Quantitative Methods in Economics Inference: Testing and confidence sets

Maximilian Kasy

Harvard University

Roadmap, Part II

- 1. Asymptotics of least squares
- 2. Inference: Testing and confidence sets

Takeaways for these slides

- Testing: two types of error
- Neyman Pearson Lemma: How to minimize both
- Testing for normal variables
- Confidence sets
- Testing and confidence sets are closely related
- Using asymptotic normality of least squares to get confidence sets

Testing and the Neyman Pearson lemma

- testing as a decision problem
- ▶ goal: decide whether H_0 : $\theta \in \Theta_0$ is true
- ▶ decision $a \in \{0,1\}$ (true / not true)
- ▶ statistical test is a decision function $\varphi: X \Rightarrow \{0,1\}$
- $\phi = 1$ corresponds to rejecting the null hypothesis
- ▶ more generally: randomized tests $\varphi: X \Rightarrow [0,1]$
- reject H₀ with probability φ(X)
 (for technical reasons only, as we will see)

Two types of classification error

	truth	
decision a	$ heta\in\Theta_0$	$\theta\notin\Theta_0$
0	©	Type II error
1	Type I error	\odot

The power function

- ▶ suppose $X \sim f_{\theta}(x)$
- f: probability mass function or probability density function
- probability of rejecting H₀ given θ: power function

$$eta(heta) = E_{ heta}[arphi(X)] = \int arphi(x) f_{ heta}(x) dx.$$

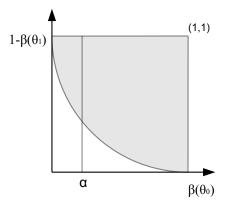
For discrete distributions:

$$\beta(\theta) = \sum_{x} \varphi(x) f_{\theta}(x).$$

Classification errors

- suppose that θ has only two points of support, θ_0 and θ_1
- then
 - 1. P(Type I error) = $\beta(\theta_0)$.
 - 2. P(Type II error) = $1 \beta(\theta_1)$.
- $\beta(\theta_0)$ is called "level" or "**significance**" of the test, often denoted α .
- ▶ $\beta(\theta_1)$ is called the "**power**" of a test, and is often denoted β .
- would like to have a small α and a large β

Figure: testing as a decision problem



Suppose we want ϕ^* that solves

$$\max_{\phi} eta(heta_1)$$
 s.t. $eta(heta_0) = lpha$

for a prespecified level α .

Lemma (Neyman-Pearson)

The solution to this problem is given by

$$\varphi^*(x) = \begin{cases} 1 \text{ for } f_1(x) > \lambda f_0(x) \\ \kappa \text{ for } f_1(x) = \lambda f_0(x) \\ 0 \text{ for } f_1(x) < \lambda f_0(x) \end{cases}$$

where λ and κ are chosen such that $\int \varphi^*(x) f_0(x) dx = \alpha$.

Practice problem

Try to prove this!

Hint:

our problem is to solve

$$\max_{\varphi} \int \varphi(x) f_1(x) dx$$

subject to

$$\int \varphi(x)f_0(x)dx = \alpha$$

and

$$\varphi(x) \in [0,1].$$

Recall the proposed solution,

$$\varphi^*(x) = \begin{cases} 1 \text{ for } f_1(x) > \lambda f_0(x) \\ \kappa \text{ for } f_1(x) = \lambda f_0(x) \\ 0 \text{ for } f_1(x) < \lambda f_0(x) \end{cases}$$

Proof:

- let $\varphi(x)$ be any other test of level α i.e. $\int \varphi(x) f_0(x) dx = \alpha$.
- ▶ need to show that $\int \varphi^*(x) f_1(x) dx \ge \int \varphi(x) f_1(x) dx.$
- Note that

$$\int (\varphi^*(x) - \varphi(x))(f_1(x) - \lambda f_0(x))dx \ge 0$$

since $\varphi^*(x) = 1 \ge \varphi(x)$ for all x such that $f_1(x) - \lambda f_0(x) > 0$ and $\varphi^*(x) = 0 \le \varphi(x)$ for all x such that $f_1(x) - \lambda f_0(x) < 0$.

► Therefore, using $\alpha = \int \varphi(x) f_0(x) dx = \int \varphi^*(x) f_0(x) dx$,

$$\int (\varphi^*(x) - \varphi(x))(f_1(x) - \lambda f_0(x))dx$$

$$= \int (\varphi^*(x) - \varphi(x))f_1(x)dx$$

$$= \int \varphi^*(x)f_1(x)dx - \int \varphi(x)f_1(x)dx \ge 0$$

as required.

proof in the discrete case: identical with all integrals replaced by summations.

Practice problem

- ▶ you observe $X \sim N(\mu, 1)$
- you know that either $\mu = 0$ or $\mu = 1$
- lacktriangle construct the test of largest power for H_0 : $\mu=0$ and any level lpha

Composite alternatives

- This approach immediately extends to H₀: μ ≤ μ₀ against the one-sided alternative H₁: μ > μ₀.
- For the two-side problem H₀: μ = μ₀ against H₁: μ ≠ μ₀, no most powerful test exists.
- Most common approach:

$$\varphi(X) = \mathbf{1}(|X - \mu_0| > z).$$

Practice problem

What value of z ensures

$$E_{\mu_0}[\varphi(X)] = \alpha$$
?

Confidence sets

- Confidence set C:
 a set of θs,
 which is calculated as a function of data Y
- ▶ Confidence set *C* for θ of level α :

$$P(\theta \in C) \ge 1 - \alpha. \tag{1}$$

for all distributions of Y (i.e., all θ).

- ▶ In this expression θ is fixed and C is random.
- ▶ Confidence set C_n for θ of **asymptotic level** α :

$$\lim_{n\to\infty}P(\theta\in C_n)\geq 1-\alpha. \tag{2}$$

Testing and confidence sets

- Constructing a confidence set from a family of tests.
- Let $\varphi_{\theta_0}(X)$ be a (non-randomzied) test for the null $H0: \theta = \theta_0$ such that

$$E_{\theta_0}[\varphi_{\theta_0}(X)] \leq \alpha$$

for all θ_0 .

Define the random set

$$C = \{\theta_0 : \varphi_{\theta_0}(X) = 0\}.$$

Then

$$P(\theta \in C) \ge 1 - \alpha$$
.

Practice problem

Prove this.

- Constructing a test from a confidence set.
- Let C be a confidence set of level α.
- Define

$$\varphi_{\theta_0}(X) = \mathbf{1}(\theta_0 \notin C).$$

▶ Then $\varphi_{\theta_0}(X)$ is a level α test for the null H0 : $\theta = \theta_0$.

Practice problem

Prove this.

- Advantage of confidence sets: Make statement about many values θ at once,
- rather than focusing on one arbitrary θ , such as $\theta = 0$.

Practice problem

- ▶ Suppose $X \sim N(\mu, \sigma^2)$ with σ^2 known.
- ► Consider the two-sided test we constructed before, and use it to construct a corresponding confidence set.

Confidence sets for least squares

Recall our asymptotic result:

$$\sqrt{n}(b-\beta) \stackrel{p}{\to} N(0,V)$$

where

$$V = [E(X_1X_1')]^{-1} Var(X_1U_1)[E(X_1X_1')]^{-1}.$$

▶ Let $\sigma^2 = V_{11}$.

Practice problem

Show that

$$C = [b_1 - 1.96\sigma, b_1 + 1.96\sigma]$$

is an asymptotic 95% confidence set for β_1 .