# Quantitative Methods in Economics Inference: Testing and confidence sets

Maximilian Kasy

Harvard University

## Roadmap, Part II

- 1. Asymptotics of least squares
- 2. Inference: Testing and confidence sets

## Takeaways for these slides

- Testing: two types of error
- Neyman Pearson Lemma: How to minimize both
- Testing for normal variables
- Confidence sets
- Testing and confidence sets are closely related
- Using asymptotic normality of least squares to get confidence sets

## Testing and the Neyman Pearson lemma

- testing as a decision problem
- ▶ goal: decide whether  $H_0$ :  $\theta \in \Theta_0$  is true
- ▶ decision  $a \in \{0,1\}$  (true / not true)
- ▶ statistical test is a decision function  $\varphi: X \Rightarrow \{0,1\}$
- $\phi = 1$  corresponds to rejecting the null hypothesis
- ▶ more generally: randomized tests  $\varphi: X \Rightarrow [0,1]$
- reject H<sub>0</sub> with probability φ(X)
   (for technical reasons only, as we will see)

# Two types of classification error

|            | truth              |                        |
|------------|--------------------|------------------------|
| decision a | $	heta\in\Theta_0$ | $\theta\notin\Theta_0$ |
| 0          | ©                  | Type II error          |
| 1          | Type I error       | $\odot$                |

## The power function

- ▶ suppose  $X \sim f_{\theta}(x)$
- f: probability mass function or probability density function
- probability of rejecting H<sub>0</sub> given θ: power function

$$eta( heta) = E_{ heta}[arphi(X)] = \int arphi(x) f_{ heta}(x) dx.$$

For discrete distributions:

$$\beta(\theta) = \sum_{x} \varphi(x) f_{\theta}(x).$$

## Classification errors

- suppose that  $\theta$  has only two points of support,  $\theta_0$  and  $\theta_1$
- then
  - 1. P(Type I error) =  $\beta(\theta_0)$ .
  - 2. P(Type II error) =  $1 \beta(\theta_1)$ .
- $\beta(\theta_0)$  is called "level" or "**significance**" of the test, often denoted  $\alpha$ .
- ▶  $\beta(\theta_1)$  is called the "**power**" of a test, and is often denoted  $\beta$ .
- would like to have a small  $\alpha$  and a large  $\beta$

Figure: testing as a decision problem



Suppose we want  $\phi^*$  that solves

$$\max_{\phi} eta( heta_1)$$
 s.t.  $eta( heta_0) = lpha$ 

for a prespecified level  $\alpha$ .

## Lemma (Neyman-Pearson)

The solution to this problem is given by

$$\varphi^*(x) = \begin{cases} 1 \text{ for } f_1(x) > \lambda f_0(x) \\ \kappa \text{ for } f_1(x) = \lambda f_0(x) \\ 0 \text{ for } f_1(x) < \lambda f_0(x) \end{cases}$$

where  $\lambda$  and  $\kappa$  are chosen such that  $\int \varphi^*(x) f_0(x) dx = \alpha$ .

## Practice problem

Try to prove this!

Hint:

our problem is to solve

$$\max_{\varphi} \int \varphi(x) f_1(x) dx$$

subject to

$$\int \varphi(x)f_0(x)dx = \alpha$$

and

$$\varphi(x) \in [0,1].$$

Recall the proposed solution,

$$\varphi^*(x) = \begin{cases} 1 \text{ for } f_1(x) > \lambda f_0(x) \\ \kappa \text{ for } f_1(x) = \lambda f_0(x) \\ 0 \text{ for } f_1(x) < \lambda f_0(x) \end{cases}$$

#### Proof:

- let  $\varphi(x)$  be any other test of level  $\alpha$  i.e.  $\int \varphi(x) f_0(x) dx = \alpha$ .
- ▶ need to show that  $\int \varphi^*(x) f_1(x) dx \ge \int \varphi(x) f_1(x) dx.$
- Note that

$$\int (\varphi^*(x) - \varphi(x))(f_1(x) - \lambda f_0(x))dx \ge 0$$

since  $\varphi^*(x) = 1 \ge \varphi(x)$  for all x such that  $f_1(x) - \lambda f_0(x) > 0$  and  $\varphi^*(x) = 0 \le \varphi(x)$  for all x such that  $f_1(x) - \lambda f_0(x) < 0$ .

► Therefore, using  $\alpha = \int \varphi(x) f_0(x) dx = \int \varphi^*(x) f_0(x) dx$ ,

$$\int (\varphi^*(x) - \varphi(x))(f_1(x) - \lambda f_0(x))dx$$

$$= \int (\varphi^*(x) - \varphi(x))f_1(x)dx$$

$$= \int \varphi^*(x)f_1(x)dx - \int \varphi(x)f_1(x)dx \ge 0$$

as required.

proof in the discrete case: identical with all integrals replaced by summations.

### Practice problem

- ▶ you observe  $X \sim N(\mu, 1)$
- you know that either  $\mu = 0$  or  $\mu = 1$
- lacktriangle construct the test of largest power for  $H_0$  :  $\mu=0$  and any level lpha

## Composite alternatives

- This approach immediately extends to H<sub>0</sub>: μ ≤ μ<sub>0</sub> against the one-sided alternative H<sub>1</sub>: μ > μ<sub>0</sub>.
- For the two-side problem H<sub>0</sub>: μ = μ<sub>0</sub> against H<sub>1</sub>: μ ≠ μ<sub>0</sub>, no most powerful test exists.
- Most common approach:

$$\varphi(X) = \mathbf{1}(|X - \mu_0| > z).$$

### Practice problem

What value of z ensures

$$E_{\mu_0}[\varphi(X)] = \alpha$$
?

## Confidence sets

- Confidence set C:
   a set of θs,
   which is calculated as a function of data Y
- ▶ Confidence set *C* for  $\theta$  of level  $\alpha$ :

$$P(\theta \in C) \ge 1 - \alpha. \tag{1}$$

for all distributions of Y (i.e., all  $\theta$ ).

- ▶ In this expression  $\theta$  is fixed and C is random.
- ▶ Confidence set  $C_n$  for  $\theta$  of **asymptotic level**  $\alpha$ :

$$\lim_{n\to\infty}P(\theta\in C_n)\geq 1-\alpha. \tag{2}$$

## Testing and confidence sets

- Constructing a confidence set from a family of tests.
- Let  $\varphi_{\theta_0}(X)$  be a (non-randomzied) test for the null  $H0: \theta = \theta_0$  such that

$$E_{\theta_0}[\varphi_{\theta_0}(X)] \leq \alpha$$

for all  $\theta_0$ .

Define the random set

$$C = \{\theta_0 : \varphi_{\theta_0}(X) = 0\}.$$

Then

$$P(\theta \in C) \ge 1 - \alpha$$
.

## Practice problem

Prove this.

- Constructing a test from a confidence set.
- Let C be a confidence set of level α.
- Define

$$\varphi_{\theta_0}(X) = \mathbf{1}(\theta_0 \notin C).$$

▶ Then  $\varphi_{\theta_0}(X)$  is a level  $\alpha$  test for the null H0 :  $\theta = \theta_0$ .

#### Practice problem

#### Prove this.

- Advantage of confidence sets: Make statement about many values  $\theta$  at once,
- rather than focusing on one arbitrary  $\theta$ , such as  $\theta = 0$ .

## Practice problem

- ▶ Suppose  $X \sim N(\mu, \sigma^2)$  with  $\sigma^2$  known.
- ► Consider the two-sided test we constructed before, and use it to construct a corresponding confidence set.

## Confidence sets for least squares

Recall our asymptotic result:

$$\sqrt{n}(b-\beta) \stackrel{p}{\to} N(0,V)$$

where

$$V = [E(X_1X_1')]^{-1} Var(X_1U_1)[E(X_1X_1')]^{-1}.$$

▶ Let  $\sigma^2 = V_{11}$ .

#### Practice problem

Show that

$$C = [b_1 - 1.96\sigma, b_1 + 1.96\sigma]$$

is an asymptotic 95% confidence set for  $\beta_1$ .