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The effects of dislocation climb on plastic deformation during loading and unloading are studied
using a two-dimensional discrete dislocation dynamics model. Simulations are performed for
polycrystalline thin films passivated on both surfaces. Dislocation climb lowers the overall level of
the stress inside thin films and reduces the work hardening rate. Climb decreases the density of
dislocations in pile-ups and reduces back stresses. These factors result in a smaller Bauschinger
effect on unloading compared to simulations without climb. As dislocations continue to climb at
the onset of unloading and the dislocation density continues to increase, the initial unloading slope
increases with decreasing unloading rate. Because climb disperses dislocations, fewer dislocations
are annihilated during unloading, leading to a higher dislocation density at the end of the unloading
step. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4861147]

I. INTRODUCTION

The use of metal thin films in micro-electronic and
micro-electro-mechanical systems (MEMS) has motivated
research on their mechanical properties. Thin films on sub-
strates often experience temperature cycles that lead to plastic
deformation because of differential thermal expansion
between film and substrate. As plastic deformation directly
impacts the level of stress in a film and hence its reliability,
there has been a strong drive to study plasticity in thin films.
The structure of thin films also makes them excellent vehicles
to probe fundamental problems in materials science: The grain
size of a thin film is often much smaller than that of the same
material at the macro-scale and grains are often columnar.
The resulting proximity of free surfaces and the high density
of interfaces in thin films have a profound impact on their me-
chanical behavior that is not yet fully understood.1

In general, thin films can support much higher stresses
than their bulk counterparts, and their mechanical response
is size dependent. Because the constitutive equations in clas-
sical continuum theories do not have internal length scales,
these theories cannot predict size-dependent responses.
There have been a considerable number of attempts to de-
velop continuum theories that incorporate one or more length
scales into the constitutive equations, including nonlocal2

and strain-gradient theories.3–9 Despite these attempts, there
is no continuum theory that can predict the behavior of mate-
rials in all experiments.

It is well known that in crystalline solids plasticity at
small scales takes place by the same fundamental mecha-
nisms observed in bulk materials: plastic flow proceeds
mainly by the collective motion of dislocations. This obser-
vation affords the use of discrete dislocation dynamics
(DDD) to study plasticity in thin films. In the DDD
approach, dislocations are modeled as line singularities in an

isotropic, elastic solid. The behavior of the dislocations is
governed by a set of simple constitutive equations that
describe how they move, nucleate, and interact with
obstacles. Although three-dimensional DDD models capture
the physics of problems more accurately than two-
dimensional models, they are computationally demanding
and are not easily applied to thin films. Therefore, most
three-dimensional models are limited to single crystals, very
small strains, small volumes of material, and low dislocation
densities. For example, ParaDis, a powerful three-
dimensional DDD code that was originally developed at the
Lawrence Livermore National Laboratory,10 can only model
single-crystal materials. Two-dimensional discrete disloca-
tion dynamics models, on the other hand, can model poly-
crystalline materials, realistic dislocation densities, and
relatively large strains with much less computational effort.

If a metal is deformed plastically in one direction, plas-
tic deformation often starts at a much lower stress level upon
reversal of the load, a phenomenon known as the
Bauschinger effect. Departure from the linear unloading
curve during reverse deformation sometimes begins before
the stress changes sign. The Bauschinger effect is a natural
consequence of the inhomogeneous nature of plastic flow;
understanding the fundamental causes of the effect is an
essential step towards developing better strain hardening the-
ories and constitutive models for cyclic deformation.11 The
Bauschinger effect is generally ascribed to either short-range
effects, such as the directionality of mobile dislocations in
their resistance to motion or the annihilation of dislocations
during reverse loading, or to long-range effects such as back
stresses caused by dislocation pile-ups at grain boundaries or
obstacles. Both effects assist plastic deformation in the
reverse direction and can give rise to a Bauschinger effect.12

Xiang and Vlassak13,14 reported the first direct observa-
tions of the Bauschinger effect in thin films. They found that
the effect could be quite significant in thin films, especially
if the films were passivated. Their findings were explained as
the result of large back stresses caused by dislocation pile-
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ups at the passivation layers. The Bauschinger effect in thin
films was modeled using two-dimensional15,16 and 2.5-
dimensional17 DDD simulations. These simple two-
dimensional models captured the size dependence of the
yield stress of thin films,15 but they overestimated the
stresses caused by work hardening because they lacked any
softening or recovery mechanisms. Recently, dislocation
climb was introduced to two-dimensional DDD by Davoudi
et al.18 for polycrystalline thin films and by Deshpande
et al.19,20 for single crystals. In this paper, we use discrete
dislocation dynamics to investigate the Bauschinger effect in
polycrystalline thin films. The analyses have been carried
out using a two-dimensional DDD model that includes dislo-
cation climb to better describe strain-hardening behavior.
While the analyses focus on the effects of dislocation climb,
climb may be taken as representative of a range of softening
mechanisms that occur in a material.

II. DISCRETE DISLOCATION DYNAMICS
FRAMEWORK

In discrete dislocation dynamics, a material is generally
modeled as an elastic solid containing dislocations. As a load
is applied to the material, the dislocations are allowed to
move and evolve incrementally. At any instant in time, it is
assumed that the material is in equilibrium and that the dis-
placement and stress fields are known. An increment of strain
is prescribed and the positions of the dislocations, the dis-
placement field, and the stress field are updated using the fol-
lowing procedure: (1) The Peach-Koehler force is calculated
along the length of each dislocation; (2) the dislocation struc-
ture is allowed to evolve in response to the Peach-Koehler
force by a number of mechanisms including dislocation nucle-
ation, motion, and annihilation; (3) the stress state in the solid
is calculated for the updated dislocation arrangement. Steps 1
and 3 follow from elasticity; step 2 requires the formulation
of constitutive rules for dislocation behavior. In this paper, we
follow the rules suggested by Kubin et al.21 for dislocation
glide, dislocation annihilation, and dislocation nucleation.

Determining the stress state at each time step requires
the solution of an elastic boundary value problem. In the
two-dimensional DDD framework developed by Van der
Giessen and Needleman,22 the displacement, strain, and
stress fields are written as the superposition of two fields

u ¼ ~u þ û; e ¼ ~e þ ê; r ¼ ~r þ r̂: (1)

The (#) fields are obtained by summing the fields associated
with the individual dislocations in the material under the
assumption of an infinite medium

~u ¼
XN

I¼1

uðIÞ; ~e ¼
XN

I¼1

eðIÞ; ~r ¼
XN

I¼1

rðIÞ; (2)

where u(I), e(I), and r(I) are the fields due to dislocation I, an-
alytical expressions for which can be found in standard texts
(see, e.g., Ref. 23). The (^) fields represent the image fields
that enforce the correct boundary conditions. They are
smooth and are readily calculated using the finite element

method or a boundary element analysis. The Peach-Koehler
force on a dislocation I is given by

FðIÞ ¼ r̂ þ
X

J 6¼I

rðJÞ
! "

& b
# $

' n; (3)

where n is the local tangent to the dislocation line and b is
the Burgers vector. The glide component of this force is
FðIÞg ¼ FðIÞ & ðn' nÞ and the climb component FðIÞc ¼ FðIÞ & n,
where n ¼ b' n=kb' nk is the unit vector perpendicular to
the glide plane of the dislocation.

Simulations typically start with the material in a
dislocation-free state. Dislocation sources are randomly dis-
tributed on the slip planes with each source characterized by
nucleation strength, snuc. When the glide component of the
Peach-Koehler force on a dislocation source exceeds bsnuc

during a time tnuc, two dislocations of opposite sign are
nucleated on the glide plane. The distance between the newly
formed dislocations

Lnuc ¼
l

2pð1( !Þ
b

snuc
(4)

is taken such that the attraction between the two dislocations
is balanced by snuc, where l is the shear modulus and ! is
Poisson’s ratio of the material. When two dislocations of op-
posite sign come closer to each other than a critical distance
Lann, they annihilate each other and are removed from the
model. According to experimental24 and computational evi-
dence,25 the glide velocity in an fcc material without internal
obstacles is a linear function of the glide force. This is also
the relationship used in this DDD model, i.e., Vg

(I)¼Fg
(I)/B,

where B is called the drag coefficient, a quantity that
increases linearly with temperature.24

Dislocation climb is implemented in the DDD simula-
tions using the following model.18 Consider a dislocation as
a perfect source or sink of vacancies at the center of a cylin-
der of radius R, and take the equilibrium concentration of
vacancies in the cylinder to be c0. When a force Fc, is sud-
denly applied to the dislocation in the direction perpendicu-
lar to the dislocation glide plane, the dislocation starts to
climb, absorbing or emitting vacancies until a concentration
of c¼ c0 exp((Fcb

2/kBT) is reached near the dislocation
core. In this expression, kB is the Boltzmann constant, T
refers to the absolute temperature, and b is the magnitude of
the Burgers vector of the dislocation. At that vacancy con-
centration, the chemical force due to the departure from the
equilibrium concentration balances the mechanical force Fc.
As a result of the ensuing gradient in chemical potential,
there is a diffusive flux of vacancies, which determines the
rate of climb. Assuming steady-state diffusion inside the cyl-
inder and further assuming that the concentration at a dis-
tance R remains c0, the climb velocity is given by26–28

Vc ¼
2pD0

b lnðR=bÞ
exp (DEsd

kBT

! "
exp

Fcb2

kBT

! "
( 1

# $
; (5)

where DEsd is the vacancy self-diffusion energy, and D0 is
the pre-exponential diffusion constant. The climb force is
taken positive when it favors vacancy emission.
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At each time step, the glide and climb velocities of the
dislocations in the simulation are calculated and the positions
of the dislocations are updated accordingly. Because the
climb velocity is typically much smaller than the glide veloc-
ity, different time steps are used for climb and glide. In this
paper, the time step for climb is taken 100 times larger than
the time step for glide.

When one of the dislocations in a dislocation dipole
climbs out of its original glide plane, simple superposition of
the individual displacement fields of these two dislocations
does not provide the correct discontinuity in the displace-
ment field of the non-planar dislocation dipole. To overcome
this shortcoming and to find the correct displacement field
due to a dislocation dipole, where one of the dislocations
climbs from (x0,y0) to (x0,y1), the following terms need to be
added to the x-component of the displacement field pub-
lished in most texts on dislocations, for example, Eq. (2.15)
of Ref. 29

b

2p
tan(1 y( y1

x( x0

! "
( tan(1 y( y0

x( x0

! "#

þ tan(1 x( x0

y( y1

! "
( tan(1 x( x0

y( y0

! "#

: (6)

These extra terms account for the displacement caused by
the emission or absorption of vacancies during climb.18

III. THIN FILM MODEL AND SELECTION OF
PARAMETERS

Simulations were carried out on freestanding polycrys-
talline films passivated on both surfaces. The films were sub-
jected to plane-strain tension as illustrated schematically in
Fig. 1. In line with Nicola et al.,15 the film was modeled as a
two-dimensional array of rectangular grains of thickness h.
In doing so, a periodic unit-cell of width w consisting of six
randomly oriented grains of uniform size d was considered.
Plane-strain conditions were assumed normal to the xy-plane.
Grain boundaries and passivation layers were assumed
impenetrable to dislocations. Each grain had three sets of
slip planes that differed by an angle of 60).30 As mentioned
earlier, the grains were initially dislocation free, but Frank-
Read sources were distributed randomly on the slip planes in
the grains. No obstacles were present to impede dislocation
motion. Tension was imposed by prescribing a constant dis-
placement rate difference between the left and right edges of
the unit-cell. The top and bottom surfaces of the unit-cell

were taken to be traction-free. The average stress in the film,
r, is calculated as

r ¼ 1

h

ð

h
rxxðw; yÞdy; (7)

where the integral over the film thickness excludes the passi-
vation layers.

The physical properties that were used for the film mate-
rial are representative of aluminum and are given in Table I.
The passivation layers were assumed to remain elastic and
had the same elastic properties as the film material. The
thickness of the film and the passivation layers on both film
surfaces were 750 nm and 20 nm, respectively; the grain
size was taken as 1.0 lm. All simulations were run at a tem-
perature of 900 K. The drag coefficient was taken as
3.2' 10(5 Pa s.18 The annihilation distance Lann and the
nucleation time tnuc were chosen as 6b and 10 ns, respec-
tively. The density of dislocation sources was 15mm(2 in all
simulations. The source strength snuc was randomly chosen
from a Gaussian distribution of strengths with an average
value of 100 MPa and a standard deviation of 20 MPa. The
values of these parameters were estimated by fitting simu-
lated curves to experimental stress-strain curves for thin films
deformed under tension at room temperature.15 Because
climb allows dislocations to leave their glide planes, disloca-
tions can occur on all possible glide planes in the material,
not just those with dislocation sources. The spacing between
glide planes was taken equal to b in all simulations. To limit
computation time, a high strain rate j_ej ¼ 4000 S(1 was used
for all simulations except otherwise indicated; the time step
was taken to be 0.5 ns. To reduce the statistical effects of the
initial conditions, at least four realizations of the model that
differed from each other with respect to the locations of the
dislocation sources were run for each set of parameters.

IV. RESULTS AND DISCUSSION

Figure 2(a) shows two stress-strain curves for a 750 nm
film passivated on both surfaces, one curve for the case,
where dislocations are allowed to glide and one curve, where
they can both glide and climb. The dashed lines represent
linear elastic unloading and have slopes given by the plane-
strain modulus of the film, E/(1-!2). Figure 2(b) is the same
as Fig. 2(a), but here the stress is plotted against the plastic
strain. The vertical dashed lines represent elastic unloading.
It is evident from the figures that the strain-hardening rate is
much reduced if dislocations are allowed to climb out of
their glide planes. This behavior is of course consistent with
the notion that climb is a softening mechanism that results in
a more realistic simulation of work hardening.15,18 Two
more features are noteworthy: (1) the stress-strain curves

FIG. 1. Schematic representation of the thin film model.

TABLE I. Materials properties taken in the simulations.

Parameter Value Parameter Value

l 26 GPa DEsd 1.28 eV

! 0.35 D0 0.1185 cm2/s

b 2.86 Å
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show a significant Bauschinger effect that increases with
increasing strain and (2) forward plastic flow continues dur-
ing initial unloading when climb is allowed.

We define the Bauschinger strain, erp, as the difference
between the actual unloading strain and the elastic unloading
strain. Figure 2(c) shows erp as a function of the plastic strain
in the film. Evidently dislocation climb reduces the
Bauschinger strain significantly. As the deformation pro-
ceeds and the stress in the film increases, more dislocation
pile-ups are formed, back stresses increase, and the
Bauschinger effect becomes more pronounced. Climb allows
some dislocations in areas with high stresses such as the tips
of dislocation pile-ups to leave their glide planes. This pro-
cess reduces the back stress on the other dislocations in the

pile up and on any dislocation source in that glide plane, as
illustrated in Fig. 3. On unloading, the lower back stress
reduces the magnitude of the Bauschinger effect compared
to the case, where dislocations can only glide. Since the
Bauschinger effect is induced by back stresses and back
stresses are proportional to the density of dislocations in
pile-ups, the results in Figure 2(c) suggest that the total den-
sity of dislocations in pile-ups should be smaller when climb
is allowed. Figure 4 illustrates that this is indeed the case:
there is a significant drop in the density of dislocations that
are part of a pile-up when dislocations are allowed to climb.
The observation that climb reduces the Bauschinger strain,
should be contrasted with a recent finding by Deshpande
et al. that the Bauschinger effect in single crystals with per-
meable passivation layers is more pronounced for climb-
assisted glide than for glide only, even though climb reduces
back stresses.19 They attribute this apparent contradiction to
the permeability of the passivation: Climb-assisted glide

FIG. 2. The average stress as a function of (a) the applied strain (b) the plas-
tic strain for the case of glide only and glide with climb. The dashed curves
show the fully elastic unloading. (c) The Bauschinger strain versus the plas-
tic strain in the film either dislocation climb is enabled or disabled. Error
bars represent the standard error.

FIG. 3. Distribution of the back stress on a slip system in a single grain at
e¼ 1.2% for the case of (a) glide only, and (b) glide and climb. The back
stress is defined as the difference between the local shear stress and the
applied normal stress resolved on a given glide plane. Only dislocations and
sources on one set of glide planes are displayed. Positive and negative dislo-
cations are depicted by the “þ” and “.” symbols, respectively. Open circles
denote dislocation sources. The unit of length in the figure is 1 mm.
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results in shorter pile-ups with dislocations spreading them-
selves more evenly over the film. As a result, the stress act-
ing on the leading dislocations in a pile up is smaller and
fewer dislocations can penetrate the passivation layers.
Fewer dislocations exit the film and the stored dislocation
density is greater than in the absence of climb. This
increased dislocation storage enhances the Bauschinger
effect. This explanation does not, however, hold for impene-
trable passivation layers, for which they also report enhanced
dislocation densities in the case of climb-assisted glide. The
passivation layers in this study are impenetrable, and an
enhanced dislocation density is not observed here.

From the stress-strain curves in Figure 2(b), it is evident
that forward plastic flow continues for a while, during
unloading when dislocations can climb. This feature becomes
more noticeable at slower unloading rates. To illustrate the
effect of unloading rate, we have plotted the film stress versus
the plastic strain for three different unloading rates in Fig. 5.
Because the change in the stress-strain curve is negligible as

the loading rate is reduced from 4000 s(1 to 400 s(1, only one
loading curve is shown in Fig. 5.

In the limit of a zero unloading rate, such as in a stress-
relaxation-experiment, the stress decreases in proportion to
the creep-induced plastic strain rate and the slope of the
unloading curve in Fig. 5 approaches the plane-strain modu-
lus E/(1 -!2). Conversely, if unloading happens infinitely
fast, dislocations do not have time to move, the process is
entirely elastic, and the unloading curve in Fig. 5 has an infi-
nite slope. Therefore, the beginning of any unloading curve
should lie between these two limiting cases. When the
motion of dislocations is limited to glide, slower loading or
unloading rates have a negligible effect on the stress-plastic
strain curves. To get more insight in this behavior, the cumu-
lative distance, Lc, swept by climbing dislocations is shown
as a function of plastic strain in Fig. 6(a). As expected, the
figure shows a gradual increase in the cumulative distance
during loading. When unloading starts, however, dislocations
continue to climb and Lc continues to increase, albeit at a
much-reduced rate. Dislocation climb does not lead to an im-
mediate build up of back stresses that shut down the climb
process and dislocations climb at a rate commensurate with
the local stress, even on unloading. The smaller the unload-
ing rate, the longer the unloading process, and the greater the
distance swept by climbing dislocations. The connection
between the climb distance and the forward plastic flow on
unloading is then made via Orowan’s equation, which links

FIG. 4. Total density of dislocations in pile-ups versus plastic strain for the
case of glide only and glide with climb. The markers indicate the unloading
curves.

FIG. 5. Stress vs. plastic strain for different unloading rates. The dashed
curve and the vertical line show the loading segment, where _e ¼ 4000 s(1

and the elastic unloading, respectively.

FIG. 6. (a) Cumulative distance swept by dislocation climb as a function of
plastic strain; (b) total dislocation density versus stress. The dashed curves
show the loading segment, where _e ¼ 4000 s(1.
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the plastic strain to the dislocation motion: since Lc contin-
ues to grow during initial unloading, so does the plastic
strain. In addition to dislocation climb, an increase in dislo-
cation density also contributes to the forward plastic flow on
unloading. This point is illustrated in Fig. 6(b), which shows
a small increase in total dislocation density during initial
unloading—the slower the unloading, the greater the
increase. The increase in dislocation density is again a direct
consequence of climb: As dislocations climb out of their
glide planes at the onset of unloading, the back stresses on
the dislocation sources decrease allowing them to emit more
dislocations.

Considering the changes in Lc and q during unloading
(Figs. 6 and 7), the unloading segment of the stress-strain
curves in Fig. 2(a) is now readily explained. In general, we
have that _r ¼ E=ð1( !2Þ _e ( _epð Þ, where dots indicate incre-
mental changes. At the onset of unloading, both Lc and q
increase, _ep > 0 and dr/de>E/(1 -!2). As unloading pro-
ceeds, Lc approaches a constant value, while q decreases
very slowly; the plastic strain rate is very small, _ep * 0 and
dr/de*E/(1 -!2). Toward the end of the unloading process,
dislocations reverse their direction of glide because of back
stresses and start to annihilate each other. The dislocation
density decreases more rapidly, _ep becomes negative, and the
unloading slope decreases steadily until eventually it
becomes smaller than the elastic slope, leading to the
Bauschinger effect.

In Fig. 7, which plots the dislocation density as a func-
tion of applied strain, two observations are worth noting: (1)
Although the film is initially dislocation free, many disloca-
tions still exist in the film for both cases when the average
stress in the film is reduced to zero. These dislocations
remain in the film because stresses induced by other disloca-
tions prevent them from going back even in the presence of
back stresses. Furthermore the model lacks line tension,
which normally provides a driving force for dislocation
loops to collapse, and would be expected to overestimate the
number of dislocations that remain in the two-dimensional
model. If line tension were incorporated in the model, a
more pronounced Bauschinger effect would be observed. (2)

Because dislocations become more dispersed when climb is
allowed, the dislocation density decreases less during
unloading compared to the glide only case. One would
expect this trend to be even more pronounced when switch-
ing to a three-dimensional discrete dislocation model, as
there are many more mechanisms in a three-dimensional
model by which dislocations can be retained in the material.

V. CONCLUSIONS

We have evaluated the effect of dislocation climb on the
unloading behavior of thin films using two-dimensional dis-
crete dislocation simulations. Unloading curves obtained in
discrete dislocation simulations often have a strong
Bauschinger effect. Because dislocation climb results in a
more dispersed distribution of dislocations in the film, the
total density of dislocations in pile-ups and the magnitude of
the back stresses are reduced. As a result, the Bauschinger
effect will be less pronounced if the dislocation climb is
allowed. At the onset of unloading, dislocations keep climb-
ing, and the dislocation density initially increases, resulting
in forward plastic flow during initial unloading, an effect
especially pronounced at slow unloading rates. As the
unloading process continues, dislocations start to move in
the reverse direction and the slope of the stress-strain curve
continuously decreases.
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