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The stress field of a screw dislocation inside an embedded nanowire is considered within the theory of strain-gradient elasticity. It
is shown that the stress singularity is removed and all stress components are continuous and smooth across the interface, in contrast
with the results obtained within the classical theory of elasticity. The maximum magnitude of dislocation stress depends greatly on
the dislocation position, the nanowire size, and the ratios of shear moduli and gradient coefficients of the matrix and nanowire
materials.
! 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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Fabrication, characterization and application of
embedded nanowires are among the hottest topics in
materials science and applied physics. Nanowire-based
structures and devices are developed for wide use in var-
ious fields of nanoscience (e.g. biology, electronics, med-
icine, optics, optoelectronics, photonics and sensors). It
is well known that the structure and properties of
embedded nanowires depend greatly on their environ-
ment. In particular, much attention has been paid to
the elastic strains and stresses that arise in or near the
embedded nanowires due to the presence of defects [1]
and differences in the material properties of the nano-
wires and surrounding matrix [1,2]. The theoretical con-
sideration of these questions is commonly based on the
classical theory of elasticity; however, this cannot be
applied to extremely (atomically) thin nanowires, inter-
face areas and defect cores. There are two ways to over-
come these limitations. The first is to discard the

continuum description and use atomic simulations
[3,4]. The second is to still exploit the continuum
approach but within an extended theory of elasticity
that could cope with classical difficulties (singularities,
jump discontinuities, etc.). The theory of strain-gradient
elasticity seems to be the most simple and effective exten-
sion of classical elasticity in this sense.

The governing equation of the simple isotropic theory
of gradient elasticity proposed by Ru and Aifantis [5]
reads

ð1" ‘2r2Þr ¼ ð1" c2r2Þ½kðtreÞIþ 2le' ð1Þ
where r and e are the elastic stress and strain tensors,
respectively, k and l are the Lamé constants, I is the unit
tensor, r2 is the Laplacian and ‘; c P 0 are two gradient
coefficients (different in a general case) which represent
intrinsic length scales within the gradient theory. It
was strictly proved [5,6] that the solution of Eq. (1) boils
down to the independent solution of the following inho-
mogeneous Helmholtz equations for the stress r and dis-
placement u fields:

ð1" ‘2r2Þr ¼ r0 ð2Þ
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ð1" c2r2Þu ¼ u0 ð3Þ
where r0 and u0 denote the corresponding fields calcu-
lated in the theory of classical elasticity. For a crystalline
solid with the lattice parameter a, numerical estimates
have been made for ‘ and c based on theoretical models
[7–12] and experimental observations [13]. For example,
Eringen [7,8] obtained Eq. (2) in his version of the the-
ory of nonlocal elasticity and found that ‘ ( 0:39a.
Altan and Aifantis [9] derived Eq. (3) and came up with
c ( 0:25a.

Eqs. (2) and/or (3) have been applied to the problems
of dislocations [7,8,14–23], disclinations [20,24,25],
cracks [5,6,9,26,27], composite materials [28], inclusions
[29], line forces and the Flamant problem [30]. Some of
these works were extensively reviewed in Refs. [31,32].
The main general result is the elimination of classical
singularities from the solutions for elastic fields and
energies. For dislocations placed near interphase
boundaries, the image forces have also been regularized
[17–19,23]. Moreover, it has been shown that in the
problems for inclusions [29], dislocations inside free-sur-
face nanowires [22] and outside embedded nanowires
[23], the maximum values of elastic fields become size-
dependent, in contrast with the corresponding classical
solutions, which are size-independent. The aim of the
present paper is to consider the elastic stress of a screw
dislocation placed inside an embedded nanowire in the
framework of the strain gradient elasticity described
by Eqs. (1)–(3).

Let a screw dislocation lie at the point ðn; 0Þ inside an
infinite cylinder (nanowire) X embedded in an infinite
elastic medium (matrix) D (Fig. 1). In classical elasticity,
this problem was solved in displacements by Dundurs
[33]. The nonvanishing stress components yield (in units
of b=2p) the following:
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where b is the Burgers vector, lD and lX are the shear
moduli of the matrix and the nanowire, respectively,
S ¼ ðlX " lDÞ=ðlX þ lDÞ, x1 ¼ x" n; x2 ¼ x" R2=n, R
is the nanowire radius, r2 ¼ x2 þ y2 and r2

1;2 ¼ x2
1;2 þ y2.

This solution clearly demonstrates limitations of the
classical theory. First, near the dislocation line, when
r1 ! 0, the stress components r0ðXÞ

zx and r0ðXÞ
zy are

singular. Secondly, the stress component

r0
zr ¼ r0

zx cos hþ r0
zy sin h is continuous across the inter-

face, r0ðDÞ
zr jr¼R ¼ r0ðXÞ

zr jr¼R ¼ "ðlDb=2pÞð1þ SÞ n sin h=
ðR2 " 2Rn cos hþ n2Þ, and also becomes singular there
when the dislocation reaches the interface
ðn! R; h ¼ 0Þ. Thirdly, the stress component
r0

zh ¼ "r0
zx sin hþ r0

zy cos h suffers an abrupt jump at

the interface, ½r0
zh'
þ
" ¼ r0ðDÞ

zh jr¼R"r0ðXÞ
zh jr¼R ¼ "ðS=RÞ½lDþ

lXðR2" n2Þ=ðR2" 2Rncoshþ n2Þ', which depends on
the dislocation position. When the dislocation ap-
proaches the interface ðh¼ 0;n! R), the stress jump,
½r0

zh'
þ
"!"2lXS=ðR" nÞ, drastically increases and be-

comes singular. All these features make it impossible
to use the classical solution (4) in the case of dislocations
in atomically thin nanowires. As was discussed previously
in detail [17,18], the stress jump at the interface, ½r0

zh'
þ
", is

justified in the classical theory of elasticity aimed at
describing macroscopic elastic solids because it does not
contribute to the traction vector that should be in balance
at the interface. However, from the nanoscopic point of
view, this assumption does not seem to be valid. Indeed,
the stress jump is doubtful in view of the fact that atoms
forming the interface interact with other atoms belonging
to both the materials in contact. Hence, the assumption of
a transitional region near the interface, where the interac-
tion between atoms varies gradually from stronger in
more rigid material to weaker in other materials, is
unavoidable. It can be concluded from this assumption
that the stress jump is only a consequence of the approx-
imation of classical continuum models, which often be-
come insufficient for describing nanoscale phenomena.

Let us consider the same problem within the gradient
theory described by Eqs. (1)–(3). The full solution proce-
dure and results for all elastic fields and image forces will
be given elsewhere [34]. Here we concentrate on the
main peculiarities of the gradient solution for stress
field. Thus, the stress equation (2) must be solved for
both regions D and X. Due to the existence of higher-or-
der derivatives, some additional boundary conditions
are needed. Following Refs. [17–19,23], we have used
the following conditions of balance for stresses and
stress gradients at the interface:

½rzr'þ" ¼ 0; ½rzh'þ" ¼ 0;
@rzr
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Figure 1. A screw dislocation inside an embedded nanowire.
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Figure 2. The stress component rzyðx; 0Þ of a screw dislocation placed
at the position n=‘X ¼ 0; 10, and 20 in the case of R ¼ 20‘X,
lD=lX ¼ 10, and ‘X ¼ ‘D. Solid and dashed curves correspond to the
gradient and classical solutions, respectively. The stress values are
given in units of lXb=ð2p‘XÞ.
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Here ½ 'þ" denotes the difference in the corresponding
quantity across the interface. These conditions can be
a remedy for the unrealistic classical stress jump (see
above) and provide a continuous and smooth transition
of the stress field through the interphase boundary. With
Eqs. (5), the gradient solution reads
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where the first terms are the classical stress components
given by Eqs. (4), In and Kn denote the modified Bessel
functions of the first and second kind, respectively, of
order n, and Uðr; ‘Þ ¼ bK1ðr=‘Þ=ð2p‘rÞ. The unknown
coefficients An, an, Bn and bn are easily determined from
the boundary conditions (5); however, they are so cum-
bersome that we do not present them here.

The gradient solution (6) is free from the classical lim-
itations. The appearance of the modified Bessel function
K1ðr1=‘XÞ, which has the asymptotic )‘X=r1 at r1 ! 0,
eliminates the stress singularity at the dislocation line
(Fig. 2). This cancels the two first limitations of the clas-
sical solution mentioned before. Moreover, both the
stress components, rzr and rzh, are continuous and
smooth across the interface (for example, see Fig. 2
for rzy ¼ rzh at h ¼ 0), thus deleting the third limitation.
As a result, the gradient solution for the image force on
dislocation, F xðnÞ ¼ bzrðXÞzy ðx ¼ n; y ¼ 0Þ, becomes finite
everywhere, in contrast with its classical solution, which
is infinite at the interface. The gradient solution (6) turns
to the classical solution (4) in the limits ‘D; ‘X ! 0. The
gradient and classical solutions coincide far from the
dislocation line and the interface. It is worth noting that
all these features are also characteristic for the earlier
gradient solutions of dislocation-interface problems
[17–19,23].

Another important advantage of the gradient solu-
tion is that the maximum stress magnitude can be inves-
tigated. Some numerical results are shown in Figures 3
and 4. For a purely elastic interface (lX–lD and
‘X ¼ ‘D), if the nanowire is elastically softer than the ma-
trix ðlX < lDÞ, the maximum magnitude of the rzy com-
ponent, max jrzy j, increases when the dislocation is
shifted to the interface (here n! 20‘X), and the peak
of max jrzy j is achieved when the dislocation reaches
the interface (Fig. 3a). In the opposite case (the nano-
wire is harder than the matrix, lX > lD), the value of

max jrzy j first increases, reaches a peak and decreases
rapidly when the dislocation comes nearer than ( 2‘
to the boundary. If the shear moduli are equal
ðlX ¼ lDÞ but the gradient coefficients are not
ð‘X–‘DÞ, the maximum stress magnitude increases when
the dislocation comes close to the interface (Fig. 3b).
The peak of max jrzy j grows when the ratio ‘D=‘X
becomes larger or smaller than 1.

The effect of the nanowire radius R on the maximum
stress magnitude max jrzy j (size effect) in the case of a
purely elastic interface is illustrated in Figure 4. For a
fixed dislocation position n, when lD > lX, the smaller
nanowire causes a larger max jrzy j, the value of which
increases with the ratio of shear moduli lD=lX
(Fig. 4a). If lD < lX, the peak value of max jrzy j
increases with the nanowire radius (see dashed curves
in Fig. 4b) and approaches a horizontal asymptote. In
this case, the peak value of max jrzy j decreases when
the ratio lD=lX increases. When lD ¼ 0, the behavior
of max jrzy j is very similar to the maximum magnitude
of dislocation strain eðmaxÞ

zy that we studied in our previ-
ous paper [22]; it attains zero when the dislocation is sit-
uated on the boundary.

In summary, the strain-gradient theory of elasticity
gives a smooth and nonsingular solution for the stress
field of a screw dislocation inside an embedded nano-
wire. The maximum magnitude of dislocation stress
depends greatly on the dislocation position, the nano-
wire size and the ratios of the shear moduli of the matrix
and nanowire materials. When dislocation occurs near
the interface, the maximum magnitude of its stress also
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Figure 3. Dependence of the maximum stress magnitude max jrzy j on
the normalized dislocation position n=‘X in an embedded nanowire of
radius R ¼ 20‘X (a) for ‘X ¼ ‘D and different values of ratio lD=lX, and
(b) for lX ¼ lD and different values of ratio ‘D=‘X. The stress values are
given in units of lXb=ð2p‘XÞ.
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varies greatly with the ratio of gradient coefficients. In
the case of elastically softer nanowire, the maximum
stress magnitude is larger for the dislocation placed in
thinner and softer nanowire, closer to the interface. In
the opposite case of elastically harder nanowire, the
peak value of the maximum stress magnitude is larger
for the dislocation placed in thicker and harder nano-
wire, at a small distance (about ‘X) from the interface.
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Figure 4. Dependence of the maximum stress magnitude max jrzy j on
the normalized dislocation position n=‘X in an embedded nanowire of
normalized radius R=‘X ¼ 5, 10, 20, and 50 for ‘X ¼ ‘D and different
values of ratio lD=lX: (a) 5 and 10, and (b) 0 and 0.1. Solid curves
correspond to lD=lX ¼ 0:1 and 10, dotted curves to lD=lX ¼ 0 and 5.
Dashed curves show the effect of nanowire radius on the peak value of
max jrzy j. The stress values are given in units of lXb=ð2p‘XÞ.

358 K. M. Davoudi et al. / Scripta Materialia 61 (2009) 355–358


	Analysis of stress field of a screw dislocation inside an embedded nanowire using strain gradient elasticity
	ack2
	References


