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7) Distributional Effects, quantile regression

(cf. “Mostly Harmless Econometrics,” chapter 7)



Sir Francis Galton (Natural Inheritance, 1889):

“It is difficult to understand why statisticians commonly limit their
inquiries to Averages, and do not revel in more comprehensive
views. Their souls seem as dull to the charm of variety as that of
the native of one of our flat English counties, whose retrospect of
Switzerland was that, if its mountains could be thrown into its
lakes, two nuisances would be got rid of at once.”



Distributional Effects

Most empirical research on treatment effects focuses on the
estimation of differences in mean outcomes

But methods exists for estimating the impact of a treatment
on the entire distribution of outcomes:

Does the intervention increase inequality?
Does the intervention affect the distribution at all?
Stochastic dominance?

Methods for estimating distributional effects:

Experiments: Compare the distributions of Y0 and Y1

Selection on observables: Quantile Regression

Experiments with Non-compliance: Instrumental Variable
Quantile Regression



Distributional Effects

In an experiment with perfect compliance: Y1,Y0⊥⊥D.

To evaluate distributional effects in a randomized experiment,
we can compare the distribution of the outcome for treated
and untreated:

FY1(y) = Pr(Y1 ≤ y) = Pr(Y1 ≤ y |D = 1) = Pr(Y ≤ y |D = 1)

= FY |D=1(y).

Similarly,
FY0(y) = FY |D=0(y).

We can use estimators:

F̂Y1(y) =
1

N1

∑
Di=1

1{Yi ≤ y}, F̂Y0(y) =
1

N0

∑
Di=0

1{Yi ≤ y}.



Adult Women in JTPA National Study (other services)
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Adult Women in JTPA National Study (other services)

Q0.50(Y1)−Q0.50(Y0)=10032−7152=2880^ ^
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Adult Women in JTPA National Study (other services)

Q0.50(Y1)−Q0.50(Y0)=10032−7152=2880^ ^

Q0.75(Y1)−Q0.75(Y0)=21723−16484=5239^ ^
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The “Social Welfare Function”

Sometimes we want to compare the entire distributions, FY0

and FY1

“Social Welfare Function”:

W (u,F ) =

∫ ∞
0

u(y)dF (y),

where y is income, u(y) is utility, and F is the income
distribution.

We want to know if

W (u,FY1) ≥W (u,FY0).

The problem is that u(y) is typically left unspecified

However, we usually assume
1 u′ ≥ 0 (utility is increasing in income)
2 u′′ ≤ 0 (utility is concave ⇒ preference for redistribution)



Distributional Effects

Equality (EQ)

 F
Y

0

=F
Y

1

First order stochastic
dominance (FSD)

 F
Y

1

 F
Y

0

Second order stochastic
dominance (FSD)

 F
Y

1

 F
Y

0

FY1(y) = FY0(y) FY1(y) ≤ FY0(y)
∫ y
−∞FY1(x)dx≤

∫ y
−∞FY0(x)dx

1 EQ implies W (u,FY1) = W (u,FY0) for all u
2 FSD implies W (u,FY1) ≥W (u,FY0) for u′ ≥ 0
3 SSD implies W (u,FY1) ≥W (u,FY0) for u′ ≥ 0 and u′′ ≤ 0



Kolmogorov-Smirnov Test (EQ)
Suppose that we have data from a randomized experiment. How
can we test the null hypothesis H0 : FY1 = FY0?
Kolmogorov-Smirnov Statistic:

Teq =

(
N1N0

N

)1/2

sup
y
|F̂Y1(y)− F̂Y0(y)|

If Y is continuous, then the distribution of Teq under H0 is known
If Y is not continuous (e.g., positive probability at Y = 0), we can
use a bootstrap test:

1 Compute Teq in the original sample
2 Resample N1 “treated” and N0 “non-treated” from the pooled the

samples of treated and non-treated. (In this way, we impose the null
hypothesis that the distribution of Y is the same for the two groups.)
Compute Teq,b for these two samples.

3 Repeat step 2 many (B) times.
4 Calculate the p-value as:

p-value =
1

B

B∑
b=1

1{Teq,b > Teq}



Kolmogorov-Smirnov Test (FSD and SSD)

The Kolmogorov-Smirnov bootstrap test of EQ can be easily
adapted for FSD and SSD, just by changing the test statistics

For first order stochastic dominance:

Tfsd =

(
N1N0

N

)1/2

sup
y

(F̂Y1(y)− F̂Y0(y))

For second order stochastic dominance:

Tssd =

(
N1N0

N

)1/2

sup
y

∫ y

−∞
(F̂Y1(x)− F̂Y0(x))dx



Conditioning on Covariates: Quantile Regression

Identification Assumption

1 Assume that the θ-quantile of the distribution of Y given D and X
is linear:

Qθ(Y |D,X ) = αθD + X ′βθ.

2 D is randomized or there is selection on observables

Identification Result

(αθ, βθ) = argmin(α,β)E [ρθ(Y − αD − X ′β)]

where ρθ(λ) = (θ − 1{λ < 0})λ identifies αθ, the effect of the treatment
on the θ-quantile of the conditional distribution of the outcome variable:

αθ = Qθ(Y |D = 1,X )− Qθ(Y |D = 0,X )

= Qθ(Y1|D = 1,X )− Qθ(Y0|D = 0,X )

= Qθ(Y1|X )− Qθ(Y0|X ).



Conditioning on Covariates: Quantile Regression

Identification Assumption

1 Assume that the θ-quantile of the distribution of Y given D and X
is linear:

Qθ(Y |D,X ) = αθD + X ′βθ.

2 D is randomized or there is selection on observables

Estimator
The quantile regression estimator (Koenker and Bassett (1978)) is
the sample analog:

(α̂θ, β̂θ) = argmin(α,β)
1

N

N∑
i=1

ρθ(Yi − αDi − X ′i β)



Conditioning on Covariates: Quantile Regression

Recall:
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For example:

(α̂0.5, β̂0.5) = argmin(α,β)
1

N

N∑
i=1

|Yi − αDi − X ′i β|



Kolmogorov-Smirnov Tests with Instrumental Variables

Identification Assumption

1 Independence: (Y0,Y1,D0,D1)⊥⊥Z
2 First Stage: 0 < P(Z = 1) < 1 and P(D1 = 1) > P(D0 = 1)

3 Monotonicity: D1 ≥ D0 = 1

Identification Result
For any function h(·) (E |h(Y )| <∞),

E [h(Y )D|Z = 1]− E [h(Y )D|Z = 0]

E [D|Z = 1]− E [D|Z = 0]
= E [h(Y1)|D1 > D0],

E [h(Y )(1− D)|Z = 1]− E [h(Y )(1− D)|Z = 0]

E [(1− D)|Z = 1]− E [(1− D)|Z = 0]
= E [h(Y0)|D1 > D0].



Kolmogorov-Smirnov Tests with Instrumental Variables

Identification Result
Let

FY1|D1>D0
(y) = E [1{Y1 ≤ y}|D1 > D0],

FY0|D1>D0
(y) = E [1{Y0 ≤ y}|D1 > D0].

Apply result in previous slide with h(Y ) = 1{Y ≤ y} to obtain:

FY1|D1>D0
(y) =

E [1{Y ≤ y}D|Z = 1]− E [1{Y ≤ y}D|Z = 0]

E [D|Z = 1]− E [D|Z = 0]
,

FY0|D1>D0
(y) =

E [1{Y ≤ y}(1− D)|Z = 1]− E [1{Y ≤ y}(1− D)|Z = 0]

E [(1− D)|Z = 1]− E [(1− D)|Z = 0]
.

Sample counterparts can be used to estimate FY1|D1>D0
(y) and

FY0|D1>D0
(y)

Tells us how treatment affects different parts of the outcome
distribution for compliers

Bootstrap tests for inference



Earning for Veterans and Non-veterans
288 Journal of the American Statistical Association, March 2002
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Figure 1. Empirical Distributions of Earnings for Veterans and Nonveterans.

Therefore, we cannot draw causal inferences by simply com-
paring the distributions of realized earnings between veterans
and nonveterans.

If draft eligibility is a valid instrument, then the marginal
distributions of potential outcomes for compliers are consis-
tently estimated by using sample analogs of equations (5) and
(6). Figure 2 is the result of applying our data to those equa-
tions. Note that in � nite samples, the instrumental variables
estimates of the potential cdfs for compliers may not be non-
decreasing functions (see Imbens and Rubin 1997 for a related
discussion). The most remarkable feature of Figure 2 is the
change in the estimated distributional effect of veteran status
on earnings with respect to the naive analysis. The average
effect of military service for compliers can be easily estimated
using the techniques in Imbens and Angrist (1994). On aver-
age, veteran status is estimated to have a negative impact of
$1,278 on earnings for compliers, although this effect is far
from being statistically different from zero. Now, veteran sta-
tus seems to reduce low quantiles of the income distribution,
leaving high quantiles unaffected. If this characterization is
true, the potential outcome for nonveterans would dominate
that for veterans in the � rst-order stochastic sense.

Following the strategy described in Section 2, hypothe-
ses testing is performed. First, the test statistics in
equations (7)–(9) are computed for the draft-eligible/draft-
ineligible samples. Then, the distributions of the test statis-
tics under the least favorable null hypothesis are approximated
by resampling from the pooled sample and recomputing the
test statistics. In this way, we are able to make inference

about hypotheses (H.1)–(H.3) for the subpopulation of com-
pliers. (The computer code used for these calculations is avail-
able from the author on request.) Table 1 reports p-values for
the tests of equality of distributions, � rst-order and second-
order stochastic dominance. Notice that, for this example, the
stochastic dominance tests are for earnings for nonveterans
dominating earnings for veterans. The � rst row of Table 1
contains the results for annual earnings as the outcome vari-
able. In the second row the analysis is repeated for weekly
wages. Bootstrap resampling was performed 2,000 times
(B D2,000).

First, consider the results for annual earnings. The
Kolmogorov–Smirnov statistic for equality of distributions is
revealed to take an unlikely high value under the null hypoth-
esis. However, we cannot reject equality of distributions at
conventional test levels. The lack of evidence against the null
hypothesis increases as we go from equality of distributions
to � rst-order stochastic dominance, and from � rst-order to
second-order stochastic dominance. The results for weekly
wages are slightly different. For weekly wages we fall far from
rejecting equality of distributions at conventional test levels.

This example illustrates how useful it can be to think in
terms of distributional effects, and not merely average effects,
when formulating the null hypothesis. Once we consider dis-
tributional effects, the belief that military service in Vietnam
had a negative effect on civilian earnings can naturally be
incorporated in the null hypothesis by � rst- or second-order
stochastic dominance.



Earning for Veterans and Non-veterans (Compliers)
Abadie: Bootstrap Tests for Distributional Treatment Effects 289
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Figure 2. Estimated Distributions of Potential Earnings for Compliers.

4. SUMMARY AND DISCUSSION OF
POSSIBLE EXTENSIONS

When treatment intake is not randomized, instrumental vari-
able models allow us to identify the effects of a treatment on
some outcome variable, for the subpopulation whose treatment
status is determined by variation in the instrument. For this
group of the population, called compliers, the entire marginal
distribution of the outcome under different treatments can be
estimated. In this article, a strategy to test for distributional
effects of treatments within the population of compliers is
developed. In particular, the focus is on the equality of dis-
tributions, � rst-order and second-order stochastic dominance
hypotheses. First, how to estimate the distributions of poten-
tial outcomes for compliers is explained. Then, bootstrap sam-
pling is used to approximate the null distribution of the test
statistics.

I illustrate this method with an application to the study of
the effects of veteran status on civilian earnings. Following
Angrist (1990), use variation in veteran status induced by ran-
domly assigned draft eligibility to identify the effects of inter-

Table 1. Tests on Distributional Effects of Veteran Status on Civilian
Earnings, p-values

First-order Second-order
Outcome Equality in stochastic stochastic
variable distributions dominance dominance

Annual earnings 01245 06260 07415
Weekly wages 02330 06490 07530

est. Estimates of cumulative distribution functions of poten-
tial outcomes for compliers show an adverse effect of mili-
tary experience on the lower tail of the distribution of annual
earnings. However, equality of distributions cannot be rejected
at conventional con� dence levels. First- and second-order
stochastic dominance are not rejected by the data. Results are
more favorable to the hypothesis of equality of distributions
when using weekly wages as the outcome variable.

Equality of distributions and � rst- and second-order stochas-
tic dominance are not the only hypotheses that can be tested
using the bootstrap to compare the distribution of the outcome
variable for different values of the instrument. For example,
a test for a constant treatment effect, � D Y 415 ƒ Y 405, can
be implemented by applying the test of equality of distribu-
tions to Wi D Yi ƒ � ¢ Di . If � is unknown and needs to be
estimated, the asymptotic distribution of the test statistic will
be affected. Nuisance parameters may also arise if parametric
models are used to adjust for the effect of covariates. Although
estimation of nuisance parameters is not explicitly addressed
in the present article, modi� cations along the lines of Romano
(1988) or theorem 19.23 in van der Vaart (1998) look like
promising starting points to obtain results analogous to those
in Proposition 2.2.

Another interesting question is how to make the cdf esti-
mators proposed in this article nondecreasing. One possi-
ble approach is to choose the nondecreasing function that
minimizes a weighted average quadratic distance to the esti-
mated cdf. This can be accomplished using well-known
isotonic regression methods as in Robertson, Wright, and
Dykstra (1988).
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4. SUMMARY AND DISCUSSION OF
POSSIBLE EXTENSIONS

When treatment intake is not randomized, instrumental vari-
able models allow us to identify the effects of a treatment on
some outcome variable, for the subpopulation whose treatment
status is determined by variation in the instrument. For this
group of the population, called compliers, the entire marginal
distribution of the outcome under different treatments can be
estimated. In this article, a strategy to test for distributional
effects of treatments within the population of compliers is
developed. In particular, the focus is on the equality of dis-
tributions, � rst-order and second-order stochastic dominance
hypotheses. First, how to estimate the distributions of poten-
tial outcomes for compliers is explained. Then, bootstrap sam-
pling is used to approximate the null distribution of the test
statistics.

I illustrate this method with an application to the study of
the effects of veteran status on civilian earnings. Following
Angrist (1990), use variation in veteran status induced by ran-
domly assigned draft eligibility to identify the effects of inter-

Table 1. Tests on Distributional Effects of Veteran Status on Civilian
Earnings, p-values

First-order Second-order
Outcome Equality in stochastic stochastic
variable distributions dominance dominance

Annual earnings 01245 06260 07415
Weekly wages 02330 06490 07530

est. Estimates of cumulative distribution functions of poten-
tial outcomes for compliers show an adverse effect of mili-
tary experience on the lower tail of the distribution of annual
earnings. However, equality of distributions cannot be rejected
at conventional con� dence levels. First- and second-order
stochastic dominance are not rejected by the data. Results are
more favorable to the hypothesis of equality of distributions
when using weekly wages as the outcome variable.

Equality of distributions and � rst- and second-order stochas-
tic dominance are not the only hypotheses that can be tested
using the bootstrap to compare the distribution of the outcome
variable for different values of the instrument. For example,
a test for a constant treatment effect, � D Y 415 ƒ Y 405, can
be implemented by applying the test of equality of distribu-
tions to Wi D Yi ƒ � ¢ Di . If � is unknown and needs to be
estimated, the asymptotic distribution of the test statistic will
be affected. Nuisance parameters may also arise if parametric
models are used to adjust for the effect of covariates. Although
estimation of nuisance parameters is not explicitly addressed
in the present article, modi� cations along the lines of Romano
(1988) or theorem 19.23 in van der Vaart (1998) look like
promising starting points to obtain results analogous to those
in Proposition 2.2.

Another interesting question is how to make the cdf esti-
mators proposed in this article nondecreasing. One possi-
ble approach is to choose the nondecreasing function that
minimizes a weighted average quadratic distance to the esti-
mated cdf. This can be accomplished using well-known
isotonic regression methods as in Robertson, Wright, and
Dykstra (1988).



Quantile Regression with Instrumental Variables

Identification Assumption

1 Conditional Independence of the Instrument: (Y0,Y1,D0,D1)⊥⊥Z |X
2 First Stage: 0 < P(Z = 1|X ) < 1 and

P(D1 = 1|X ) > P(D0 = 1|X )

3 Monotonicity: P(D1 ≥ D0|X ) = 1

Estimate quantile regression for compliers:

Qθ(Y |D,X ,D1 > D0) = αθD + X ′βθ

Estimator
Using κ:

(α̂θ, β̂θ) = argmin(α,β)

N∑
i=1

κ̂i · ρθ(Yi − αDi − X ′
i β).



JTPA: Quantile Regression
104 A. ABADIE, J. ANGRIST, AND G. IMBENS 

TABLE II 

QUANTILE REGRESSION AND OLS ESTIMATES 

Dependent Variable: 30-month Earnings 

Quantile 

OLS 0.15 0.25 0.50 0.75 0.85 

A. Men 
Training 3,754 1,187 2,510 4,420 4,678 4,806 

(536) (205) (356) (651) (937) (1,055) 
% Impact of Training 21.2 135.6 75.2 34.5 17.2 13.4 

High school or GED 4,015 339 1,280 3,665 6,045 6,224 
(571) (186) (305) (618) (1,029) (1,170) 

Black -2,354 -134 -500 -2,084 -3,576 -3,609 
(626) (194) (324) (684) (1,087) (1,331) 

Hispanic 251 91 278 925 -877 -85 
(883) (315) (512) (1,066) (1,769) (2,047) 

Married 6,546 587 1,964 7,113 10,073 11,062 
(629) (222) (427) (839) (1,046) (1,093) 

Worked less than 13 -6,582 -1,090 -3,097 -7,610 -9,834 -9,951 
weeks in past year (566) (190) (339) (665) (1,000) (1,099) 

Constant 9,811 -216 365 6,110 14,874 21,527 

(1,541) (468) (765) (1,403) (2,134) (3,896) 

B. Women 
Training 2,215 367 1,013 2,707 2,729 2,058 

(334) (105) (170) (425) (578) (657) 
% Impact of Training 18.5 60.8 44.4 32.3 14.5 8.09 

High school or GED 3,442 166 681 2,514 5,778 6,373 

(341) (99) (156) (396) (606) (762) 
Black -544 22 -60 -129 -866 -1,446 

(397) (115) (188) (451) (679) (869) 
Hispanic -1,151 -31 -222 -995 -1,620 -1,503 

(488) (130) (194) (546) (911) (992) 
Married -667 -213 -392 -758 -1,048 -902 

(436) (127) (209) (522) (785) (970) 
Worked less than 13 -5,313 -1,050 -3,240 -6,872 -7,670 -6,470 

weeks in past year (370) (137) (289) (522) (672) (787) 
AFDC -3,009 -398 -1,047 -3,389 -4,334 -3,875 

(378) (107) (174) (468) (737) (834) 
Constant 10,361 649 2,633 8,417 16,498 20,689 

(815) (255) (490) (966) (1,554) (1,232) 

Note: The table reports OLS and quantile regression estimates of the effect of training on earnings. The specification also includes 
indicators for service strategy recommended, age group, and second follow-up survey. Robust standard errors are reported in paren- 
theses. 

QTE estimates of the effect of training on median earnings, reported in 
Table III, are similar in magnitude though less precise than the benchmark 2SLS 
estimates. For men, the QTE estimates show a pattern very different from the 
quantile regression estimates, with no evidence of an impact on the .15 or .25 

we computed QTE coefficient estimates by weighted quantile regression using the Barrodale- 
Roberts (1973) linear programming algorithm for quantile regression (see, e.g., Koenker and 
D'Orey (1987)). A biweight kernel was used for the estimation of standard errors. 



JTPA: Quantile Regression with IV
QUANTILES OF TRAINEE EARNINGS 105 

TABLE III 

QUANTILE TREATMENT EFFECTS AND 2SLS ESTIMATES 

Dependent Variable: 30-month Earnings 

Quantile 

2SLS 0.15 0.25 0.50 0.75 0.85 

A. Men 
Training 1,593 121 702 1,544 3,131 3,378 

(895) (475) (670) (1,073) (1,376) (1,811) 
% Impact of Training 8.55 5.19 12.0 9.64 10.7 9.02 

High school or GED 4,075 714 1,752 4,024 5,392 5,954 
(573) (429) (644) (940) (1,441) (1,783) 

Black -2,349 -171 -377 -2,656 -4,182 -3,523 
(625) (439) (626) (1,136) (1,587) (1,867) 

Hispanic 335 328 1,476 1,499 379 1,023 
(888) (757) (1,128) (1,390) (2,294) (2,427) 

Married 6,647 1,564 3,190 7,683 9,509 10,185 
(627) (596) (865) (1,202) (1,430) (1,525) 

Worked less than 13 -6,575 -1,932 -4,195 -7,009 -9,289 -9,078 
weeks in past year (567) (442) (664) (1,040) (1,420) (1,596) 

Constant 10,641 -134 1,049 7,689 14,901 22,412 
(1,569) (1,116) (1,655) (2,361) (3,292) (7,655) 

B. Women 
Training 1,780 324 680 1,742 1,984 1,900 

(532) (175) (282) (645) (945) (997) 
% Impact of Training 14.6 35.5 23.1 18.4 10.1 7.39 

High school or GED 3,470 262 768 2,955 5,518 5,905 
(342) (178) (274) (643) (930) (1026) 

Black -554 0 -123 -401 -1,423 -2,119 

(397) (204) (318) (724) (949) (1,196) 
Hispanic -1,145 -73 -138 -1,256 -1,762 -1,707 

(488) (217) (315) (854) (1,188) (1,172) 
Married -652 -233 -532 -796 38 -109 

(437) (221) (352) (846) (1,069) (1,147) 
Worked less than 13 -5,329 -1,320 -3,516 -6,524 -6,608 -5,698 

weeks in past year (370) (254) (430) (781) (931) (969) 
AFDC -2,997 -406 -1,240 -3,298 -3,790 -2,888 

(378) (189) (301) (743) (1,014) (1,083) 
Constant 10,538 984 3,541 9,928 15,345 20,520 

(828) (547) (837) (1,696) (2,387) (1,687) 

Note: The table reports 2SLS and QTE estimates of the effect of training on earnings. Assignment status is used as an instrument 
for training. The specification also includes indicators for service strategy recommended, age group, and second follow-up survey. 
Robust standard errors are reported in parentheses. 

quantile. The estimates at low quantiles are substantially smaller than the corre- 
sponding quantile regression estimates, and they are small in absolute terms. For 
example, the QTE estimate (standard error) of the effect on the .15 quantile for 
men is $121 (475), while the corresponding quantile regression estimate is $1,187 
(205). Similarly, the QTE estimate (standard error) of the effect on the .25 quan- 
tile for men is $702 (670), while the corresponding quantile regression estimate is 


