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Asymptotics

Roadmap, Part II

1. Asymptotics of least squares

2. Inference: Testing and confidence sets
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Asymptotics

Takeaways for these slides

I Convergence in probability, convergence in distribution

I Law of large numbers: sample means go to population
expectations in probability

I Central limit theorem: rescaled sample means go to a standard
normal in distribution

I Slutsky theorem: combining convergence of parts of some
expression

I Application: Least squares is consistent for the best linear
predictor, and asymptotically normal
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Asymptotics

I Random sampling:

(Yi ,Xi) i.i.d., X ′i =
(
Xi1 . . . XiK

)
.

where i.i.d. means “independently identically distributed”

I Recall: Linear Predictor

E∗(Yi |Xi) = X ′i β , β = [E(XiX
′
i )]
−1E(XiYi).

I Recall: Least-Squares Estimator:

b =

(
1
n

n

∑
i=1

XiX
′
i

)−1 1
n

n

∑
i=1

XiYi .

I Our goal: Understanding how b relates to β .
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Asymptotics

Convergence in probability
I Definition: The sequence of random variables Qn converges in

probability to a constant α if

lim
n→∞

P(|Qn−α|> ε) = 0

for all ε > 0. Notation: Qn
p→ α.

I Definition: The estimator b is consistent for β if it converges in
probability to β ,

b
p→ β .

Questions for you

I Try to describe convergence in probability in words.

I How does it relate to convergence of sequences of numbers?
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Asymptotics

Convergence in distribution

I Definition: The sequence of random variables Qn converges in
distribution to a random variable Q if and only if for all continuity
points of FQ

FQn(q)→ FQ(q).

I Convergence in probability implies convergence in distribution.

I The reverse is not true,

I except when X is non-random.
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Asymptotics

Three important theorems
Law of Large Numbers

I Let W1,W2, . . . be a sequence of iid random variables with
E[Wi ] = µ ,

I Let W n = n−1
∑

n
i=1 Wi .

I Then
W n

p→ E(W1).

Questions for you

I Suppose additionally Var(Wi) = σ2 < ∞.

I What’s E(W n)?

I What’s Var(W n)?
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Asymptotics

Central limit theorem

I Let W1,W2, . . . be a sequence of iid random variables with
1. E[Wi ] = µ ,
2. Var(Wi) = σ2,
3. and 0 < σ2 < ∞.

I Let W n = n−1
∑

n
i=1 Wi .

I Then √
n

σ
(W n−µ)→d N(0,1).
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Asymptotics

Slutsky’s theorem

I Let c be a constant,

I suppose Wn→d W and Qn→p c
I then

1. Wn +Qn→d W + c
2. WnQn→d Wc
3. Wn/Qn→d W/c, provided c 6= 0.

I In particular, if Wn→d W and Qn→p0, then WnQn→p 0.
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Asymptotics

OLS and best linear predictor
I Recall again

b =

(
1
n

n

∑
i=1

XiX
′
i

)−1 1
n

n

∑
i=1

XiYi

β = [E(XiX
′
i )]
−1E(XiYi)

I Thus

b−β =

(
1
n

n

∑
i=1

XiX
′
i

)−1
(

1
n

n

∑
i=1

XiYi −
1
n

n

∑
i=1

XiXiβ

)

=

(
1
n

n

∑
i=1

XiX
′
i

)−1
(

1
n

n

∑
i=1

XiUi

)
where

Ui = Yi −Xiβ .
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Asymptotics

Applying these theorems to least squares

Questions for you

Use our theorems to characterize the large sample behavior of

1
n

n

∑
i=1

XiX
′
i (1)

1
n

n

∑
i=1

XiYi (2)

1√
n

n

∑
i=1

XiUi (3)
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Asymptotics

Solution:

1. Law of large numbers:

1
n

n

∑
i=1

XiX
′
i

p→ E(X1X ′1)

2. Law of large numbers:

1
n

n

∑
i=1

XiYi
p→ E(X1Y1)

3. Central limit theorem and E[XiUi ] = 0 (orthogonality condition):

1√
n

n

∑
i=1

XiUi
d→ N(0,Var(X1U1))

12 / 14



Asymptotics

Questions for you

Use these results and Slutsky’s theorem to characterize the large
sample behavior of

1. b

2.
√

n(b−β )

13 / 14



Asymptotics

Solution:
1. Consistency of least squares.
2. Asymptotic normality of least squares.

b
p→ [E(X1X ′1)]

−1E(X1Y1) = β . (4)
√

n(b−β )
p→ N(0,V ) (5)

where
V = [E(X1X ′1)]

−1 Var(X1U1)[E(X1X ′1)]
−1.

Questions for you

I Interpret these results.

I How do they relate to each other?

I Make sure you understand where the formula for V is coming
from!
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