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Roadmap, Part I

1. Linear predictors and least squares regression

2. Conditional expectations

3. Some functional forms for linear regression

4. Regression with controls and residual regression

5. Panel data and generalized least squares
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Takeaways for these slides

I Best linear predictor minimizes average squared prediction error
(population concept)

I Least squares regression minimizes mean squared residual
(sample analog)

I First order condition for minimization↔ orthogonality conditions

I Geometric interpretation

I Omitted variables
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A population prediction problem

I Suppose there are two random variables X and Y .

I You want to predict Y using a linear function of X .

I What’s the best predictor, if you know the joint distribution of X
and Y ?
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Some definitions

I Best linear Predictor:

Ŷ = β0 + β1X , min
β0,β1

E(Y − Ŷ )2

I Inner Product:
〈Y ,X〉= E(YX)

I Norm:
||Y ||= 〈Y ,Y 〉1/2, min

β0,β1

||Y − Ŷ ||2
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Questions for you

Recall the definition of an inner product.

I What properties does it have?

I What does that imply for a norm?

Questions for you

I Write the objective function as an inner product.

I Find the first order conditions for the minimization problem.
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The solution as an orthogonal projection

I Orthogonal (⊥) Projection

〈Y − Ŷ ,1〉= 0, 〈Y − Ŷ ,X〉= 0

I Substitute:

〈Y −β01−β1X ,1〉= 〈Y ,1〉−β0〈1,1〉−β1〈X ,1〉= 0,

〈Y −β01−β1X ,X〉= 〈Y ,X〉−β0〈1,X〉−β1〈X ,X〉= 0

I Use definition of 〈·, ·〉:

E(Y )−β0−β1E(X) = 0, E(YX)−β0E(X)−β1E(X 2) = 0
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Questions for you

Express β1 in terms of Covariances / Variances.
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I Solution:

β0 = E(Y )−β1E(X), β1 =
E(YX)−E(Y )E(X)

E(X 2)−E(X)E(X)
=

Cov(Y ,X)

Var(X)

I Notation:
E∗(Y |1,X) = β0 + β1X
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Least squares fit

I So far, we assumed that the joint distribution of X and Y is known
– in particular their variance and covariance.

I What do we get if we take the joint distribution in a sample, rather
than in the population?

I Data:

y =

y1
...

yn

 , x =

x1
...

xn

 , x0 =

1
...
1


Questions for you

Define a sample minimization problem analogous to the population
problem we just considered.
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I Sample prediction problem:

ŷi = b0 + b1xi

min
b0,b1

1
n

n

∑
i=1

(yi − ŷi)
2

I Inner Product:

〈y ,x〉=
1
n

n

∑
i=1

yixi

I Minimum Norm:
min
b0,b1
||y−b0x0−b1x ||2

Questions for you

First order condition?
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I As before: Orthogonality conditions

〈y− ŷ ,x0〉= 0, 〈y− ŷ ,x〉= 0

I Use definition of 〈·, ·〉:

ȳ−b0−b1x̄ = 0, yx−b0x̄−b1x2 = 0,

I where

ȳ =
1
n

n

∑
i=1

yi , yx =
1
n

n

∑
i=1

yixi , x2 =
1
n

n

∑
i=1

x2
i

I Solve:

b0 = ȳ−b1x̄ , b1 =
yx− ȳ x̄

x2− x̄ x̄
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Goodness of fit
I Back to the population problem.
I How well does X predict Y?
I Average squared prediction error:

||Y −E∗(Y |1,X)||2 ≤ ||Y −E∗(Y |1)||2 = ||Y −E(Y )||2

Questions for you

Why does the inequality hold?

I Goodness of fit:

1−R2
pop =

||Y −E∗(Y |1,X)||2

||Y −E(Y )||2
, 0≤ R2

pop ≤ 1

I Sample Analog:

R2 = 1− ||y− (ŷ |1,x)||2

||y− ȳ ||2
, 0≤ R2 ≤ 1
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A clasic empirical example

I Jacob Mincer, Schooling, Experience and Earnings, 1974, Table
5.1;

I 1 in 1000 sample, 1960 census; 1959 annual earnings;
n = 31093

I y = log(earnings), s = years of schooling

I Fitted regression:

ŷ = 7.58 + .070s, R2 = .067
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Omitted variables

I What if we are actually interested in a different prediction
problem?

I How do earnings vary as we vary education, holding constant
predetermined IQ?

I Y = earnings, X1 = education, X2 = IQ

E∗(Y |1,X1,X2) = β0 + β1X1 + β2X2 (Long)

E∗(Y |1,X1) = α0 + α1X1 (Short)

E∗(X2 |1,X1) = γ0 + γ1X1 (Aux)
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I Define prediction error:

U ≡ Y −E∗(Y |1,X1,X2),

I so that

Y = β0 + β1X1 + β2X2 + U with U ⊥ 1, U ⊥ X1, U ⊥ X2

Questions for you

I Substitute this formula for Y in the short regression E∗(Y |1,X1).

I Use the fact that the best linear predictor is linear in Y to split this
into parts.

I Use the fact that U has to be orthogonal to 1 and X1.

I Derive a formula for α in terms of β and γ .
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Solution

I Substitute:

E∗(Y |1,X1) = β0 + β1X1 + β2E∗(X2 |1,X1) + E∗(U |1,X1)

= β0 + β1X1 + β2(γ0 + γ1X1)

= (β0 + β2γ0) + (β1 + β2γ1)X1.

I Omitted Variable Bias Formula:

α1 = β1 + β2γ1
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Sample analog

I Least squares version:

ŷi |1,xi1,xi2 = b0 + b1xi1 + b2xi2, (Long)

ŷi |1,xi1 = a0 + a1xi1, (Short)

x̂i2 |1,xi1 = c0 + c1xi1. (Aux)

I Omitted Variable Bias Formula for sample:

a1 = b1 + b2c1
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Empirical example continued

I Griliches and Mason, “Education, Income, and Ability,” Journal of
Political Economy , 1972;

I CPS subsample of veterans, age 21–34 in 1964; y = log of usual
weekly earnings; ST = total years of schooling; SB = schooling
before army; SI = schooling after army (ST = SB + SI); AFQT =
armed forces qualification test (percentile)

I Table 3:
ŷ = .0508ST + . . .

ŷ = .0433ST + .00150AFQT + . . .

ŷ = .0502SB + .0528SI + . . .

ŷ = .0418SB + .0475SI + .00154AFQT + . . .
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