Quantitative Methods in Economics Linear Predictor

Maximilian Kasy

Harvard University, fall 2016

Roadmap, Part I

- 1. Linear predictors and least squares regression
- Conditional expectations
- 3. Some functional forms for linear regression
- 4. Regression with controls and residual regression
- 5. Panel data and generalized least squares

Takeaways for these slides

- Best linear predictor minimizes average squared prediction error (population concept)
- Least squares regression minimizes mean squared residual (sample analog)
- ► First order condition for minimization ↔ orthogonality conditions
- Geometric interpretation
- Omitted variables

A population prediction problem

- ▶ Suppose there are two random variables *X* and *Y*.
- You want to predict Y using a linear function of X.
- What's the best predictor, if you know the joint distribution of X and Y?

Some definitions

Best linear Predictor:

$$\hat{Y} = \beta_0 + \beta_1 X$$
, $\min_{\beta_0, \beta_1} E(Y - \hat{Y})^2$

Inner Product:

$$\langle Y, X \rangle = E(YX)$$

Norm:

$$||\mathbf{Y}|| = \langle \mathbf{Y}, \mathbf{Y} \rangle^{1/2}, \quad \min_{\beta_0, \beta_1} ||\mathbf{Y} - \hat{\mathbf{Y}}||^2$$

Questions for you

Recall the definition of an inner product.

- What properties does it have?
- What does that imply for a norm?

Questions for you

- Write the objective function as an inner product.
- Find the first order conditions for the minimization problem.

The solution as an orthogonal projection

▶ Orthogonal (⊥) Projection

$$\langle Y - \hat{Y}, 1 \rangle = 0, \quad \langle Y - \hat{Y}, X \rangle = 0$$

Substitute:

$$\begin{split} \langle Y - \beta_0 \mathbf{1} - \beta_1 X, \mathbf{1} \rangle &= \langle Y, \mathbf{1} \rangle - \beta_0 \langle \mathbf{1}, \mathbf{1} \rangle - \beta_1 \langle X, \mathbf{1} \rangle = 0, \\ \langle Y - \beta_0 \mathbf{1} - \beta_1 X, X \rangle &= \langle Y, X \rangle - \beta_0 \langle \mathbf{1}, X \rangle - \beta_1 \langle X, X \rangle = 0 \end{split}$$

▶ Use definition of $\langle \cdot, \cdot \rangle$:

$$E(Y) - \beta_0 - \beta_1 E(X) = 0$$
, $E(YX) - \beta_0 E(X) - \beta_1 E(X^2) = 0$

Questions for you

Express β_1 in terms of Covariances / Variances.

Solution:

$$\beta_0 = E(Y) - \beta_1 E(X), \quad \beta_1 = \frac{E(YX) - E(Y)E(X)}{E(X^2) - E(X)E(X)} = \frac{\operatorname{Cov}(Y, X)}{\operatorname{Var}(X)}$$

Notation:

$$E^*(Y|1,X) = \beta_0 + \beta_1 X$$

Least squares fit

- So far, we assumed that the joint distribution of X and Y is known
 in particular their variance and covariance.
- ▶ What do we get if we take the joint distribution in a sample, rather than in the population?
- Data:

$$y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \quad x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad x_0 = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

Questions for you

Define a sample minimization problem analogous to the population problem we just considered.

Sample prediction problem:

$$\hat{y}_i = b_0 + b_1 x_i$$

$$\min_{b_0,b_1} \frac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

Inner Product:

$$\langle y, x \rangle = \frac{1}{n} \sum_{i=1}^{n} y_i x_i$$

► Minimum Norm:

$$\min_{b_0,b_1} ||y - b_0 x_0 - b_1 x||^2$$

Questions for you

First order condition?

As before: Orthogonality conditions

$$\langle y - \hat{y}, x_0 \rangle = 0, \quad \langle y - \hat{y}, x \rangle = 0$$

▶ Use definition of $\langle \cdot, \cdot \rangle$:

$$\overline{y}-b_0-b_1\overline{x}=0, \quad \overline{y}\overline{x}-b_0\overline{x}-b_1\overline{x^2}=0,$$

where

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i, \quad \overline{yx} = \frac{1}{n} \sum_{i=1}^{n} y_i x_i, \quad \overline{x^2} = \frac{1}{n} \sum_{i=1}^{n} x_i^2$$

Solve:

$$b_0 = \overline{y} - b_1 \overline{x}, \quad b_1 = \frac{\overline{yx} - \overline{y}\overline{x}}{\overline{x^2} - \overline{x}\overline{x}}$$

Goodness of fit

- Back to the population problem.
- ► How well does X predict Y?
- Average squared prediction error:

$$||Y - E^*(Y|1,X)||^2 \le ||Y - E^*(Y|1)||^2 = ||Y - E(Y)||^2$$

Questions for you

Why does the inequality hold?

Goodness of fit:

$$1 - R_{\text{pop}}^2 = \frac{||Y - E^*(Y|1, X)||^2}{||Y - E(Y)||^2}, \quad 0 \le R_{\text{pop}}^2 \le 1$$

Sample Analog:

$$R^2 = 1 - \frac{||y - (\hat{y}|1, x)||^2}{||y - \bar{y}||^2}, \quad 0 \le R^2 \le 1$$

A clasic empirical example

- ▶ Jacob Mincer, *Schooling, Experience and Earnings*, 1974, Table 5.1;
- 1 in 1000 sample, 1960 census; 1959 annual earnings; n = 31093
- $y = \log(\text{earnings}), \quad s = \text{years of schooling}$
- Fitted regression:

$$\hat{y} = 7.58 + .070s$$
, $R^2 = .067$

Omitted variables

- What if we are actually interested in a different prediction problem?
- How do earnings vary as we vary education, holding constant predetermined IQ?
- Y = earnings, X_1 = education, X_2 = IQ

$$E^*(Y|1,X_1,X_2) = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$
 (Long)

$$E^*(Y|1,X_1) = \alpha_0 + \alpha_1 X_1$$
 (Short)

$$E^*(X_2 | 1, X_1) = \gamma_0 + \gamma_1 X_1$$
 (Aux)

Define prediction error:

$$U \equiv Y - E^*(Y | 1, X_1, X_2),$$

so that

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + U \quad \text{with} \quad U \perp 1, \quad U \perp X_1, \quad U \perp X_2$$

Questions for you

- ▶ Substitute this formula for *Y* in the short regression $E^*(Y|1,X_1)$.
- ► Use the fact that the best linear predictor is linear in *Y* to split this into parts.
- ▶ Use the fact that U has to be orthogonal to 1 and X_1 .
- ▶ Derive a formula for α in terms of β and γ .

Solution

Substitute:

$$E^{*}(Y|1,X_{1}) = \beta_{0} + \beta_{1}X_{1} + \beta_{2}E^{*}(X_{2}|1,X_{1}) + E^{*}(U|1,X_{1})$$

$$= \beta_{0} + \beta_{1}X_{1} + \beta_{2}(\gamma_{0} + \gamma_{1}X_{1})$$

$$= (\beta_{0} + \beta_{2}\gamma_{0}) + (\beta_{1} + \beta_{2}\gamma_{1})X_{1}.$$

Omitted Variable Bias Formula:

$$\alpha_1 = \beta_1 + \beta_2 \gamma_1$$

Sample analog

Least squares version:

$$\hat{y}_{i} | 1, x_{i1}, x_{i2} = b_{0} + b_{1}x_{i1} + b_{2}x_{i2},$$
 (Long)
 $\hat{y}_{i} | 1, x_{i1} = a_{0} + a_{1}x_{i1},$ (Short)
 $\hat{x}_{i2} | 1, x_{i1} = c_{0} + c_{1}x_{i1}.$ (Aux)

Omitted Variable Bias Formula for sample:

$$a_1 = b_1 + b_2 c_1$$

Empirical example continued

- Griliches and Mason, "Education, Income, and Ability," Journal of Political Economy, 1972;
- ► CPS subsample of veterans, age 21–34 in 1964; y = log of usual weekly earnings; ST = total years of schooling; SB = schooling before army; SI = schooling after army (ST = SB + SI); AFQT = armed forces qualification test (percentile)
- ► Table 3:

$$\hat{y} = .0508ST + ...$$
 $\hat{y} = .0433ST + .00150AFQT + ...$
 $\hat{y} = .0502SB + .0528SI + ...$
 $\hat{y} = .0418SB + .0475SI + .00154AFQT + ...$