Quantitative Methods in Economics Functional form

Maximilian Kasy

Harvard University, fall 2016

Roadmap, Part I

1. Linear predictors and least squares regression
2. Conditional expectations
3. Some functional forms for linear regression
4. Regression with controls and residual regression
5. Panel data and generalized least squares

Takeaways for these slides

Functional forms:

- Quadratic: decreasing or increasing returns
- Interactions: returns vary with covariates
- Discrete regressors, dummy variables, and saturated regressions
- Polynomial
- Linear in logarithms: elasticities
- Justification via Mincer model
- Quadratic polynomial:
- Y = earnings, $Z=$ experience; $X_{1}=Z, X_{2}=Z^{2}$

$$
E^{*}\left(Y \mid 1, X_{1}, X_{2}\right)=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}
$$

- Evaluating this at $Z=c$ gives $\beta_{0}+\beta_{1} c+\beta_{2} c^{2}$.
- Interactions:
- $Z_{1}=$ experience, Z_{2} = education; $X_{1}=Z_{1}, X_{2}=Z_{2}, X_{3}=Z_{1} \cdot Z_{2}$

$$
E^{*}\left(Y \mid 1, X_{1}, X_{2}, X_{3}\right)=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}
$$

- Evaluating this at $Z_{1}=c, Z_{2}=d$ gives $\beta_{0}+\beta_{1} c+\beta_{2} d+\beta_{3} c \cdot d$.

Questions for you

- Interpret these two functional forms.
- What happens as education is increased?
- How does that depend on the education we start with?
- How does that depend on experience?
- Recall conditional expectation: Solution to

$$
\min _{g} E[Y-g(Z)]^{2}
$$

is the regression function:

$$
r(z)=E(Y \mid Z=z)
$$

- Orthogonality Conditions: Consider any function $h(\cdot)$. Define

$$
U=Y-r(Z)
$$

- Then $U \perp h(Z)$, i.e. $E[U h(Z)]=0$, and in particular

$$
E^{*}(Y \mid r(Z), h(Z))=\beta_{1} r(Z)+\beta_{2} h(Z)=r(Z)
$$

- Put differently: If $E(Y \mid X=x)$ is linear in x, then

$$
E(Y \mid X=x)=E^{*}(Y \mid X=x)
$$

Discrete regressors

- Assume

$$
Z_{1} \in\left\{\lambda_{1}, \ldots, \lambda_{J}\right\}, \quad Z_{2} \in\left\{\delta_{1}, \ldots, \delta_{K}\right\}
$$

- Dummy Variables:

$$
\begin{aligned}
X_{j k} & = \begin{cases}1, & \text { if } Z_{1}=\lambda_{j}, Z_{2}=\delta_{k} \\
0, & \text { otherwise }\end{cases} \\
& =1\left(Z_{1}=\lambda_{j}, Z_{2}=\delta_{k}\right) .
\end{aligned}
$$

- Claim: $E\left(Y \mid Z_{1}, Z_{2}\right)=E^{*}\left(Y \mid X_{11}, \ldots, X_{J 1}, \ldots, X_{1 K}, \ldots, X_{J K}\right)$

Questions for you

Prove this.

Solution:

- Any function $g\left(Z_{1}, Z_{2}\right)$ can be written as

$$
g\left(Z_{1}, Z_{2}\right)=\sum_{j=1}^{J} \sum_{k=1}^{K} \gamma_{j k} X_{j k}
$$

with $\gamma_{j k}=g\left(\lambda_{j}, \delta_{k}\right)$.

- Thus

$$
E\left(Y \mid Z_{1}, Z_{2}\right)=\sum_{j=1}^{J} \sum_{k=1}^{K} \beta_{j k} X_{j k},
$$

where

$$
\beta_{j k}=E\left(Y \mid Z_{1}=\lambda_{j}, Z_{2}=\delta_{k}\right) .
$$

- Since $E(Y \mid X=x)$ is linear in x, we get

$$
E\left(Y \mid Z_{1}, Z_{2}\right)=E(Y \mid X)=E^{*}(Y \mid X)
$$

Sample Analog

- Data: $\left(y_{i}, z_{i 1}, z_{i 2}\right), i=1, \ldots, n$.
- Dummy Variables: $x_{i, j k}=1\left(z_{i 1}=\lambda_{j}, z_{i 2}=\delta_{k}\right)$,

$$
y=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right), \quad x_{j k}=\left(\begin{array}{c}
x_{1, j k} \\
\vdots \\
x_{n, j k}
\end{array}\right) .
$$

- Least Squares:

$$
\min _{b} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{J} \sum_{k=1}^{K} b_{j k} x_{i, j k}\right)^{2}
$$

- This gives:

$$
\left.b_{j k}=\frac{\sum_{i=1}^{n} y_{i} x_{i, j k}}{\sum_{i=1}^{n} x_{i, j k}}=\bar{y} \right\rvert\, \lambda_{j}, \delta_{k} .
$$

Polynomial regressors

- Assume

$$
E\left(Y \mid Z_{1}=s, Z_{2}=t\right) \cong \beta_{0}+\beta_{1} s+\beta_{2} s^{2}+\beta_{3} t \cdot s+\beta_{4} t+\beta_{5} t^{2}
$$

- Example: Jacob Mincer, Schooling, Experience and Earnings, 1974, Table 5.1; 1 in 1000 sample, 1960 census; 1959 annual earnings; $n=31093$;
- $y=\log$ (earnings), $s=$ years of schooling, $t=$ years of work experience;

$$
\hat{y}=4.87+.255 s-.0029 s^{2}-.0043 t \cdot s+.148 t-.0018 t^{2}
$$

Predictive Effect

- Returns to college:

$$
\begin{aligned}
& E\left(Y \mid Z_{1}=16, Z_{2}=t\right)-E\left(Y \mid Z_{1}=12, Z_{2}=t\right) \\
& \cong \beta_{1} \cdot 4+\beta_{2}\left(16^{2}-12^{2}\right)+\beta_{3} \cdot 4 \cdot t .
\end{aligned}
$$

- Returns to high school:

$$
\begin{aligned}
& E\left(Y \mid Z_{1}=12, Z_{2}=t\right)-E\left(Y \mid Z_{1}=8, Z_{2}=t\right) \\
& \quad \cong \beta_{1} \cdot 4+\beta_{2}\left(12^{2}-8^{2}\right)+\beta_{3} \cdot 4 \cdot t .
\end{aligned}
$$

Plugging in the estimates

Experience	Returns to college	Returns to high school
0	.70	.79
10	.52	.62
20	.35	.44

Questions for you

Verify this.

From predicting $\log W$ to predicting W

- Suppose $E(\log W \mid Z)$ is a linear function:

$$
E(\log W \mid Z)=\beta_{0}+\beta_{1} Z
$$

- Define $U=\log W-\beta_{0}-\beta_{1} Z$, so $E(U \mid Z)=0$.

$$
\begin{aligned}
W & =\beta_{0}+\beta_{1} Z+U \\
\Rightarrow W & =\exp \left(\beta_{0}+\beta_{1} Z\right) \cdot \exp (U) .
\end{aligned}
$$

- If U and Z are independent, $E[\exp (U) \mid Z]=E[\exp (U)]$ and

$$
\begin{gathered}
\frac{E(W \mid Z=d)}{E(W \mid Z=c)}=\exp \left[\beta_{1}(d-c)\right] \cong \beta_{1}(d-c)+1 \\
\quad 100\left[\frac{E(W \mid Z=d)}{E(W \mid Z=c)}-1\right] \cong 100 \beta_{1}(d-c)
\end{gathered}
$$

Mincer model

- Compound Interest ($\triangle=$ fraction of one year):

$$
\$ 1 \rightarrow \$(1+r \triangle) \rightarrow \$(1+r \triangle)^{2} \rightarrow \$(1+r \triangle)^{3} \rightarrow \ldots
$$

- Annual Return $(1+r \triangle)^{1 / \Delta}$.

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{f(1+x)-f(1)}{x}=f^{\prime}(1) ; \quad \lim _{x \rightarrow 0} \frac{\log (1+x)}{x}=1 \\
& \lim _{\triangle \rightarrow 0} \log \left[(1+r \triangle)^{1 / \Delta}\right]=r \cdot \lim _{\triangle \rightarrow 0} \frac{\log (1+r \triangle)}{r \triangle}=r
\end{aligned}
$$

- Thus

$$
\lim _{\Delta \rightarrow 0}(1+r \triangle)^{1 / \Delta}=\exp (r) \approx 1+r
$$

- Works for small r :

$$
\exp (.06)=1.062 ; \quad \exp (.35)=1.42 ; \quad \exp (.70)=2.01
$$

- $P V(S)=$ present value at $t=0$ of earning 0 while in school for an additional S years and then earning $W(S)$ for a very long time:

$$
P V(S)=W(S) \int_{S}^{\infty} \exp (-r t) d t=W(S) \cdot \exp (-r S) / r
$$

- Returns such that students are indifferent about dropping out:

$$
P V(S)=P V(0) \quad \Rightarrow \quad W(S) \cdot \exp (-r S) / r=W(0) / r
$$

- Thus:

$$
\log (W(S))=\log (W(0))+r S
$$

- Linear Predictor:

$$
E^{*}(Y \mid 1, S)=\gamma_{0}+\left(r+\gamma_{1}\right) S
$$

where $Y=\log (W(S)), A=\log (W(0))$, and

$$
E^{*}(A \mid 1, S)=\gamma_{0}+\gamma_{1} S
$$

