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Abstract

The modest aim of this short article is to provide some new results for a screw dislocation in
a functionally graded material within the theory of gradient elasticity. These results, based on a
displacement formulation and the Fourier transform technique, completes earlier findings ob-
tained with the stress function method and extends them to the case of the second strain gradient
elasticity. Rigorous and easy-to-use analytical expressions for the displacements, the strains and
the stresses are obtained which are free from singularities at the dislocation line.
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1 Introduction

In an earlier paper published a few years ago [1], the stress function technique was employed
to derive stress and strain fields for a screw dislocation in a functionally graded material by us-
ing the theory of first gradient elasticity. Analytical non-singular expressions were derived for the
strains and the (first order) stresses, but the double stresses remained singular. Such results are
derived here by using the Fourier transform technique which, in addition, provides exact ana-
lytical expressions for the displacement field. Moreover, the problem is reconsidered within the
framework of “second strain gradient elasticity" which eliminates the singularities from the dou-
ble stress expressions as well. Recent work on gradient elasticity [2,3] has revealed the need of
using higher order gradients of strain in the stress-strain relation in order ro interpret experimen-
tal results pertaining to dislocation density tensor and more accurately describe the details of the
relevant stress/strain fields near the core of dislocations contained in small volumes. This is the
case in particular, for dislocations contained in functionally graded materials (FGMs), the use of
which has advocated since mid 80’s in relation to ultra high temperature and ultra high weight
requirements for aircraft, space vehicles and other applications. Generally FGMs refer to het-
erogeneous composite materials, in which mechanical properties are intentionally made to vary
smoothly and continuously from point to point. This is controlled by the variation of the volume
fraction of the constituent materials. Ceramic/ceramic and metal/ceramic are typical examples
of FGMs ([4,5] and references quoted therein). Although several aspects of FGMs have been re-
viewed comprehensively ([6-8] and references quoted therein) only few investigations have been
made to assess the role of the dislocations in FGMs.

With the exception of [1], the classic theory of linear elasticity was routinely utilized to cal-
culate the elastic fields produced by defects (dislocations and disclinations) in FGMs. However,
classic continuum theories are scale invariant in which no intrinsic length appears and so fails
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when one attempts to explain the nano-scale phenomena near defects. As a result, elastic singu-
larities are present in these solutions and size effects which dominate in small volumes cannot
be captured. These undesirable features are removed within the second strain gradient elasticity
formulation presented in this paper. The solutions obtained herein by using the Fourier trans-
form technique and a displacement formulation are reduced to the corresponding expressions of
classic elasticity and first gradient elasticity as, for example, were obtained in [1] through the use
of the stress function approach. As a result, analytical expressions for the displacement field (in
addition to those for the stresses and strains) are derived. The extra dividend is the derivation of
non-singular expressions for the double stresses which diverge near the dislocation core in the
first order strain gradient theory.

2 classic Solution

We consider a screw dislocation with Burgers vector b = (0,0,bz ) in an infinite medium with a
varying shear modulus µ = µ(y) = µ0e2ay (a ≥ 0) in the framework of classic elasticity. This is
a problem of anti-plane shear with the only non-vanishing component of displacement u0

z (x, y)
satisfying the displacement equilibrium equation(

∇2 −2a
∂

∂y

)
u0

z = 0, (1)

where ∇2 denotes the Laplacian. Using the substitution u0
z = w0 e−ay , we obtain(∇2 −a2)w0 = 0, (2)

which by means of the Fourier transform

f̃ (s) =F{ f (x); x → s} =
∫ ∞

−∞
f (x)e−isx d x,

where i =p−1, is reduced to the following ordinary differential equation(
−s2 −a2 + d 2

d y2

)
w̃ = 0. (3)

Since u0
z is finite everywhere, we arrive at

ũ0
z = e−ay

{
A(s)e−y

p
s2+a2

(y > 0),

B(s)e y
p

s2+a2
(y < 0),

(4)

where the two unknown functions, A(s) and B(s), are constants with respect to y . In view of the
present dislocation configuration, we have

u0
z (x,0+)−u0

z (x,0−) = bz H(−x), (5)

ε0
z y (x,0+) = ε0

z y (x,0−) ⇔ ∂u0
z

∂y
(x,0+) = ∂u0

z

∂y
(x,0−),

where ε0
z y is the classic strain, and H(−x) is the Heaviside step function. Taking the Fourier trans-

form of the above conditions, we have

ũ0
z (x,0+)− ũ0

z (x,0−) = bz

(
πδ(s)+ i

s

)
;

∂ũ0
z

∂y
(s,0+) = ∂ũ0

z

∂y
(s,0−), (6)

and, thus, the unknown functions A(s) and B(s) are determined as

A(s) = −ia

2s
p

s2 +a2
+ i

2s
, B(s) = −ia

2s
p

s2 +a2
− i

2s
−πδ(s). (7)

It follows that

ũ0
z = bz e−ay

[ −ia

2s
p

s2 +a2
e−|y |

p
s2+a2 + sgn(y)

i

2s
e−|y |

p
s2+a2 −πδ(s) H(−y)eay

]
. (8)
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and by taking the inverse Fourier transform, i.e.

u0
z (x, y) =F−1{ũ0

z (s, y); s → x} = 1

2π

∫ ∞

−∞
ũ0

z (s, y)e isx d s,

we obtain (in view of the symmetry of the integral) the final expression

u0
z =

bz

2π
e−ay

∫ ∞

0

a sin(sx)

s
p

s2 +a2
e−|y |

p
s2+a2

d s (9)

− sgn(y)
bz

2π
e−ay

∫ ∞

0

sin(sx)

s
e−|y |

p
s2+a2

d s − bz

2
H(−y).

Next we note that in small strain theory the (compatible) total strain εT
i j may be written as

εT
i j = (1/2)(ui , j +u j ,i ) = εi j +εP

i j ,

where εi j and εP
i j denote the usual (incompatible) elastic and plastic strains, respectively. It fol-

lows that

ε0T
zx = 1

2

∂u0
z

∂x
= bz

4π
e−ay

∫ ∞

0

a cos(sx)p
s2 +a2

e−|y |
p

s2+a2
d s (10)

− sgn(y)
bz

4π
e−ay

∫ ∞

0
cos(sx)e−|y |

p
s2+a2

d s,

ε0T
z y = 1

2

∂u0
z

∂y
= bz

4π
e−ay

∫ ∞

0

s sin(sx)p
s2 +a2

e−|y |
p

s2+a2
d s

− bz

2π
δ(y)

∫ ∞

0

sin(sx)

s
d s + bz

4
δ(y).

With the help of the identities∫ ∞

0

sin(sx)

s
d s = π

2
sgn(x),

∫ ∞

0

cos(sx)p
s2 +a2

e−|y |
p

s2+a2
d s = K0(ar ),

where r =
√

x2 + y2 and Kn denotes the modified Bessel function of the second kind and of order
n, the integrals appearing in Eq. (10) can readily be evaluated to give

ε0T
zx = bz

4π
e−ay

[
a K0(ar )− ay

r
K1(ar )

]
, ε0T

z y = bz

4π
e−ay ax

r
K1(ar )+ bz

2
δ(y) H(−x). (11)

The last term in Eq. (11)2 which is singular on the half-plane y = 0 and x ≤ 0, corresponds to the
plastic strain ε0P

z y = bzδ(y)H(−x)/2. The other term on the right hand side of Eq. (11)2 may thus

be regarded as the elastic strain. Using the constitutive law,σ0
zi = 2µε0

zi (i = x, y), the stresses read

σ0
zx = bz µ0

2π
eay

[
a K0(ar )− ay

r
K1(ar )

]
, σ0

z y =
bz µ0

2π
eay ax

r
K1(ar ). (12)

which are the same as those earlier obtained in [1] by the stress function approach, and which are
singular at the dislocation line.

3 Strain gradient elasticity solution

Within a simplified theory of linearized anisotropic theory of the second strain gradient elasticity
proposed in [9] (for a corresponding form of the first strain gradient elasticity and a robust method
for the solutions of the corresponding boundary value problems, the reader may consult [10,11]),
the strain energy density has the form

W = 1

2
Ci j klεi jεkl +

1

2
`2Ci j mnεmn,kεi j ,k +

1

2
`′4Ci j mnεmn,klεi j ,kl , (13)
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where εi j is the elastic strain tensor, ` and `′ are internal lengths, and Ci j kl is the stiffness tensor
of the form

Ci j kl =λ(x)δi jδkl +µ(x)
(
δi kδ j l +δ j kδi l

)
,

with the Lamé constantsλ(x) andµ(x) being given functions of the spatial coordinates. The corre-
sponding expressions for the elastic-like first order stress (σE

i j ) and the higher-order double (τi j k )

and triple (τi j kl ) stresses are given by

σE
i j := ∂W

∂εi j
=Ci j klεkl , τi j k := ∂W

∂εi j ,k
= `2 Ci j mnεmn,k , τi j kl := ∂W

∂εi j ,kl
= `′4 Ci j mnεmn,kl .

while the Cauchy stress σi j (note that in the notation of [1] this was denoted by σ0
i j and termed

total stress) satisfies, in the absence of body forces, the usual equilibrium equation

σi j , j =σE
i j , j −τi j k,k j +τi j kl ,kl j = 0. (14)

The Cauchy stress σi j can be identified with the classic stress tensor. For the present case of anti-
plane shear we have

σE
z j = 2µεz j , τz j k = 2`2µεz j ,k , τz j kl = 2`′4µεz j ,kl ; ( j ,k, l = x, y).

For an exponentially graded material in the y-direction, i.e. µ=µ(y) =µ0 e2ay , it follows from the
above relations that Eq. (14) can be written as[

1− c2
1

(
∇2 −2a

∂

∂y

)][
1− c2

2

(
∇2 −2a

∂

∂y

)]
σE

z j =σz j , ( j = x, y) (15)

where c2
1 + c2

2 = `2 and c2
1 c2

2 = `′4. By expressing the stresses in terms of the displacement field in
both sides, we have[

1− c2
1

(
∇2 −2a

∂

∂y

)][
1− c2

2

(
∇2 −2a

∂

∂y

)](
1

2

∂uz

∂x j
+εP

z j

)
=

(
1

2

∂u0
z

∂x j
+ε0P

z j

)
, (16)

where uz and u0
z are, respectively, the displacement components calculated for gradient and clas-

sic elasticity, while εP
z j and ε0P

z j denote the gradient and classic plastic strains. If we assume that

the relationship [
1− c2

1

(
∇2 −2a

∂

∂y

)][
1− c2

2

(
∇2 −2a

∂

∂y

)]
εP

z j = ε0P
z j , (17)

is fulfilled, we will immediately find that the displacement satisfies the following governing differ-
ential equation [

1− c2
1

(
∇2 −2a

∂

∂y

)][
1− c2

2

(
∇2 −2a

∂

∂y

)]
uz = u0

z . (18)

As before, by the substitution uz = w e−ay , we obtain[
1− c2

1

(∇2 −a2)][
1− c2

2

(∇2 −a2)]w = w0 (19)

where w0 is given in Section 2. Use of the two dimensional Fourier transform yields the algebraic
equation [

1+ c2
1

(
s2 + t 2 +a2)][

1+ c2
2

(
s2 + t 2 +a2)] ˜̃w = ˜̃w0, (20)

where
˜̃w =F{F{w ; x → s}; y → t } =

∫ ∞

−∞

∫ ∞

−∞
w(x, y)e−i(sx+t y)d sd t ,

and
˜̃w0 =F{w̃0; y → t } = −ia

s (ω2 +a2)
+ t

s (ω2 +a2)
− πδ(s)

a − it
; ω2 = s2 + t 2. (21)
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Then the inverse Fourier transform gives

w = 1

(2π)2

∫ ∞

−∞

{(−ia

s
+ t

s

)
e i(sx+t y)

ω2 +a2

}
d sd t (22)

+ 1

(2π)2

∫ ∞

−∞

{
− c2

1

c2
1 − c2

2

−ia

s
(
ω2 +κ2

1

) + c2
2

c2
1 − c2

2

−ia

s
(
ω2 +κ2

)}
e i(sx+t y)d sd t

+ 1

(2π)2

∫ ∞

−∞

{
− c2

1

c2
1 − c2

2

t

s
(
ω2 +κ2

1

) + c2
2

c2
1 − c2

2

t

s
(
ω2 +κ2

2

)}
e i(sx+t y)d sd t

− π

(2π)2

∫ ∞

−∞

{
i

ia + t
− c2

1

c2
1 − c2

2

a + it

t 2 +κ2
1

+ c2
2

c2
1 − c2

2

a + it

t 2 +κ2
2

}
e it y d t ,

where κ j =
√

a2 +1/c2
j . If we integrate out the variable s, and use the integral relations

1

2π

∫ ∞

−∞
e isx

s(s2 +k2)
d s = i

2k2

(
1−e−|kx|

)
sgn(x),

∫ ∞

0

t sin(t y)

t 2 +k2 d t = π

2
sgn(y)e−|k y |,

∫ ∞

0

cos(t y)

t 2 +k2 d t = π

2|k| e−|k y |,

as well as the symmetry properties of these integrals, uz can finally be expressed in terms of sine
and cosine integrals as follows

uz = u0
z −

c2
1

c2
1 − c2

2

bz e−ay

2π

∫ ∞

0

t sin(t y)

t 2 +κ2
1

[
sgn(x)e−

√
t 2+κ2

1|x|+2H(−x)

]
d t (23)

+ c2
2

c2
1 − c2

2

bz e−ay

2π

∫ ∞

0

t sin(t y)

t 2 +κ2
2

[
sgn(x)e−

√
t 2+κ2

2|x|+2H(−x)

]
d t

+ c2
1

c2
1 − c2

2

bz e−ay

2π

∫ ∞

0

a cos(t y)

t 2 +κ2
1

[
sgn(x)e−

√
t 2+κ2

1|x|+2H(−x)

]
d t

− c2
2

c2
1 − c2

2

bz e−ay

2π

∫ ∞

0

a cos(t y)

t 2 +κ2
2

[
sgn(x)e−

√
t 2+κ2

2|x|+2H(−x)

]
d t ,

where u0
z is the classic solution given by Eq. (9).

It is easily seen that this expression for a → 0 coincides with earlier results obtained by the
third author and co-workers for homogeneous media and amended in [12].Since Mura [13] ne-
glected the last term of Eq. (21) when a = 0, and Lazar and Maugin [12] used Mura’s calculations,
their intermediate calculations are inaccurate, while the final solution is precise. It also turns out
that for ` = 0 and `′ = 0 the result reduces to Eq.(9). When x → 0, the displacement field can be
expressed in an explicit form

uz (0, y) = bz

2
H(−y)+ bz

4

e−ay

c2
1 − c2

2

[
− c2

1 sgn(y)e−κ1|y |+ c2
2 sgn(y)e−κ2|y |

+ c2
1

a

κ1
e−κ1|y |− c2

2
a

κ2
e−κ2|y |

]
. (24)

It is worth noting that the classic displacement u0
z (0, y) has an abrupt jump at the dislocation line

y = 0, while the gradient solution of Eq. (24), is smooth there (Fig. 1a,b). For a fixed value of a, the
larger the ratio c2/c1 is, the smoother the solution becomes, Fig. 1a. The case of c2 = 0 represents
the first gradient solution. The gradient solution tends to the classic displacement when y →±∞,
as expected.

Using the definition of strain field, the total strains read

εT
zx = ε0

zx +
bz

4π

e−ay

c2
1 − c2

2

[
− c2

1 a K0 (κ1r )+ c2
2 a K0 (κ2r )+ c2

1
κ1 y

r
K1 (κ1r )

−c2
2
κ2 y

r
K1 (κ2r )

]
, (25)
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εT
z y =ε0

z y +
bz

4π

e−ay

c2
1 − c2

2

x

r

[−c2
1κ1K1(κ1r )+ c2

2κ2K1(κ2r )
]

+ bz

4π

e−ay c2
1

c2
1 − c2

2

∫ ∞

0

cos(t y)

1+ c2
1

(
t 2 +a2

) [
sgn(x)e−|x|

√
t 2+κ2

1 +2H(−x)

]
d t

− bz

4π

e−ay c2
2

c2
1 − c2

2

∫ ∞

0

cos(t y)

1+ c2
2

(
t 2 +a2

) [
sgn(x)e−|x|

√
t 2+κ2

2 +2H(−x)

]
d t . (26)

where ε0
zx and ε0

z y are the classic (elastic) strains given in Section 2. It is seen that εT
zx does not

contain a plastic part, while εT
z y is decomposed into the elastic and plastic strains, i.e. εzx = εT

zx ;

εP
zx = 0, and

εz y = ε0
z y +

bz

4π

e−ay

c2
1 − c2

2

x

r

[−c2
1κ1K1(κ1r )+ c2

2κ2K1(κ2r )
]

, εP
z y = εT

z y −εz y .

It is also follows that the expression for the plastic strain εP
z y (0, y) is given by the simple formula

εP
z y (0, y) = bz

8

e−ay

c2
1 − c2

2

[
e−κ1|y |

κ1
− e−κ2|y |

κ2

]
.

The maximum value of εP
z y (0, y) decreases as c2/c1 or a increases, Fig. 2.

The lower-order elastic-like stresses stresses are given by the expressions:

σE
zx =σ0

zx +
bz µ0 eay

2π
(
c2

1 − c2
2

) [
− c2

1 a K0 (κ1r )+ c2
2 a K0 (κ2r )+ c2

1
κ1 y

r
K1 (κ1r )− c2

2
κ2 y

r
K1 (κ2r )

]
σE

z y =σ0
z y +

bz µ0 eay

2π
(
c2

1 − c2
2

) x

r

[−c2
1κ1K1(κ1r )+ c2

2κ2K1(κ2r )
]

, (27)

where σ0
zx and σ0

z y are the classic stresses given by Eqs. (12). It is seen from the above expressions

thatσE
zx is still symmetric with respect to the plane x = 0, whileσE

z y has lost symmetry with respect
to plane y = 0. Higher order stresses, τi j k and τi j kl , can be calculated easily using the fact that

d

d z
Kn(z) = n

2
Kn(z)−Kn+1(z).

Fig. 4 and Fig. 5 show how double stresses and triple stresses vary, respectively, when c2/c1 = 0.5.
It is worth mentioning that within the second strain gradient theory τ(zx)x 6= −τ(z y)y in contrast to
homogeneous medium. Because

K0(z) ∼− log(z/2), as z → 0,

Kn(z) ∼ 1

2
(n −1)!

( z

2

)−n
, as z → 0,

it can be easily shown that neither double stresses nor triple stresses are singular anymore within
the second strain gradient theory, in contrast to the first strain gradient in which some compo-
nents of double stress field remain singular, Fig 6. More details and for this problem their physical
implications to possible improvements of designing FGMs and the expressions for higher stresses
will be given in a forthcoming publication.

4 Conclusions

In this work, a screw dislocation in a material exponentially graded in one direction is studied.
The displacement field approach and the Fourier transform technique are used to find the dis-
placement and strain fields, and consequently the stress field, in the framework of classic and
strain gradient theories. While the classic displacement field has a discontinuity on an arbitrary
branch-cut, the displacement field within the gradient theory is smooth everywhere. Accordingly,
strain and stress fields in classic continuum theory which are singular at the dislocation line, be-
come regular in the gradient theory. In the framework of the first strain gradient, some double
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stresses are singular at the dislocation line; however, within the second strain gradient theory, not
only all double stresses, but also triple stresses are regular, similar to the case of a homogeneous
medium. When a or c2/c1 increases, the fields become smoother.
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FIGURE CAPTIONS

Fig. 1. The profile of uz (0, y) in units of bz /4 when (a) a = 0.1 for c2/c1 =0, 0.5, 1 and 2 (b) c2 = c1

and a =0, 0.1, and 0.5. The long-dashed curves in (a) and (b) are pertinent to the classic solutions.

Fig. 2. The elastic strain components (a) εzx (b) εz y of a screw dislocation in an FGM when a = 0.5
and c2/c1 = 0.5 within the second strain gradient elasticity. The strain values are given in units of
b/(4πc1).

Fig. 3. The profile of plastic strain εP
z y (0, y) of a screw dislocation in an FGM within the second

strain gradient elasticity (a) when a = 0.5 and c2/c1 =0, 0.5, 1 and 2 (b) when c2/c1 = 1 and a =0,
0.5 and 1. The strain values are given in units of µ0b/(2πc1).

Fig. 4. Double stresses of a straight screw dislocation in an FGM within second strain gradient
when a = 0.5 and c2/c1 = 0.5. Double stresses are given in units of µ0b/(4π).

Fig. 5. Triple stresses of a straight screw dislocation in an FGM within second strain gradient when
a = 0.5 and c2/c1 = 0.5. Double stresses are given in units of µ0bc1/(4π).

Fig. 6. Comparison between double stresses within the first strain gradient (dashed lines) and the
second strain gradient (solid lines). It is apparent that τzx y and τz y x are singular in first strain
gradient.
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