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Treatment effects

1) Causality, Potential Outcomes, and the Estimation
of Treatment Effects in Randomized Studies

(cf. “Mostly Harmless Econometrics,” chapter 2)
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Treatment effects

Purpose, Scope, and Examples
The goal of program evaluation is to assess the causal effect of
public policy interventions. Examples include effects of:

I Job training programs on earnings and employment

I Class size on test scores

I Minimum wage on employment

I Military service on earnings and employment

I Tax-deferred saving programs on savings accumulation

In addition, we may be interested in the effect of variables that do not
represent public policy interventions. Examples:

I Interest rate on credit card usage

I Incentive scheme on employer productivity

I Immigration on wages
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Treatment effects

Causality with Potential Outcomes
Treatment
Di : Indicator of treatment intake for unit i

Di =

{
1 if unit i received the treatment
0 otherwise.

Outcome
Yi : Observed outcome variable of interest for unit i

Potential Outcomes
Y0i and Y1i : Potential outcomes for unit i

Y1i : Potential outcome for unit i with treatment
Y0i : Potential outcome for unit i without treatment
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Treatment effects

Causality with Potential Outcomes
Treatment Effect
The treatment effect or causal effect of the treatment on the outcome
for unit i is the difference between its two potential outcomes:

Y1i −Y0i

Observed Outcomes
Observed outcomes are realized as

Yi = Y1iDi + Y0i(1−Di) or Yi =

{
Y1i if Di = 1
Y0i if Di = 0

Fundamental Problem of Causal Inference
Cannot observe both potential outcomes (Y1i ,Y0i)
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Treatment effects

Identification Problem for Causal Inference

Problem
Causal inference is difficult because it involves missing data. How can
we find Y1i −Y0i?

I A large amount of homogeneity would solve this problem:
I (Y1i ,Y0i ) constant across individuals
I (Y1i ,Y0i ) constant across time

I However, often there is a large degree of heterogeneity in the
individual responses to participation in public programs or to
exposure to other treatment of interest
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Treatment effects

Stable Unit Treatment Value Assumption (SUTVA)
Assumption

Observed outcomes are realized as

Yi = Y1iDi + Y0i(1−Di)

I Implies that potential outcomes for unit i are unaffected by the
treatment of unit j

I Rules out interference across units
I Examples:

I Effect of fertilizer on plot yield
I Effect of flu vaccine on hospitalization

I This assumption may be problematic, so we should choose the
units of analysis to minimize interference across units.
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Treatment effects

Quantities of Interest (Estimands)

ATE
Average treatment effect is:

αATE = E[Y1−Y0]

ATET
Average treatment effect on the treated is:

αATET = E[Y1−Y0|D = 1]
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Treatment effects

Average Treatment Effect (ATE)

Imagine a population with 4 units:

i Y1i Y0i Yi Di Y1i −Y0i

1 3 ? 3 1 ?
2 1 ? 1 1 ?
3 ? 0 0 0 ?
4 ? 1 1 0 ?

What is αATE = E[Y1−Y0]?
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Treatment effects

Average Treatment Effect (ATE)

Imagine a population with 4 units:

i Y1i Y0i Yi Di Y1i −Y0i

1 3 0 3 1 3
2 1 1 1 1 0
3 1 0 0 0 1
4 1 1 1 0 0

E[Y1] 1.5
E[Y0] 0.5

E[Y1−Y0] 1

αATE = E[Y1−Y0] = 3 · (1/4) + 0 · (1/4) + 1 · (1/4) + 0 · (1/4) = 1
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Treatment effects

Average Treatment Effect on the Treated (ATET)

Imagine a population with 4 units:

i Y1i Y0i Yi Di Y1i −Y0i

1 3 0 3 1 3
2 1 1 1 1 0
3 1 0 0 0 1
4 1 1 1 0 0

What is αATET = E[Y1−Y0|D = 1]?
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Treatment effects

Average Treatment Effect on the Treated (ATET)

Imagine a population with 4 units:

i Y1i Y0i Yi Di Y1i −Y0i

1 3 0 3 1 3
2 1 1 1 1 0
3 1 0 0 0 1
4 1 1 1 0 0

E[Y1|D = 1] 2
E[Y0|D = 1] 0.5
E[Y1−Y0|D = 1] 1.5

αATET = E[Y1−Y0|D = 1] = 3 · (1/2) + 0 · (1/2) = 1.5
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Treatment effects

Selection Bias

Problem
Comparisons of earnings for the treated and the untreated do not
usually give the right answer:

E[Y |D = 1]−E[Y |D = 0] = E[Y1|D = 1]−E[Y0|D = 0]

= E[Y1−Y0|D = 1]︸ ︷︷ ︸
ATET

+{E[Y0|D = 1]−E[Y0|D = 0]}︸ ︷︷ ︸
BIAS

I Bias term is not likely to be zero in most applications

I Selection into treatment often depends on potential outcomes
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Treatment effects

Selection Bias
Problem
Comparisons of earnings for the treated and the untreated do not
usually give the right answer:

E[Y |D = 1]−E[Y |D = 0] = E[Y1|D = 1]−E[Y0|D = 0]

= E[Y1−Y0|D = 1]︸ ︷︷ ︸
ATET

+{E[Y0|D = 1]−E[Y0|D = 0]}︸ ︷︷ ︸
BIAS

Example: Job training program for disadvantaged
I participants are self-selected from a subpopulation of individuals

in difficult labor situations
I post-training period earnings would be lower for participants than

for nonparticipants in the absence of the program
(E[Y0|D = 1]−E[Y0|D = 0] < 0)

12 / 45



Treatment effects

Training Program for the Disadvantaged in the U.S.
Data from the National Supported Work Demonstration (NSW)
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Treatment effects

Assignment Mechanism

Assignment Mechanism
Assignment mechanism is the procedure that determines which units
are selected for treatment intake. Examples include:

I random assignment

I selection on observables

I selection on unobservables

Typically, treatment effects models attain identification by restricting
the assignment mechanism in some way.
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Treatment effects

Key Ideas

I Causality is defined by potential outcomes, not by realized
(observed) outcomes

I Observed association is neither necessary nor sufficient for
causation

I Estimation of causal effects of a treatment (usually) starts with
studying the assignment mechanism
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Treatment effects

Selection Bias

Recall the selection problem when comparing the mean outcomes for
the treated and the untreated:

E[Y |D = 1]−E[Y |D = 0]︸ ︷︷ ︸
Difference in Means

= E[Y1|D = 1]−E[Y0|D = 0]

= E[Y1−Y0|D = 1]︸ ︷︷ ︸
ATET

+{E[Y0|D = 1]−E[Y0|D = 0]}︸ ︷︷ ︸
BIAS

I Random assignment of units to the treatment forces the selection
bias to be zero

I The treatment and control group will tend to be similar along all
characteristics (including Y0)
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Treatment effects

Identification in Randomized Experiments
Randomization implies:

(Y1,Y0) independent of D, or (Y1,Y0)⊥⊥D.

We have that E[Y0|D = 1] = E[Y0|D = 0] and therefore

αATET = E[Y1−Y0|D = 1] = E[Y |D = 1]−E[Y |D = 0]

Also, we have that

αATE = E[Y1−Y0] = E[Y1−Y0|D = 1] = E[Y |D = 1]−E[Y |D = 0]

As a result,

E[Y |D = 1]−E[Y |D = 0]︸ ︷︷ ︸
Difference in Means

= αATE = αATET
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Treatment effects

Identification in Randomized Experiments
The identification result extends beyond average treatment effects.
Given random assignment (Y1,Y0)⊥⊥D:

FY0(y) = Pr(Y0 ≤ y) = Pr(Y0 ≤ y |D = 0)

= Pr(Y ≤ y |D = 0)

Similarly,
FY1(y) = Pr(Y ≤ y |D = 1).

So effect of the treatment at any quantile, Qθ (Y1)−Qθ (Y0) is
identified.

I Randomization identifies the entire marginal distributions of Y0

and Y1

I Does not identify the quantiles of the effect: Qθ (Y1−Y0) (the
difference of quantiles is not the quantile of the difference)
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Treatment effects

Estimation in Randomized Experiments
Consider a randomized trial with N individuals. Suppose that the
estimand of interest is ATE:

αATE = E[Y1−Y0] = E[Y |D = 1]−E[Y |D = 0].

Using the analogy principle, we construct an estimator:

α̂ = Ȳ1− Ȳ0,

where

Ȳ1 =
∑Yi ·Di

∑Di
=

1
N1

∑
Di =1

Yi ;

Ȳ0 =
∑Yi · (1−Di)

∑(1−Di)
=

1
N0

∑
Di =0

Yi

with N1 = ∑i Di and N0 = N−N1.
α̂ is an unbiased and consistent estimator of αATE .
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Treatment effects

Testing in Large Samples: Two Sample t-Test
Notice that:

α̂−αATE√
σ̂2

1

N1
+

σ̂2
0

N0

d→ N(0,1),

where

σ̂
2
1 =

1
N1−1 ∑

Di =1
(Yi − Ȳ1)2,

and σ̂2
0 is analogously defined. In particular, let

t =
α̂√

σ̂2
1

N1
+

σ̂2
0

N0

.

We reject the null hypothesis H0: αATE = 0 against the alternative H1:
αATE 6= 0 at the 5% significance level if |t|> 1.96.
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Treatment effects

Testing in Small Samples: Fisher’s Exact Test

I Test of differences in means with large N:

H0 : E[Y1] = E[Y0], H1 : E[Y1] 6= E[Y0]

I Fisher’s Exact Test with small N:

H0 : Y1 = Y0, H1 : Y1 6= Y0 (sharp null)

I Let Ω be the set of all possible randomization realizations.

I We only observe the outcomes, Yi , for one realization of the
experiment. We calculate α̂ = Ȳ1− Ȳ0.

I Under the sharp null hypothesis we can calculate the value that
the difference of means would have taken under any other
realization, α̂(ω), for ω ∈ Ω.
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Treatment effects

Testing in Small Samples: Fisher’s Exact Test
Suppose that we assign 4 individuals out of 8 to the treatment:

Yi 12 4 6 10 6 0 1 1
Di 1 1 1 1 0 0 0 0 α̂ = 6

α̂(ω)

ω = 1 1 1 1 1 0 0 0 0 6
ω = 2 1 1 1 0 1 0 0 0 4
ω = 3 1 1 1 0 0 1 0 0 1
ω = 4 1 1 1 0 0 0 1 0 1.5

· · ·
ω = 70 0 0 0 0 1 1 1 1 -6

I The randomization distribution of α̂ (under the sharp null hypothesis) is
Pr(α̂ ≤ z) = 1

70 ∑ω∈Ω 1{α̂(ω)≤ z}
I Now, find z̄ = inf{z : P(|α̂|> z)≤ 0.05}
I Reject the null hypothesis, H0: Y1i −Y0i = 0 for all i , against the alternative

hypothesis, H1: Y1i −Y0i 6= 0 for some i , at the 5% significance level if |α̂|> z̄
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Treatment effects

Testing in Small Samples: Fisher’s Exact Test

−8 −6 −4 −2 0 2 4 6 8
0

2

4

6

8

10

12
Diff. in Means

Randomization Distribution of the Difference in Means

Pr(|α̂(ω)| ≥ 6) = 0.0857

Pr(|α̂(ω)| ≥ 6) = 0.0857
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Treatment effects

Covariate Balance

I Randomization balances observed but also unobserved
characteristics between treatment and control group

I Can check random assignment using so called “balance tests”
(e.g., t-tests) to see if distributions of the observed covariates, X ,
are the same in the treatment and control groups

I X are pre-treatment variables that are measured prior to
treatment assignment (i.e., at “baseline”)
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Treatment effects

Experimental Design: Relative Sample Sizes for Fixed N
Suppose that you have N experimental subjects and you have to
decide how many will be in the treatment group and how many in the
control group. We know that:

Ȳ1− Ȳ0 ∼
(

µ1−µ0,
σ2

1

N1
+

σ2
0

N0

)
.

We want to choose N1 and N0, subject to N1 + N0 = N, to minimize
the variance of the estimator of the average treatment effect.
The variance of Ȳ1− Ȳ0 is:

var(Ȳ1− Ȳ0) =
σ2

1

pN
+

σ2
0

(1−p)N

where p = N1/N is the proportion of treated in the sample.
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Treatment effects

Experimental Design: Relative Sample Sizes for Fixed N

Find the value p∗ that minimizes var(Ȳ1− Ȳ0):

− σ2
1

p∗2N
+

σ2
0

(1−p∗)2N
= 0.

Therefore:
1−p∗

p∗
=

σ0

σ1
,

and

p∗ =
σ1

σ1 + σ0
=

1
1 + σ0/σ1

.

A “rule of thumb” for the case σ1 ≈ σ0 is p∗= 0.5

For practical reasons it is sometimes better to choose unequal sample
sizes (even if σ1 ≈ σ0)
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Treatment effects

Experimental Design: Power Calculations to Choose N
I Recall that for a statistical test:

I Type I error: Rejecting the null if the null is true.
I Type II error: Not rejecting the null if the null is false.

I Size of a test is the probability of type I error, usually 0.05.

I Power of a test is one minus the probability of type II error, i.e. the
probability of rejecting the null if the null is false.

I Statistical power increases with the sample size.

I But when is a sample “large enough”?

I We want to find N such that we will be able to detect an average
treatment effect of size α or larger with high probability.
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Treatment effects

Experimental Design: Power Calculations to Choose N
Assume a particular value, α , for µ1−µ0.
Let α̂ = Ȳ1− Ȳ0 and

s.e.(α̂) =

√
σ2

1

N1
+

σ2
0

N0
.

For a large enough sample, we can approximate:

α̂−α

s.e.(α̂)
∼ N (0,1) .

Therefore, the t-statistic for a test of significance is:

t =
α̂

s.e.(α̂)
∼ N

(
α

s.e.(α̂)
,1

)
.
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Treatment effects

Probability of Rejection if µ1−µ0 = 0

−1.96 0 1.96
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Treatment effects

Probability of Rejection if µ1−µ0 = α

−1.96 0 1.96α

s.e.(α̂)
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Treatment effects

Experimental Design: Power Calculations to Choose N
The probability of rejecting the null µ1−µ0 = 0 is:

Pr(|t|> 1.96) = Pr(t <−1.96) + Pr(t > 1.96)

= Pr

(
t− α

s.e.(α̂)
<−1.96− α

s.e.(α̂)

)

+ Pr

(
t− α

s.e.(α̂)
> 1.96− α

s.e.(α̂)

)

= Φ

(
−1.96− α

s.e.(α̂)

)
+

(
1−Φ

(
1.96− α

s.e.(α̂)

))

Suppose that p = 1/2 and σ2
1 = σ2

0 = σ2. Then,

s.e.(α̂) =

√
σ2

N/2
+

σ2

N/2

=
2σ√

N
.
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Treatment effects

Power Functions with p = 1/2 and σ2
1 = σ2

0

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2
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0.4

0.5

0.6

0.7

0.8

0.9

1

N=25

N=50

α/σ
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Treatment effects

General formula for the power function (p 6= 1/2, σ2
0 6= σ2

1 )

Pr(reject µ1−µ0 = 0|µ1−µ0 = α)

= Φ


−1.96−α

/√
σ2

1

pN
+

σ2
0

(1−p)N




+

(
1−Φ

(
1.96−α

/√
σ2

1

pN
+

σ2
0

(1−p)N

))
.

To choose N we need to specify:
1. α : minimum detectable magnitude of treatment effect

2. Power value (usually 0.80 or higher)

3. σ2
1 and σ2

0 (usually σ2
1 = σ2

0 ) (e.g., using previous measures)

4. p: proportion of observations in the treatment group If σ1 = σ0,
then the power is maximized by p = 0.5
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Treatment effects

Threats to the Validity of Randomized Experiments

I Internal validity: can we estimate treatment effect for our
particular sample?

I Fails when there are differences between treated and controls
(other than the treatment itself) that affect the outcome and that
we cannot control for

I External validity: can we extrapolate our estimates to other
populations?

I Fails when the treatment effect is different outside the evaluation
environment
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Treatment effects

Most Common Threats to Internal Validity

I Failure of randomization

I Non-compliance with experimental protocol

I Attrition
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Treatment effects

Most Common Threats to External Validity

I Non-representative sample

I Non-representative program

I The treatment differs in actual implementations

I Scale effects

I Actual implementations are not randomized (nor full scale)
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Treatment effects

Example: Job Training Partnership Act (JTPA)

I Largest randomized training evaluation ever undertaken in the
U.S.; started in 1983 at 649 sites throughout the country

I Sample: Disadvantaged persons in the labor market (previously
unemployed or low earnings)

I D: Assignment to one of three general service strategies
I classroom training in occupational skills
I on-the-job training and/or job search assistance
I other services (eg. probationary employment)

I Y: earnings 30 months following assignment

I X: Characteristics measured before assignment (age, gender,
previous earnings, race, etc.)
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Treatment effects

A Final Word about Policy Outcome

After the results of the National JTPA study were released, in 1994,
funding for JTPA training for the youth was drastically cut:

SPENDING ON JTPA PROGRAMS

Year Youth Training Adult Training
Grants Grants

1993 677 1015
1994 609 988
1995 127 996
1996 127 850
1997 127 895
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