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Displacement and strain fields of a screw dislocation in a nanowire are considered within the theory of gradient elasticity. The
gradient solution of the corresponding boundary value problem is derived and discussed in detail. It is shown that the dislocation
fields do not contain classical jumps and singularities at the dislocation line. The maximum values of the dislocation displacement
and elastic strain strongly depend on both the dislocation position and nanowire radius, thus demonstrating a nonclassical size
effect.
! 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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Deformation phenomena and behavior of defects in
quasi-one-dimensional nanostructures (nanowires,
nanotubes, nanorods, etc.) have attracted much atten-
tion in recent years. In particular, much effort has been
spent studying the basic mechanisms of plastic deforma-
tion in single- and polycrystalline nanowires and nano-
rods [1–4], and stress relaxation in bicrystalline [5],
core-shell [6–14] and axially [15] heterogeneous nano-
wires, as well as in pentagonal nanorods [16–21]. The
theoretical description of defects (dislocations and dis-
clinations) in such nanostructures is normally based on
appropriate solutions of boundary-value problems with-
in the framework of classical elasticity. This approach
gives reliable results unless one considers the defect core
region or the defect behavior near free surfaces and
interphase boundaries. It is well known that in the latter
situations, the classical theory of elasticity gives unphys-
ical singularities in the defect elastic fields or in the im-
age forces acting on the defects, respectively. The use

of strain-gradient elasticity theory is a simple way to dis-
pense with these problems.

Strain-gradient elasticity is one of theories of the so-
called generalized elastic continuum with weak nonlo-
cality (see Refs. [22–25] for reviews and details). The
simplest version of this theory is governed by the consti-
tutive law [26]:

r ¼ ð1# ‘2r2Þ½kðtreÞI þ 2le'; ð1Þ

where (r, e) denote the stress and elastic strain, (k,l) are
the Lamé constants, I the unit tensor, $2 the Laplacian,
and ‘ P 0 is the gradient coefficient, a new extra mate-
rial constant. For an atomic lattice, an estimate of
‘ ( 0.25h can be used, where h is the lattice constant
[26]. Recently, ‘ has been determined from atomic sim-
ulation [27] and experimental observations [28] of dislo-
cation cores in GaN. The constitutive law (1) has
already been applied to the problems of cracks [26,29]
(see also Refs. [22,23] for more references), screw [30]
and edge [31] dislocations, and wedge and twist disclina-
tions [32] in an infinite solid. Substitution of Eq. (1) into
the equilibrium equation, $ ) r = 0, leads to a forth-or-
der partial differential equation for the displacement
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vector u. It is readily shown that u is the solution of the
inhomogeneous Helmholtz equation [29]:

ð1# ‘2r2Þu ¼ u0; ð2Þ
where u0 denotes the displacement field calculated in the
theory of classical elasticity. Recently Eq. (2) has also
been derived from a variation principle [24]. Based on
the earlier work of Mindlin [33], the following extra
boundary condition was introduced [26,29] to apply
Eq. (2) to a traction boundary value problem in the gra-
dient elasticity described by Eq. (1):

o2u

on2
¼ 0; ð3Þ

where the vector n is a unit outward normal to the
boundary. With Eq. (3) and ‘2 > 0, the uniqueness of
the solution would be guaranteed [34]. The governing
differential Eq. (2) and the extra boundary condition
(3) have been applied to some problems of fracture
mechanics [26,29,35,36], composite materials [37], line
forces and the Flamant problem [38]. The aim of the
present work is to consider the elastic properties of a
screw dislocation in a nanowire in terms of the strain
gradient elasticity described by Eqs. (1)–(3).

Let a screw dislocation lie at the point (c, 0) in an infi-
nite elastically isotropic cylinder of the radius a which is
considered as the continuum model of a very long nano-
wire with fixed ends (Fig. 1). In classical elasticity, this
problem was first considered by Eshelby [39], who intro-
duced an image screw dislocation at the inverse point
(a2/c, 0) to satisfy the classical traction boundary condi-
tion on the free surface. Recently, the approach of image
dislocations has been extended to the cases of screw dis-
locations in the walls of hollow centric [40,41] and eccen-
tric [42] cylinders.

The classical nonvanishing displacement component
is u0

z ¼ ðb=2pÞw0, where b is the Burgers vector magni-
tude and

w0 ¼ h1 # h2 ¼ hðx1; yÞ # hðx2; yÞ: ð4Þ
Here x1 = x # c, x2 = x # a2/c and the angle h is a sin-
gle-valued function associated with the material point
(x,y), which is given by [43]:

h ¼ hðx; yÞ ¼ tan#1 y
x

! "
þ p

2
sgnðyÞ½1# sgnðxÞ': ð5Þ

The total strain eT is the symmetric part of the dis-
placement gradient ($u) and may be represented by
the sum of the elastic (e) and plastic (e*) strains [43].
Their classical components (in units of b/4p) are:

e0
zx ¼ #

y
r2

1

þ y
r2

2

; e0
zy ¼

x1

r2
1

# x2

r2
2

;

e*zx ¼ 0; e*zy ¼ #2pdðyÞHðx1Þ;
ð6Þ

where H(x1) is the Heaviside step function and d(y) is
Dirac’s delta function. The classical stress is r0 = 2l
e0. It is an interesting feature of the gradient theory gi-
ven by Eqs. (1)–(3) that the gradient solution for the
stress field, in contrast to the displacement and strain
fields, coincides with the classical solution [26,29–32].
Therefore, we do not consider the stress field here. We
also omit the cumbersome calculation procedure and re-
port the final results only.

Within the gradient theory, it is convenient to decom-
pose the gradient solution for the displacement field
w = [2p/b]uz into a particular solution, wp, and the com-
plementary solution, wc, i.e. w = wp + wc. The first term
results in:

wp ¼ w0 # ‘2

Z 1

0

s sin sy½Wðs; x1Þ #Wðs; x2Þ'ds ð7Þ

with Wðs;xiÞ¼ sgnðxiÞexp # jxi j
ffiffiffiffiffiffiffiffiffiffiffi
1
‘2þs2

q! "
þ2Hð#xiÞ

h i.

ð1þs2‘2Þ, i = 1,2. The second term reads:

wc ¼
X1

n¼1

pnInðr=‘Þ sin nh; ð8Þ

where In(r/‘) is the modified Bessel function of the first
kind of the order n. The unknown coefficients pn,
n = 1,2, . . . are obtained by imposing the extra bound-
ary condition (o2w/or2)jr=a = 0:

pn ¼
#1

pIn;rrða=‘Þ

Z p

#p

o2wp

or2

$ %

r¼a

sin nhdh ð9Þ

where In;rrða=‘Þ + o2
rrInðr=‘Þ

& '
r¼a.

In comparing the classical (w0) and gradient (w) solu-
tions for the displacement field, some important differ-
ences can be found. First, when x ? c > 0, the
classical displacement given by Eqs. (4) and (5) has an
abrupt jump at the dislocation line y = 0, while the gra-
dient solution, Eqs. (7)–(9), is smooth there (Fig. 2). The
classical and gradient solutions practically coincide far
from the dislocation line, when jyj > 5‘. Similar results
have been obtained in the case of an infinite medium
[22,30,44]. Second, the maximum magnitude of w0(c,y)
is always p/2 regardless of the dislocation position

c a2/ c x

y

a θ θ θ

(x,y)

1 2

r r1 r2

Figure 1. A screw dislocation parallel to the nanowire axis.
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Figure 2. The normalized displacement w(c,y) near the screw disloca-
tion placed in different positions c/‘ = 0, 10 and 18 in an infinite
cylinder of radius a/‘ = 20. Solid and dashed lines correspond to the
gradient and classical solutions, respectively.
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(Fig. 2). In contrast, the maximum magnitude of w(c,y)
is approximately p/2 only when the dislocation lies in
the cylinder center, but attains a smaller value as the dis-
location is placed closer to the cylinder free surface
(Figs. 2 and 3). For a fixed dislocation position c/‘,
the bigger radius a of the cylinder produces the bigger
value of w(max)(c,y) (Fig. 3). These observations may
be treated as a specific size effect appearing within the
gradient elasticity.

With Eqs. (7)–(9), it follows from eT
zk ¼ ð1=2Þokuz

(k = x,y) that the elastic strains (in units of b/4p) are

ezx ¼ e0
zx þ

y
‘r1

K1
r1

‘

! "
# y
‘r2

K1
r2

‘

! "

þ 1

2r

X1

n¼1

pnrIn;r
r
‘

! "
cos h sin nh

n

#npnIn
r
‘

! "
sin h cos nh

o
; ð10Þ

ezy ¼ e0
zy #

x1

‘r1
K1

r1

‘

! "
þ x2

‘r2
K1

r2

‘

! "

þ 1

2r

X1

n¼1

pnrIn;r
r
‘

! "
sin h sin nh

n

þnpnIn
r
‘

! "
cos h cos nh

o
; ð11Þ

where e0
zk is given by Eq. (6) and Kn denotes the modified

Bessel function of the second kind of the order n. The
plastic strains are

e*zx ¼ 0; e*zy ¼
Z 1

0

cos sy½Wðs; x1Þ #Wðs; x2Þ'ds ð12Þ

in the same units.
Let us briefly discuss the main features of the gradient

solution for the strain field. First, in the limit ‘? 0, it is
transformed into the classical solution given by Eq. (6).
Second, when a ?1, the gradient solution tends to that
for a screw dislocation in an infinite isotropic solid
[22,30,44]. Third, while the classical elastic strains pos-
sess unphysical singularities ,1/r1 as r1 ? 0, the appear-
ance of the modified Bessel function in the gradient
elastic strains eliminates these singularities, since K1(r1/
‘) , ‘/r1 when r1 ? 0. On the other hand, when r ? 0,
In(r/‘) , (r/‘)n and this cancels out the singular term 1/
r behind the summation sign in Eqs. (10) and (11). Thus,
the gradient solution is not singular anywhere, as can
also be seen from Figure 4. Far from the dislocation

line, when jx # cj > 5‘, the classical and gradient solu-
tions practically coincide. All these results are similar
to those obtained earlier for a screw dislocation in an
infinite medium [22,30]. Fourth, the maximum value of
the ezy component, eðmaxÞ

zy , is (0.2b/(2p‘) ( 0.127 (at
b ( h ( 4‘ [26]) when the dislocation is located at the
cylinder center as is also the case for an infinite solid.
However, eðmaxÞ

zy first increases when the dislocation is
shifted to the free surface (Fig. 4). Closer than (1.5‘
to the free surface, eðmaxÞ

zy begins to decrease and reduces
to zero when the dislocation reaches the surface (Fig. 5).
Thus, within the gradient elasticity, one can estimate the
maximum possible shear strain in an infinite nanowire
due to the screw dislocation. For example, it follows
from Figure 5 that in the nanowire of radius
a = 100‘ ( 25h ( 7–8 nm, the maximum strain reaches
its peak at c ( a # 1.5‘, which is estimated as
eðmaxÞ

zy ( 0:35b=ð2p‘Þ ( 0:222. The peak value of eðmaxÞ
zy

decreases with the nanowire radius a (see the dashed
curve in Fig. 5), thus demonstrating one more nonclas-
sical size effect, this time for the elastic strain. Obviously,
this size effect becomes stronger with decreasing a and
disappears when a/‘?1.

In summary, strain-gradient elasticity gives smooth
and nonsingular solutions for the displacement and
strain fields of a screw dislocation in a nanowire. More-
over, it allows us to observe a nonclassical size effect,
namely the strong dependence of the maximum displace-
ment and strain on both the dislocation position and

Figure 3. Dependence of the maximum magnitude wmax(c,y) of the
normalized displacement near the screw dislocation on its position c/‘
for different values of the cylinder radius a/‘ = 10, 20, 50, 100 and 1.
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Figure 4. The elastic strain ezy(x,y = 0) distribution in an infinite
cylinder of radius a/‘ = 20 due to a screw dislocation placed at
different positions c/‘ = 0, 10, 18 and 19. Solid and dashed lines
correspond to the gradient and classical solutions, respectively. The
strain values are given in units of b/(2p‘).

Figure 5. Dependence of the maximum elastic strain eðmaxÞ
zy on the

dislocation position for different values of the cylinder radius a/‘ = 5,
10, 20, 50, 100 and 1. The dashed curve shows the effect of the
cylinder radius on the peak value of eðmaxÞ

zy .
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nanowire radius. In particular, it is shown that the max-
imum strain reaches its peak value when the dislocation
is located near the free surface, and this peak value
grows with the nanowire radius until the latter becomes
rather big. The maximum possible elastic shear strain
caused by a screw dislocation in a nanowire is in direct
proportion with the ratio b/‘. For a perfect lattice dislo-
cation (b/‘ ( 4) in a nanowire with radius a ( 10 nm,
this maximum strain ranges from (12.7% (when the dis-
location is in the center of the nanowire) to (22.2%
(when it is near the free surface). Strictly speaking, these
results are rather approximate since our elastically iso-
tropic model is still a first step in describing dislocation
fields in a real nanowire.

H.M.S. and K.M.D. appreciate the support by Sha-
rif University of Technology. M.Yu.G. was supported
by the Russian Foundation of Basic Research (Grant
08-02-00304-a).

[1] H.S. Park, K. Gall, J.A. Zimmerman, J. Mech. Phys.
Solids 54 (2006) 1862.

[2] J. Monk, D. Farkas, Phys. Rev. B 75 (2007) 045414.
[3] Z. Wang, X. Zu, L. Yang, F. Gao, W.J. Weber, Phys.

Rev. B 76 (2007) 045310.
[4] D. Kiener, W. Grosinger, G. Dehm, R. Pippan, Acta

Mater. 56 (2008) 580.
[5] K. Zhou, A.A. Nazarov, M.S. Wu, Phys. Rev. B 73

(2006) 045410.
[6] M.Yu. Gutkin, I.A. Ovid’ko, A.G. Sheinerman, J. Phys.:

Condens. Matter 12 (2000) 5391.
[7] A.G. Sheinerman, M.Yu. Gutkin, Phys. Status Solidi (a)

184 (2001) 485.
[8] J. Colin, J. Grilhe, Philos. Mag. Lett. 82 (2002) 125.
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