Data and decisions

Reverse AGT Workshop, Harvard

Maximilian Kasy

February 26, 2015

Maximilian Kasy

Data and decisions

Harvard

Some questions of method in applied economics

- Can we chose between policies, if data don't point-identify policy effects?
- How should we use covariates when running experiments? (Why) should we randomize?
- What is the optimal choice of policy, given observed data?
- There are many estimators in the machine learning literature. Which one should we use?

- Claim: Many questions of method reduce to math problems, once the problem is precisely stated.
- Have to answer a few key questions.
- 1. What are the available data?
- 2. What is the space of feasible actions / policies?
- 3. What unknown states of the world matter?
- 4. How do we evaluate an action for a given state of the world?
- 5. How do the data relate to the state of the world?
- 6. How do we deal with uncertainty?

Examples from my research

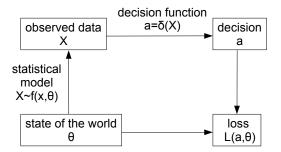
- Kasy, M. (2015). Partial identification, distributional preferences, and the welfare ranking of policies. *Review of Economics and Statistics*.
- Kasy, M. (2013). Why experimenters should not randomize, and what they should do instead. Working Paper.
- Kasy (2014). Using data to inform policy. Working Paper.
- Abadie, A. and Kasy, M. (2015). The risk of machine learning. Working Paper.

Outline

- Review of statistical decision theory
- Example 1: Why experimenters should not randomize
- Example 2: The risk of machine learning

Maxim	

Statistical decision problems



Maximilian Kasy	Harvard
Data and decisions	6 of 16

Risk function, Bayes risk, minimax risk

Risk function:

$$R(\delta, heta) = E_{ heta}[L(\delta(X), heta)]$$

- Expected loss of a decision function δ .
- *R* is a function of the true state of the world θ .
- To rank decision functions δ , have to aggregate across θ .
- Solutions:
 - 1. Bayes risk:

$$R(\delta,\pi) = \int R(\delta, heta) d\pi(heta)$$

2. Maximum (worst-case) risk:

$$\overline{R}(\delta) = \sup_{ heta} R(\delta, heta)$$

Maximilian I	

Example 1: Why experimenters should not randomize

- Experimental design as a decision problem.
- δ(X, U) maps baseline information X and randomization device U into treatment assignment.
- Objective: Precise estimator of causal effect of interest.
- ► Assume U takes values u ∈ 1,..., u, U is statistically independent from everything else.
- Let $\delta^u(.) = \delta(., u)$
- Then the risk function equals

$$R(\delta,\theta) = E_{\theta}[L(\delta(X,U),\theta)]$$

= $\sum_{u} R(\delta^{u},\theta) \cdot P(U=u).$

Similarly for Bayes risk

$$R^{\pi}(\delta) = \int R(\delta, \theta) d\pi(\theta)$$

= $\sum_{u} \int R(\delta^{u}, \theta) d\pi(\theta) \cdot P(U = u)$
= $\sum_{u} R^{\pi}(\delta^{u}) \cdot P(U = u),$

and worst-case risk

$$R^{mm}(\delta) = \sum_{u} R^{mm}(\delta^{u}) \cdot P(U=u).$$

Maximilian Kasy

Data and decisions

Harvard

- Optimal procedures minimize Bayes risk, or worst-case risk.
- Note that always

$$\sum_{u} R^{\pi}(\delta^{u}) \cdot P(U=u) \geq \min_{u} R^{\pi}(\delta^{u}).$$

- Therefore any randomized procedure is always (weakly) dominated by a non-randomized one.
- This implies: Allowing for randomization never improves risk, and usually makes things worse.
- That's why we don't randomize when estimating or testing.
- That's why we also shouldn't randomize when experimenting.

Example 2: The risk of machine learning

- Canonical estimation problem:
- ▶ Observe X_i, i = 1,..., n
- Want to estimate $\mu_i = E[X_i]$
- Loss: $L = \frac{1}{n} \sum_{i} (\widehat{\mu}_i \mu_i)^2$
- Risk function = mean squared error.
- Key features of machine learning procedures
 - 1. regularization
 - 2. data driven choice of tuning parameters

Maximilian I	

Componentwise estimators

$$\blacktriangleright \widehat{\mu}_i = m(X_i, \lambda)$$

Ridge:

$$m(x,\lambda) = \underset{m}{\operatorname{argmin}} \left[(x-m)^2 + \lambda \cdot m^2 \right] = \frac{1}{1+\lambda} x$$

Lasso:

$$m(x,\lambda) = \underset{m}{\operatorname{argmin}} \left[(x-m)^2 + 2\lambda \cdot |m| \right]$$
$$= \mathbf{1}(x < -\lambda)(x+\lambda) + \mathbf{1}(x > \lambda)(x-\lambda)$$

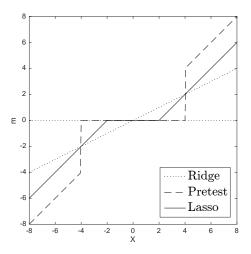
Pre-testing:

ľ

$$m(x,\lambda) = \mathbf{1}(|x| > \lambda) \cdot x$$

	lian		

 $\widehat{\mu}_i = m(X_i, \lambda)$



Maximilian Kasy			
Data and decisions			

Which of such estimators to chose?

- Evaluate estimator based on risk function = mean squared error
- Next slide: Characterization of mean squared error.
- Notation:

$$I \sim Unif\{1, \dots, n\}$$

 $X_i \sim P_i$

Conditional expectation, average conditional variance:

$$m^*(y) = E[\mu_l | X_l = x],$$

 $v^* = E[Var(\mu_l | X_l)].$

Maximilian Kasy

Data and decisions

Theorem (Characterization of risk functions)

Assume

- canonical estimation problem,
- squared error loss,
- component-wise estimation,
- oracle λ*.

Then

$$R(m(.,\lambda), P) = v^{*} + ||m(.,\lambda) - m^{*}(.)||_{L^{2}(P^{*})}^{2},$$

$$R(m(.,\lambda^{*}), P) = v^{*} + \underset{\lambda}{\operatorname{argmin}} ||m(.,\lambda) - m^{*}(.)||_{L^{2}(P^{*})}^{2},$$

where the norm is with respect to the marginal distribution P^* of X_1 .

Maximilian Kasy	Harvard
Data and decisions	15 of 16

Thanks for your time!

Maximili	

Data and decisions

Harvard