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Treatment effects

6) Instrumental Variables Estimation of Treatment
Effects

(cf. “Mostly Harmless Econometrics,” chapter 4)
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Treatment effects

Motivation: Experiments with Imperfect Compliance
I Recall the JTPA experiment, where many experimental subjects

did not comply with the randomized assignment:
Enrolled Not Enrolled Total

in Training in Training
Assigned to Training 4804 2683 7487
Assigned to Control 54 3663 3717
Total 4858 6346 11204

I Units receiving training may differ from units that do not receive
training.

I Still, randomized assignment has an effect on the probability of
receiving training.

I Instrumental variables use the variation in receipt of training
induced by the experiment to obtain an estimate of the effect of
training.
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Instrumental Variables
Instrumental variable models:

1. Traditional Econometric Framework:

Y = µ +αD+X ′β +u
I cov(D,u) 6= 0
I cov(Z ,D) 6= 0 and cov(Z ,u) = 0

⇒ Use 2SLS to estimate α . Without X ’s:

α =
cov(Y ,Z )
cov(D,Z )

=
E[Y |Z = 1]−E[Y |Z = 0]
E[D|Z = 1]−E[D|Z = 0]

2. Potential Outcomes Model of Instrumental Variables
I Heterogeneous treatment effects
I Estimate Local Average Treatment Effect (LATE)
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Randomized Experiments with Imperfect Compliance
Assignment

Z =

{
1 if assigned to treatment group
0 if assigned to control group

Potential Treatments

I D1: treatment status if assigned to treatment group

I D0: treatment status if assigned to control group

Observed Treatment

D =

{
D1 if Z = 1
D0 if Z = 0

or, in a more compact notation: D = ZD1 +(1−Z )D0.
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Randomized Experiments with Imperfect Compliance

I Angrist, Imbens and Rubin (1996) define:

I Compliers: D1 > D0 (D0 = 0 and D1 = 1)
I Always-takers: D1 = D0 = 1
I Never-takers: D1 = D0 = 0
I Defiers: D1 < D0 (D0 = 1 and D1 = 0)

I Notice that for compliers, we still have a perfect experiment.

I However, only one of the potential treatment indicators, (D0,D1),
is observed, so we cannot identify which group any particular
individual belongs to.
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Identification with Instrumental Variables

Identification Assumptions

1. Independence: (Y0,Y1,D0,D1)⊥⊥Z

2. First Stage: 0 < P(Z = 1)< 1 and P(D1 = 1) 6= P(D0 = 1)

3. Monotonicity: D1 ≥ D0

Identification Result
Imbens and Angrist (1994) and Angrist, Imbens, and Rubin (1996)
prove:

E[Y1−Y0|D1 > D0] =
E[Y |Z = 1]−E[Y |Z = 0]
E[D|Z = 1]−E[D|Z = 0]

(
=

cov(Y ,Z )
cov(D,Z )

)
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Identification with Instrumental Variables

Proof:

E[Y |Z = 1]−E[Y |Z = 0]
E[D|Z = 1]−E[D|Z = 0]

=
E[Y1D1 +Y0(1−D1)|Z = 1]−E[Y1D0 +Y0(1−D0)|Z = 0]

E[D1|Z = 1]−E[D0|Z = 0]

=
E[Y1D1 +Y0(1−D1)]−E[Y1D0 +Y0(1−D0)]

E[D1]−E[D0]

=
E[(Y1−Y0)(D1−D0)]

E[D1−D0]

=
E[Y1−Y0|D1−D0 = 1]

Pr(D1−D0 = 1)
Pr(D1−D0 = 1)

= E[Y1−Y0|D1 > D0]
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LATE: Local Average Treatment Effect

LATE
αLATE = E[Y1−Y0|D1 > D0], the average treatment effect for
compliers is often called Local Average Treatment Effect (LATE).

I Average effect of the treatment for the units affected in their
treatment status by changes in the instrument.

I This parameter is different for different instruments, Z .

I Whether LATE is interesting or not depends on the instrument.
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Special Cases
I If D is randomized, then Z = D and everybody is a complier.

I One-sided noncompliance, D0 = 0, then:

E[Y1−Y0|D1 > D0] = E[Y1−Y0|D1 = 1]

= E[Y1−Y0|Z = 1,D1 = 1]

= E[Y1−Y0|D = 1].

⇒ αLATE = αATET
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Identification Assumptions

I Independence: (Y0,Y1,D0,D1)⊥⊥Z
I Implies that the instrument Z is “as good as randomly assigned”
I Yd implies a exclusion restriction: Z has no direct effect on Yd
I Z can only affect Y through its effect on D

I First Stage: 0 < P(Z = 1)< 1 and P(D1 = 1) 6= P(D0 = 1)
I Implies that the instrument Z induces variation in D
I Testable by regressing D on Z

I Monotonicity: D1 ≥ D0
I Rules out defiers
I Often can be assessed from institutional knowledge
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Instrumental Variable: Estimators

LATE

E[Y1−Y0|D1 > D0] =
E[Y |Z = 1]−E[Y |Z = 0]
E[D|Z = 1]−E[D|Z = 0]

(
=

cov(Y ,Z )
cov(D,Z )

)

Wald Estimator
The sample analog estimator is:(

∑
N
i=1 YiZi

∑
N
i=1 Zi

− ∑
N
i=1 Yi(1−Zi)

∑
N
i=1(1−Zi)

)/(
∑

N
i=1 DiZi

∑
N
i=1 Zi

− ∑
N
i=1 Di(1−Zi)

∑
N
i=1(1−Zi)

)
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Instrumental Variable: Estimators

LATE

E[Y1−Y0|D1 > D0] =
E[Y |Z = 1]−E[Y |Z = 0]
E[D|Z = 1]−E[D|Z = 0]

(
=

cov(Y ,Z )
cov(D,Z )

)

Wald Estimator as IV Regression
Can also implement Wald Estimator using an IV regression:

Y = µ +αD+u

where cov(Z ,u) = 0, so α = cov(Y ,Z )/cov(D,Z ) = αLATE

⇒ To estimate α we run a simple IV regression (2SLS) of Y on a constant
and D, using Z as an instrument for D.
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Instrumental Variable: Estimators

LATE

E[Y1−Y0|D1 > D0] =
E[Y |Z = 1]−E[Y |Z = 0]
E[D|Z = 1]−E[D|Z = 0]

(
=

cov(Y ,Z )
cov(D,Z )

)

Two Stage Least Squares
If identification assumptions only hold after conditioning on X , covariates are
often introduced using 2SLS regression:

Y = µ +αD+X ′β +u,

where Z and u are uncorrelated. Now α and β are computed regressing Y
on D and X , and using Z and X as instruments.

In general, α estimated in this way does not have a clear causal interpretation
unless we impose additional strong assumptions (Abadie, 2003).
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Example: Effects of JTPA Training on Earnings

Comparisons by Comparisons by Instrumental Variables
Training Status Assignment Status Estimates

A. Men 3970 1117 1825
(555) (569) (928)

B. Women 2133 1243 1942
(345) (359) (560)
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Example: The Vietnam Draft Lottery (Angrist, 1990)

I Effect of military service on civilian earnings.

I Simple comparisons between Vietnam veterans and
non-veterans are likely to be a biased measure.

I Angrist (1990) used draft-eligibility, determined by the Vietnam
era draft lottery, as an instrument for military service in Vietnam.

I Draft eligibility is random and affected the probability of
enrollment.

I Results suggest a negative effect of veteran status on earnings,
but the estimates are quite imprecise.
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Wald Estimates for Vietnam Draft Lottery (Angrist, 1990)
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IV with Covariates: Effects of 401(k) Saving Plans
I The goal of tax-deferred savings programs like 401(k) plans is to increase

savings for retirement.
I Does participation in 401(k) plans lead to additional savings or simply to

the crowding out of other types of savings?
I Participants presumably have stronger preferences for savings, so even in

the absence of the program they would have saved more than those who
do not participate.

I Since 401(k) eligibility is decided by employers, unobserved preferences
for savings may play a minor role in the determination of eligibility
(Poterba, Venti and Wise, 1996).

I This suggests using 401(k) eligibility as an instrument for 401(k)
participation.

I However, 401(k) eligibles and non-eligibles differ in observed
characteristics that correlate with savings (earnings, marital status, etc.)

I Then, 401(k) eligibility may be viewed as a plausible instrument only after
controlling for earnings, marital status, etc.
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IV with Covariates: Effects of 401(k) Saving Plans250 A. Abadie / Journal of Econometrics 113 (2003) 231–263

Table 1
Means and standard deviations

Entire sample By 401(k) participation By 401(k) eligibility

Participants Non-participants Eligibles Non-eligibles

Treatment
Participation in 401(k) 0.28 0.70 0.00

(0.45) (0.46) (0.00)
Instrument
Eligibility for 401(k) 0.39 1.00 0.16

(0.49) (0.00) (0.37)

Outcome variables
Family net .nancial assets 19,071.68 38,472.96 11,667.22 30,535.09 11,676.77

(63,963.84) (79,271.08) (55,289.23) (75,018.98) (54,420.17)

Participation in IRA 0.25 0.36 0.21 0.32 0.21
(0.44) (0.48) (0.41) (0.47) (0.41)

Covariates
Family income 39,254.64 49,815.14 35,224.25 47,297.81 34,066.10

(24,090.00) (26,814.24) (21,649.17) (25,620.00) (21,510.64)

Age 41.08 41.51 40.91 41.48 40.82
(10.30) (9.65) (10.53) (9.61) (10.72)

Married 0.63 0.70 0.60 0.68 0.60
(0.48) (0.46) (0.49) (0.47) (0.49)

Family size 2.89 2.92 2.87 2.91 2.87
(1.53) (1.47) (1.55) (1.48) (1.56)

Note: The sample includes 9275 observations from the SIPP of 1991. The observational units are household
reference persons aged 25–64, and spouse if present, with Family Income in the $10; 000–$200; 000 interval.
Other sample restrictions are the same as in Poterba et al. (1995).

the sample is 39% and the proportion of 401(k) participants is 28%. The proportion
of eligibles who hold 401(k) accounts is 70%. Relative to non-participants, 401(k)
participants have larger holdings of .nancial assets and are more likely to have an
IRA account. On average, 401(k) participation is associated with larger family income
and a higher probability of being married. Average age and family size are similar for
participants and non-participants.
Table 1 allows us to compute some simple estimators that are often used when

either the treatment or the instrument can be assumed to be “as good as randomly
assigned”. For example, if 401(k) participation were independent of potential outcomes,
we could use the simple comparison of means in Eq. (1) to estimate the average e(ect
of the treatment. This comparison gives $38; 473− $11; 667 = $26; 806 for family net
.nancial assets and 0:36 − 0:21 = 0:15 for average IRA participation. Since 401(k)
participation is thought to be a(ected by individual preferences for savings, these simple
comparisons of means between participants and non-participants are likely to be biased
upwards. If 401(k) participation was not “as good as randomly assigned” but 401(k)
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Instrumental Variables Models with Covariates

I Like in the 401(k) examples, often IV identification assumptions
may only hold once we condition on a set of pre-treatment
characteristics X .

I This poses no additional problems for the traditional IV model.
Because treatment effects are assumed to be constant we can
just include X in the 2SLS model.

I However, in the presence of heterogenous treatment effects,
2SLS does not identify LATE or other well-defined average
treatment effect.
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IV Identification with Covariates
Identification assumption:

1. Conditional Independence: (Y0,Y1,D0,D1)⊥⊥Z |X
2. First Stage: 0 < Pr(Z = 1|X)< 1, Pr(D1 = 1|X)> Pr(D0 = 1|X)

3. Monotonicity: Pr(D1 ≥ D0|X) = 1

Theorem (Abadie, 2003)
Let g(·) be any function of (Y ,D,X) such that E |g(Y ,D,X)|< ∞. Define

κ = 1− D(1−Z )
Pr(Z = 0|X)

− (1−D)Z
Pr(Z = 1|X)

.

Given our identification assumptions we have that:

E[g(Y ,D,X)|D1 > D0] =
1

Pr(D1 > D0)
E[κ g(Y ,D,X)].

Notice that Pr(D1 > D0) = E[κ].
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Kappa: Intuition
We want to estimate E[g(Y ,D,X)|D1 > D0] but

E[g(Y ,D,X)] = E[g(Y ,D,X)|D1 > D0]Pr(D1 > D0)

+ E[g(Y ,D,X)|D1 = D0 = 1]Pr(D1 = D0 = 1)

+ E[g(Y ,D,X)|D1 = D0 = 0]Pr(D1 = D0 = 0)

Therefore,

E[g(Y ,D,X)|D1 > D0] =
1

Pr(D1 > D0)

{
E[g(Y ,D,X)]

− E[g(Y ,D,X)|D1 = D0 = 1]Pr(D1 = D0 = 1)

− E[g(Y ,D,X)|D1 = D0 = 0]Pr(D1 = D0 = 0)

}
Kappa:

κ = 1− D(1−Z )
Pr(Z = 0|X)

− (1−D)Z
Pr(Z = 1|X)
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Local Average Response Function
Definition (LARF)
The local average response function is the regression of Y on X and D for
the subpopulation of compliers:

E[Y |X ,D,D1 > D0].

Because D and Z are the same random variable for compliers, and because
Z is independent of (Y1,Y0) given X , it follows that the LARF identifies the
LATE conditional on X :

E[Y |X ,D = 0,D1 > D0] = E[Y0|X ,Z = 0,D1 > D0]

= E[Y0|X ,D1 > D0],

and similarly, E[Y |X ,D = 1,D1 > D0] = E[Y1|X ,D1 > D0]. Therefore:

E[Y |X ,D = 1,D1 > D0]−E[Y |X ,D = 0,D1 > D0] = E[Y1−Y0|X ,D1 > D0].

23 / 31



Treatment effects

Estimation of LARF
I Approximate LARF within some class of functions, e.g., linear:

(α,β ) = argmina,b E

[(
E[Y |X ,D,D1 > D0]− (aD+X ′b)

)2∣∣D1 > D0

]
I From the regression handout, we know

(α,β ) = argmina,b E

[(
Y − (aD+X ′b)

)2∣∣D1 > D0

]
I Applying the kappa theorem yields:

(α,β ) = argmina,b E

[
κ

(
Y − (aD+X ′b)

)2
]

I With analog estimator:

(α̂, β̂ ) = argmina,b
1
N

N

∑
i=1

κi

(
Yi −aDi −X ′i b

)2
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Estimation of LARF
I κi is not known:

κi = 1− Di(1−Zi)

Pr(Zi = 0|Xi)
− (1−Di)Zi

Pr(Zi = 1|Xi)
.

I Proceed in two steps:
1. Estimate Pr(Zi = 1|Xi) (e.g., using Probit, Logit, nonparametric

regression). Obtain the fitted values P̂r(Zi = 1|Xi)
2. Estimate the LARF using:

(α̂, β̂ ) = argmina,b
1
N

N

∑
i=1

κ̂i

(
Yi −aDi −X ′i b

)2

where

κ̂i = 1− Di(1−Zi)

P̂r(Zi = 0|Xi)
− (1−Di)Zi

P̂r(Zi = 1|Xi)
.

I Abadie, Angrist, and Imbens (2002) apply the same ideas to
quantile regression.
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Example: Effect of Participation in 401(k) Saving Plans

Variables:

Treatment (D): Participation in 401(k)

Instrument (Z): Eligibility for 401(k)

Outcome variables (Y): Family Net Financial Assets

Covariates (X): Family Income
Age
Marital Status
Family Size
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Example: Effect on Family Net Financial Assets (in $)A. Abadie / Journal of Econometrics 113 (2003) 231–263 253

Table 2
Linear response functions for family net .nancial assets (dependent variable: family net .nancial assets
(in $))

Endogenous treatment

Two stage least squares

Ordinary Least squares
least squares First stage Second stage treated
(1) (2) (3) (4)

Participation in 401(k) 13,527.05 9,418.83 10,800.25
(1,810.27) (2,152.89) (2,261.55)

Constant −23; 549:00 −0:0306 −23; 298:74 −27; 133:56
(2,178.08) (0.0087) (2,167.39) (3,212.35)

Family income (in thousand $) 976.93 0.0013 997.19 982.37
(83.37) (0.0001) (83.86) (106.65)

Age (minus 25) −376.17 −0:0022 −345:95 312.30
(236.98) (0.0010) (238.10) (371.76)

Age (minus 25) squared 38.70 0.0001 37.85 24.44
(7.67) (0.0000) (7.70) (11.40)

Married −8; 369:47 −0:0005 −8; 355:87 −6; 646:69
(1,829.93) (0.0079) (1,829.67) (2,742.77)

Family size −785:65 0.0001 −818:96 −1; 234:25
(410.78) (0.0024) (410.54) (647.42)

Eligibility for 401(k) 0.6883
(0.0080)

Note: The dependent variable in column (2) is Participation in 401(k). The sample includes 9275
observations from the SIPP of 1991. The observational units are household reference persons aged 25–64,
and spouse if present, with Family Income in the $10; 000–$200; 000 interval. Other sample restrictions are
the same as in Poterba et al. (1995). Robust standard errors are reported in parentheses.

Linear speci.cations are often criticized when the dependent variable is binary. The
reason is that linear response functions may take values outside the [0; 1] range of a
conditional probability function. Nonlinear response functions into [0; 1], such as the
Probit response function, are customarily adopted for binary choice models. Columns
(4)–(9) in Table 3 report marginal e(ect coePcients (partial derivatives) of a Probit
response function for an indicator of having an IRA account on 401(k) participation
and the covariates. Marginal e(ects are evaluated at the mean of the covariates for the
treated. 15 Columns (4) and (5) present the results obtained using simple Probit and

15 For binary explanatory variables (Participation in 401(k) and Married) the table reports the change in
the response function due to a change in the binary variable, with other the explanatory variables evaluated
at the mean for the treated.
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E [Y1|D1 > D0], E [Y0|D1 > D0] and E [Y1−Y0|D1 > D0]

Let

κ(1) = D
Z −Pr(Z = 1|X)

Pr(Z = 0|X)Pr(Z = 1|X)

κ(0) = (1−D)
(1−Z )−Pr(Z = 0|X)

Pr(Z = 0|X)Pr(Z = 1|X)
.

For any function g(·), under the previous assumptions:

E[g(Y1,X)|D1 > D0] =
1

Pr(D1 > D0)
E[κ(1)g(Y ,X)]

E[g(Y0,X)|D1 > D0] =
1

Pr(D1 > D0)
E[κ(0)g(Y ,X)]

(Abadie, 2003).
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E [Y1|D1 > D0], E [Y0|D1 > D0] and E [Y1−Y0|D1 > D0]
In particular, making g(Y ,X) = Y we obtain:

E[Y1|D1 > D0] =
E[κ(1)Y ]

E[κ(1)]
,

E[Y0|D1 > D0] =
E[κ(0)Y ]

E[κ(0)]
.

Therefore,

E[Y1−Y0|D1 > D0] =
E[κ(1)Y ]

E[κ(1)]
−

E[κ(0)Y ]

E[κ(0)]

=

E

[
Y

Z −Pr(Z = 1|X)

Pr(Z = 0|X)Pr(Z = 1|X)

]
E

[
D

Z −Pr(Z = 1|X)

Pr(Z = 0|X)Pr(Z = 1|X)

] .
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E [Y1|D1 > D0], E [Y0|D1 > D0] and E [Y1−Y0|D1 > D0]

Apply the analogy principle to obtain estimators:

Ê[Y1|D1 > D0] =

1
N

N

∑
i=1

κ̂(1)iYi

1
N

N

∑
i=1

κ̂(1)i

, Ê[Y0|D1 > D0] =

1
N

N

∑
i=1

κ̂(0)iYi

1
N

N

∑
i=1

κ̂(0)i

,

Ê[Y1−Y0|D1 > D0] =

1
N

N

∑
i=1

Yi
Zi − P̂r(Zi = 1|Xi)

P̂r(Zi = 0|Xi)P̂r(Zi = 1|Xi)

1
N

N

∑
i=1

Di
Zi − P̂r(Zi = 1|Xi)

P̂r(Zi = 0|Xi)P̂r(Zi = 1|Xi)

.

30 / 31



Treatment effects

Describing Compliers
I We can estimate average treatment effects for compliers, even

when we cannot identify compliers individually.
I So, who are these compliers? The kappa result allows us to

describe them. For example, using g(Y ,D,X) = X :

E[X |D1 > D0] =
1

Pr(D1 > D0)
E[κX ]

=
E[κ X ]

E[κ]
.

I We can estimate:

Ê[X |D1 > D0] =

1
N

N

∑
i=1

κ̂iXi

1
N

N

∑
i=1

κ̂i

.
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