Mechanical Properties of
Polymers




Definition of Polymers

* Polymers are materials consisting of very long molecules,
made up of hundreds or thousands repeating chemical

units (the monomer units), covalently bonded together.

* Organic glasses




Degree of Polymerization (DP):

the number of monomer units in a molecule.

Amorphous & Crystalline




Classes of Polymers

* Thermoplastics: such as PE. soften on heating

* Thermosets: such as epoxy. Harden when

two components are heated together

e Elastomers or rubbers




Thermoplastics

* Commonest: Polyethylene (PE)

» Often described as linear polymers (chains are

not cross linked)

« T{ secondarybonds melt, flow like viscous
liquid




Thermosets

* Are made by mixing two components (resin and

hardener) = react and harden at RT or on heating

* Heavily cross-linked = also called network polymers




Elastomers

* Almost linear polymers with occasional cross-links

* onlyinnoncrystalline

* the backbone of the chain must be very long and have many kinks and
bends.
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* Helical pattern to the chain because of carbon-carbon double bonds

(a) (b)
* Mechanical Model: a highly coiled skeleton of primary bonds (including
cross-links) immersed in a viscous like medium.

e During application of a tensile load: coils are unwound to an extent

* Upon unloading, the cross-linking atoms act to restore the original
dimensions.

* No links, no restoration



Elastic behavior of rubbers is different
from that of crystalline material
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Only at extensions where the chains
approximately fully extended does st
the force begin to stretch primary
bonds e

decrease in S 2 Increase in F (free
energy)
Potential energy is unchanged

No primary bond stretching = small
modulus

Source: Courtney, Mechanical Behavior of Materials, 2000



e Akin to ideal gases (no
change in potential
energy) but ...

* Incompressible

* Neo-Hookean L=Nk,T ———
N : no. polymer chains/V

o= A\ —=\"1)

Source: Courtney, Mechanical Behavior of Materials, 2000



Glass Transition Temperature
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Deformation of Polymers

astomers =2 Always elastic response
nermosets =2 viscoelastic response

nermoplastics 2 elastic or plastic



Linear-amorphous polymers (like PMMA & PS) show five regims of deformation
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Fig. 23.2. A schematic of a linear-amorphous polymer, showing the strong covalent bonds (full lines) and the
weak secondary bonds (dotted lines). When the polymer is loaded below T, it is the secondary bonds which
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Glass or visco-elastic transition

T>Tg Extra free volume
lowers the packing density

Still there are some non-
sliding parts

On unloading the elastic
regions pull the polymer to
its Orgiginal Shape Fl%r ch molecule linear polymer can be thought of as being conmincc: in a tube

23.4. Each m in a linear y
surroundings. When the polymer is loaded at or above T, each molecule can move (reptate) in its tube, givin

Source: Ashby & Jones, Engineering Materials 2, 1998.

Modeled by springs and
dashpots



* Rubbery behavior
— DP<103 = polymer becomes sticky liquid

— DP>10%*->long molecules intertwined like a jar of very long
worms —2>rubbery behavior

 V\iscous flow

T =1y
* Decomposition

— the thermal energy exceeds the cohesive energy of some parts
of the molecular chain, causing degradation or
depolymerization.

— PMMA - decomposes into monomer units
— PE 2randomly degrade into many products



Modulus Diagram for Polymers
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Modulus (MPa)
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Tensile stress (psi)
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Polymers are brittle at
T<~0.75 T,

Pre existing cracks left by
machining or abrasion or
caused by environmental
attack

~ Kic

o= \/7TTA
Fracture toughness
Kic ~1 MPam?”

Crack size a ~ O(Mm)
o~ 1 MPa

Source: Ashby & Jones, Engineering Materials 2, 1998.



Stress (o)
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Craze || maximum stress
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Highly localized

In the direction of maximum shear
stresses

More easily formed in tension

Crazing and shear banding
compete with each other
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Source: Ashby & Jones, Engineering Materials 2, 1998.



Micro-shear bands

At-Polystyrene at 22° C under compression Crazes
(Optical Microscopy w/ Polarized Light) At-Polystyrene in tension
(TEM)

Source: http://www.files.chem.vt.edu/chem-dept/marand/Lecture23.pdf
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Crystalline polymers always contain some remnant non-
crystalline material.




Crystallization

Crystallization increases the modulus too
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Polymers may be amorphous or semi-crystalline

Deformation of polymers is highly affected by temperature,
time, DP, etc.

Elastomers deform elastically over a long range of
temperature

Linear polymers may be glassy, leathery, rubbery or viscous
flow

Plastic behavior of linear polymers may cause by cold
drawing, crazing or shear banding

Crystalline polymers always have remnants of amorphous
polymers

The tension and compression behavior of polymers can be
quite different



Glass Transition Temperature
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Figure 8.2

Molar volume-temperature curves on cooling from above T, to below it. If the ma-
terial crystallizes (curve (a)), a discontinuity in molar volume occurs at T,. Ifit does
not(curve(b)),thethemnleqmdoneoeﬂidmt(~dV,,ldT)isundnngedatT,nd
the liquid structure remains below 7,.. At T,—the glass transition temperature—
there is a discontinuity in the thermal expansion coefficient. Below T,, the material
demonstrates mechanical characteristics of a solid rather than a supercooled liquid.
Some materials partially crystallize at 7, and their molar volume-temperature be-
havior on cooling is illustrated by curve (c). In certain materials (e.g., long-chain
polymers) crystallization is easily avoided on cooling; in others (e.g., metals) very
rapid cooling is required to prevent crystallization.



