M), we assume that α = fdxi and we have

(LX ◦ iY − iY ◦ LX)(fdxi) = LX(fY (xi))− iY
(
fd(X(xi)) + dxiX(f)

)
= X(f)Y (xi) + fXY (xi)− fY X(xi)− Y (xi)X(f)

= f([X,Y ](xi)) = ι[X,Y ](fdxi)

Since both sides are graded derivations on Ω∗(M), we conclude that the identity holds for Ωk(M) for all k ≥ 0.

This last identity
[LX , LY ] := LX ◦ LY − LY ◦ LX = L[X,Y ]

impliest that there is Lie algebra homomorphism from the space of smooth vector fields (Γ(M,TM), [·, ·])
equipped with Lie bracket of vector fields to the space of derivations on A := Ω∗(M) equipped with the
commutator bracket [D1, D2] = D1 ◦D2 −D2 ◦D1. (Check yourself that commutator of a derivation is
still a derivation on A.)
We prove the last identity using the first two identities

L[X,Y ](α) = di[X,Y ](α) + i[X,Y ](dα)

= d(LX iY − iY LX)(α) + (LX iY − iY LX)(dα)

= (diXdiY − diY diX − diY iXd)(α) + (diX iY d+ iXdiY d− iY diXd)(α)

= (diXdiY + diX iY d+ iXdiY d)(α)− (diY diX + diY iXd+ iY diXd)(α)

= LX ◦ LY (α)− LY ◦ LX(α).

5



Problem 5.

Proof. For (a), for each p ∈ TpM the symplectic forms restricts to a nondegenerate skew-symmetric bilinear
form ωp on each tangent space TpM . Then we apply the structure Theorem for skew-symmetric bilinear
form in linear algebra, which says that there exists a basis v1, · · · , vn for TpM such that under this basis,
the symplectic form has the standard form, i.e.,

J 0 . . . 0
0 J . . . 0
...

...
. . .

...
0 0 . . . J


where J =

(
0 −1
1 0

)
and this implies that every symplectic manifold is even dimensional. The procedure

to find such a basis is the following: given a nonzero vector v1 ∈ TpM , as ωp is non-degenerate, there is a
nonzero vector v2 such that ωp(v1, v2) = 1. Then we defined the ω-orthogonal complement to SpanR〈v1, v2〉
in TpM by

{v ∈ TpM | ωp(vi, v) = 0 for i = 1, 2}.
By definition, this is a (dim(M) − 2)-dimensional symplectic subspace of TpM . Then we inductively apply
the above procedure to find such a basis v1, v2, · · · , vn.
For (b), we define a homomorphism by

ψ : TM → T ∗M,X 7→ iXω.

Since the 2-form ω is smooth, so this map is smooth. Now if v ∈ TpM, then ivωp ∈ T ∗pM, which implies that
ψ commutes with the projections to the base. If v1, v2, u ∈ TpM and a, b ∈ R, then we have that

(iav1+bv2ωp)(u) = ωp(av1 + bv2, u) = aωp(v1, u) + bωp(v2, u) = a(iv1ωp)(u) + b(iv2ωp)(u),

which implies that ψ is linear on each fiber. So we conclude that ψ is a bundle homomorphism. By definition
of ω being non-degenerate, we have that for v ∈ TpM and v 6= 0, there exists u ∈ TpM such that

(ivω)(u) = ωp(X,Y ) 6= 0 =⇒ ivωp 6= 0 ∈ T ∗pM.

This non-degeneracy condition implies that the bundle homomorphism ψ is injective and therefore this is a
bundle isomorphism as the rank of TM and T ∗M are the same.
For (c): We have not use the fact that dω = 0 so far for part (a) and (b), in fact a nondegenerate 2-form
that is not necessarily closed is called an almost symplectic form for which part (a) and (b) still apply. For
a symplectic form, the fact dω = 0 implies that

LXH (ϕ∗tω) = (iXH ◦ d+ d ◦ iXH )(ϕ∗tω) = iXHϕ
∗
t dω + d ◦ iXHϕ∗tω = 0 + d(ϕ∗t (idφt(XH)ω)). (0.6)

Now since ϕt is the flow of the Hamiltonian vector field XH , we have that

dpϕt(XH) = dpϕt
( d
ds
ϕs(p)

∣∣∣∣
s=0

)
=

d

ds
(ϕt ◦ ϕs(p))

∣∣∣∣
s=0

= XH(ϕt(p)).

This implies that idφt(XH)ω = iXHω = dH in equation (0.6). Therefore, one has

LXH (ϕ∗tω) = d(ϕ∗t dH) = ϕ∗t d
2H = 0

. On the other hand, by the definition of Lie derivative,

LXH (ϕ∗tω) = lim
s→0

(ϕ∗t+sω)p − (ϕ∗tω)p

s
=

d

ds

(
(ϕ∗t+sω)p

)∣∣∣∣
s=0

=
d

ds

(
(ϕ∗sω)p

)∣∣∣∣
s=t

= 0

for all t ∈ R and p ∈M . This is equivalent to the fact ϕ∗tω = ω, which completes the proof.
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