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In this paper, I propose a set of parameters designed to identify the slope of structural re-
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1 Introduction

Two broad classes of identification strategies for causal parameters, relating
outcomes to “treatments”, are commonly used in disciplines using observa-
tional data such as Labor Economics and Public Health. First, using vari-
ation of treatment orthogonal to a set of observable covariates, justified by
variants of conditional independence assumptions. Second, using variation
of treatment driven by some exogenous “instrument”. Applied papers often
combine these two approaches, estimating parametric regressions using con-
trols as well as instruments for the treatment of interest. This is justified in
particular if the instrument is credibly exogenous only conditional on covari-
ates. [Angrist & Pischke(2009)] p175f cite as an example the literature on the
Vietnam war draft lottery studying the health and labor market impact on
the men being sent to Vietnam - seminal concerning the use of instrumental
variables for both Public Health and Labor Economics. In this literature, date
of birth is a valid instrument for being sent to Vietnam only conditional on
year of birth, since a sequence of dates of birth was drawn randomly according
to which men were drafted but different cutoffs in this sequence were applied
for different cohorts.

In this paper I provide a semiparametric generalization of the ap-
proach combining conditioning and instruments, allowing for conditioning co-
variates to enter nonparametrically while staying linear in spirit concerning
the use of the instrument.

Throughout I will consider crossection data containing a treatment
variable T , an outcome variable Y , an “exogenous” instrument I as well as
covariates X. The parameters (defined here in a purely statistical - as opposed
to structural or causal - way) that I will consider are:

Definition 1 Conditional instrumental variable regression (CIV):

βCIV := E

[
Cov(Y, I|X)

Cov(T, I|X)

]
Definition 2 Unconditional instrumental variable regression with estimated
instrument (EIV):

βEIV :=
Cov(E[T |I], Y )

Cov(E[T |I], T )

Definition 3 Conditional instrumental variable regression with estimated in-
strument (CEIV):

βCEIV := E

[
Cov(E[T |I,X], Y |X)

Cov(E[T |I,X], T |X)

]

1

Kasy: Efficient Conditional IV

Published by The Berkeley Electronic Press, 2009



CIV generalizes linear multivariate IV (instrumental variables) re-
gression of Y on T and X instrumented with I and X. For EIV, the para-
metric analogon is two stage least squares regression of Y on T , instrumenting
T with a number of nonlinear transformations of I. CEIV, finally, general-
izes the combination of the two. In the next section I will provide structural
interpretations of these parameters in the context of specific semiparametric
models. These interpretations are similar in spirit to the ones developed in
[Imbens & Angrist(1994)] and [Card(2001)].

The central contribution of this paper lies in the derivation of the
efficient influence curves for these three parameters in the fully nonparametric
(or “saturated”) model in section 3 as well as under imposition of restric-
tions on the distribution of I given X in section 4. These influence curves
imply the semiparametric efficiency bounds for any regular asymptotically
linear estimator of the respective parameters and can be used for the con-
struction of estimators asymptotically achieving these bounds. For a general
overview of the theory of semiparametric efficiency, compare [Tsiatis(2006)] or
[Van der Laan & Robins(2003)].

In section 5, I outline the construction of efficient estimators. One
possibility is based on the estimating function approach, using the efficient
influence curve (with nonparametrically estimated nuisance parameters) as
moment criterion function. Just as the use of the score of parametric models
as criterion function yields estimators (maximum likelihood!) asymptotically
achieving the Fischer efficiency bound, the use of the efficient score in semi-
or nonparametric (infinite dimensional) models as criterion yields estimators
asymptotically achieving the semiparametric efficiency bound.

An alternative to the use of estimating functions is given by the re-
cently developed targeted maximum likelihood (TMLE) approach, described
for instance in [Van der Laan & Rubin(2006)]. This approach estimates a fully
specified model of the joint distribution of all observables, optimally trading
off variance and bias of the parameter of interest implied by this model using
the efficient influence curve. Section 5.2 elaborates.

It should be emphasized that either of these estimation approaches
requires, explicitly or implicitly, nonparametric estimation of several condi-
tional expectation functions given covariates. This constitutes a lesser prob-
lem if the covariates are a low dimensional vector, such as for instance the
one dimensional year of birth variable in the case of the Vietnam war draft
lottery. If the vector of covariates is high dimensional, however, attempts at
nonparametric estimation are likely to break down (due to the “curse of di-
mensionality”) and the proposed estimators might be infeasible. As a referee
pointed out to me, [Robins & Ritov(1997)] develop some general asymptotic
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theory for that case.
Concluding the paper, section 6 provides some selected Monte Carlo

evidence illustrating the good finite sample performance of some of the pro-
posed estimators.

2 Structural interpretations of the parameters

Let me now provide some specific structural models in which the above param-
eters have a useful interpretation. These models are generalizations of random
coefficient models commonly used in the literature. An excellent overview of
such models can be found in [Card(2001)]. Assume, first, that the following
assumptions hold (where β and π are random variables as well):

Y = β0 + β1T (1)

T = π0 + π1I (2)

I ⊥ (β, π)|X (3)

This is a “triangular system” model with additive and multiplicative (slope)
heterogeneity in the structural functions that imposes linearity of the struc-
tural functions. Under these assumptions we have

Cov(Y, I|X) = Cov(β0 + β1(π0 + π1I), I|X) =

= Cov(β1π1I, I|X) = E[β1π1|X]V ar(I|X) (4)

where the last two equalities follow from the conditional exogeneity of I given
X relative to the parameters π and β. Similarly

Cov(T, I|X) = E[π1|X]V ar(I|X) (5)

Defining the weight function

π̃ :=
π1

E[π1|X]

this implies that βCIV recovers a weighted average of slope parameter β1, where
the weights integrate to one conditional on X:

βCIV = E

[
Cov(Y, I|X)

Cov(T, I|X)

]
= E[β1π̃] (6)
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Now, let us turn to another model that relaxes the linearity of the
first stage. For expositional simplicity I restrict to additive heterogeneity,
multiplicative heterogeneity would be equally admissible. Assume in particular

Y = β0 + β1T (7)

T = g(I) + ε (8)

I ⊥ (β, ε)|X (9)

Then we have, similar to before,

Cov(Y,E[T |I,X]|X) = Cov(β0 + β1(g(I) + ε), g(I) + E[ε|X]|X) =

= Cov(β1g(I), g(I)|X) = E[β1|X]V ar(g(I)|X) (10)

and
Cov(T,E[T |I,X]|X) = V ar(g(I)|X) (11)

implying

βCEIV = E

[
Cov(E[T |I,X], Y |X)

Cov(E[T |I,X], T |X)

]
= E[β]

that is, we recover the population average slope of the structural function
relating Y to T .

If we generalize the model to allow for multiplicative heterogeneity in
the structural relation between T and I, we recover weighted averages similar
to the linear model discussed above.

3 Influence curves in the nonparametric setup

In this section and the following two the central results are presented, namely
the influence curves of the various parameters defined above under the dif-
ferent restrictions on the data generating process. In particular, I will first
consider the fully nonparametric model assuming (X, I, T, Y ) have a smooth
joint density which is otherwise left unrestricted. I then assume that the in-
strument is fully exogenous, i.e. I ⊥ X is imposed. Finally, it is assumed that
p(I|X) is known. All the proofs are relegated to appendix A.

3.1 The efficient influence function for conditional IV
with given instrument

We can factor the likelihood of the observed data as

p(x, i, t, y) = p(x)p(i, t, y|x)
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and hence βCIV =∫
p(x)

[∫
iyp(i, t, y|x)didtdy −

∫
ip(i, t, y|x)didtdy

∫
yp(i, t, y|x)didtdy∫

itp(i, t, y|x)didtdy −
∫
ip(i, t, y|x)didtdy

∫
tp(i, t, y|x)didtdy

]
dx

(12)
In order to proceed in deriving the semiparametric efficiency bound

for the asymptotic variance of regular asymptotically linear estimators of βCIV ,
we have to find its efficient influence function which - since we have a fully
nonparametric (saturated) model - is the unique mean zero function φ satis-
fying

∂βCIV (ε)

∂ε
= E[φs]

for all possible score functions s of (x, i, t, y) (i.e. s square integrable with
mean zero), where βCIV (ε) is understood to be the parameter for the model
p(1 + εs). For an introduction to semiparametric theory and proof of this
assertion compare [Tsiatis(2006)] or [Van der Laan & Robins(2003)].
Define now

β̄(x) =
Cov(Y, I|X)

Cov(T, I|X)

Then, based on this notion of the efficient influence function, we have the
following

Theorem 1 The unique influence function of any RAL estimator of βCIV in
the fully nonparametric model is given by

φCIV (X, I, T, Y ) =

β̄(x)
(

1 +
[

(Y − E[Y |X])(I − E[I|X])
Cov(Y, I|X)

]
−
[

(T − E[T |X])(I − E[I|X])
Cov(T, I|X)

])
− βCIV

3.2 The efficient influence function for unconditional IV
using the estimated instrument E[T |I]

The result of the previous section obviously translates directly to the case
where we replace I with k(I) for arbitrary, known k. But what if we have
to estimate k, in particular when we choose the instrument k(I) := E[T |I]?
This would correspond to the notion of the optimal instrument in the case of
a linear second stage with homoscedastic errors that are mean independent of
the instrument I.
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Theorem 2 The unique influence function of any RAL estimator of βEIV in
the fully nonparametric model is given by

φEIV (I, T, Y ) =

βEIV

([
(Y − E[Y ])(E[T |I]− E[T ])

Cov(Y,E[T |I])

]
−
[

(T − E[T ])(E[T |I]− E[T ])

Cov(T,E[T |I])

]
+

[
(E[Y |I]− E[Y ])(T − E[T |I])

Cov(Y,E[T |I])

]
−
[

(E[T |I]− E[T ])(T − E[T |I])

Cov(T,E[T |I])

])
3.3 The efficient influence function for conditional IV

using the estimated instrument E[T |I,X]

Finally, we can combine conditioning and estimation of the instrument to
obtain βCEIV

Let us furthermore denote

β̄CEIV (x) :=
Cov(E[T |I,X = x], Y |X = x)

Cov(E[T |I,X = x], T |X = x)

Then we have

Theorem 3 The unique influence function of any RAL estimator of βCEIV
in the fully nonparametric model is given by

φCEIV (I, T, Y,X) = −βCEIV + β̄CEIV (X)×(
1 +

[
(Y − E[Y |X])(E[T |I,X]− E[T |X])

Cov(Y,E[T |I,X]|X)

]
−
[

(T − E[T |X])(E[T |I,X]− E[T |X])
Cov(T,E[T |I,X]|X)

]
+
[

(E[Y |I,X]− E[Y |X])(T − E[T |I,X])
Cov(Y,E[T |I,X]|X)

]
−
[

(E[T |I,X]− E[T |X])(T − E[T |I,X])
Cov(T,E[T |I,X]|X)

])

4 Influence curves imposing restrictions on

the instrument

4.1 Imposing independence of I and X

As before, any probability density can be decomposed into

p(x, i, t, y) = p(x)p(i|x)p(t, y|i, x).

Imposing I ⊥ X means imposing p(i|x) to be constant in x. The scores of
the restricted model can then be decomposed into s(x, i, t, y) = s1(x) + s2(i) +
s3(t, y|x, i).
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Lemma 1 The tangent space of the model imposing independence of I and X
is spanned by these scores and is given by the orthocomplement of So where

So = {so(X, I) : E[so|X] = 0 and E[so|I] = 0}

Lemma 2 The projection of any mean zero L2 random variable s on So is
given by

sp = ΠSos = E[s|X, I]− E[s|X]− E[s|I]

The projection of any influence function on the tangent space is now
given by this influence function minus its projection on So. From semipara-
metric theory we know that to find the influence functions for the restricted
model we have to find the projections of the nonparametric-model influence
function on the tangent space. This is what underlies the following result.

Theorem 4 Under the restriction I ⊥ X, the efficient influence curve for
βCIV is given by

ψCIV = β̄(X)− βCIV + χ+ E[χ|I]

where

χ = β̄(X)
([

(Y − E[Y |X, I])(I − E[I|X])
Cov(Y, I|X)

]
−
[

(T − E[T |X, I])(I − E[I|X])
Cov(T, I|X)

])
and for βCEIV by

ψCEIV = β̄CEIV (X)− βCEIV + ρ+ E[ρ|I] + σ

where

ρ = β̄CEIV (X)

([
(Y − E[Y |X, I])(E[T |I,X]− E[T |X])

Cov(Y,E[T |I,X]|X)

]

−
[

(T − E[T |X, I])(E[T |I,X]− E[T |X])

Cov(T, I|X)

])
and

σ =
[

(E[Y |I,X]− E[Y |X])(T − E[T |I,X])
Cov(Y,E[T |I,X]|X)

]
−
[

(E[T |I,X]− E[T |X])(T − E[T |I,X])
Cov(T,E[T |I,X]|X)

]
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4.2 Assuming p(I|X) known

If p(i|x) is known without any further model restrictions imposed, then the
orthocomplement of the tangent space is given by

So = {s(X, I) : E[s|X] = 0}

As can easily be verified, projection on So is given by

sp = ΠSos = E[s|X, I]− E[s|X]

By the same argument as before we can then calculate the efficient
influence functions in this model.

Theorem 5 Under the restriction that p(I|X) is given, the efficient influence
curve for βCIV is given by

τCIV = β̄(x)
(

1 +
[

(Y − E[Y |X, I])(I − E[I|X])
Cov(Y, I|X)

]
−
[

(T − E[T |X, I])(I − E[I|X])
Cov(T, I|X)

])
−βCIV

and for βCEIV by
τCEIV = −βCEIV + β̄(x)·

·
(

1 +
[

(Y − E[Y |X, I])(E[T |I,X]− E[T |X])
Cov(Y,E[T |I,X]|X)

]
−
[

(T − E[T |X, I])(E[T |I,X]− E[T |X])
Cov(T,E[T |I,X]|X)

]
+
[

(E[Y |I,X]− E[Y |X])(T − E[T |I,X])
Cov(Y,E[T |I,X]|X)

]
−
[

(E[T |I,X]− E[T |X])(T − E[T |I,X])
Cov(T,E[T |I,X]|X)

])

5 Estimation

5.1 Using estimating functions

A general strategy for constructing asymptotically efficient estimators given
that we know the efficient influence curve is based on simply turning the con-
dition E[φ] = 0 into the estimating equation En[φ̂(β̂)] = 0, where φ the
respective influence function and β̂ is the respective parameter of interest. φ̂
in general contains terms corresponding to unknown parameters of the under-
lying model, which have to be estimated. It can easily be seen that this yields
estimators which are regular, asymptotically linear and efficient. Proofs can
be found for instance in [Van der Laan & Robins(2003)] or [Tsiatis(2006)].

This approach is possible only insofar as the parameter of interest
appears in the influence function. In this paper this is the case for the condi-
tional IV estimators with or without estimated instrument in the unrestricted
model and the model imposing independence of X and I or known p(I|X).
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The estimating function approach is not applicable in the unconditional cases,
as the parameter of interest does not appear in the influence function.

Construction of the estimating function in our cases requires estima-
tion of a number of conditional moments. In the case of CIV those are E[I|X],
E[T |X], E[Y |X], Cov(I, T |X) and Cov(I, Y |X). I propose to estimate first
the three conditional expectations and then, using these first stage estimates,
to estimate the conditional covariances. A host of different nonparametric es-
timators could be used, in particular kernel and sieve estimators. Consistency
of the estimators of all of these conditional moments is required for asymp-
totically efficient estimation. However, as the following result implies - by the
general argument given for instance in [Tsiatis(2006)], less is required for root
n consistent, asymptotically normal estimation - in other words the estimat-
ing function is robust to certain misspecifications, in particular either E[I|X]
and Cov(Y, I|X) or E[T |X], E[Y |X] and Cov(Y, I|X) can be inconsistently
estimated without affecting convergence of the estimator of interest.

Proposition 1
E[φ̂CIV (βCIV )] = 0

if either
Ê[I|X] = E[I|X] and ˆCov(T, I|X) = Cov(T, I|X) (13)

or

Ê[T |X] = E[T |X], Ê[Y |X] = E[Y |X] and ˆCov(T, I|X) = Cov(T, I|X) (14)

5.2 Targeted maximum likelihood

We can now furthermore proceed to define a targeted maximum likelihood
estimator along the lines proposed recently in [Van der Laan & Rubin(2006)].
For a formal, self contained discussion, the reader is referred to the cited pa-
per. The general idea is to estimate a fully specified, generally parametric but
flexible, model of the joint density of all variables. In contrast to ordinary max-
imum likelihood estimation, however, a somewhat different objective function
is maximized that “targets” the parameter of interest, optimally trading of
bias and variance of this parameter. As [Van der Laan & Rubin(2006)] show,
the following procedure achieves the semiparametric efficiency bound (assum-
ing correct specification of nuisance parameters) and delivers an estimate of a
fully specified model.

1. Estimate an initial (parametric) model p̂1 specifying the full joint likeli-
hood of (X, I, T, Y )
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2. Construct a family of models parametrized by ε of the form p̂1(1 + εφ),
where the nuisance parameters in φ are calculated from p̂1. φ is the
respective efficient influence curve derived above, where the choice of φ
depends on the parameter of interest and the assumptions imposed on
I.

3. Calculate the MLE of this family to obtain an updated model

4. Iterate steps 2 and 3 with the updated density.

Asymptotically, efficiency is achieved with only one iteration, in finite samples
several iterations will improve performance.

In any parametric model that we might choose, we want to be care-
ful for allowing the nuisance parameters to enter flexibly in order to get the
efficient influence curves right. For CIV, a set of models that achieves this
might be as follows:

• Take some general purpose model for the unconditional distribution of
X, as fit in the given context, possibly use a nonparametric kernel density
estimator

• Assume (I, T, Y )|X ∼ N(µ(X),Σ(X))

• Specify µ(X) and Σ(X) by some flexible series, for instance as polyno-
mials.

If the specification of µ and Σ is flexible enough, all nuisance parameters
that enter the influence curve for βCIV (namely E[(I, T, Y )|X], Cov(T, I|X)
and Cov(Y, I|X)) should be consistently estimated even if the normality as-
sumption is violated, since the MLE for conditional normals gets conditional
expectations and variances right under misspecification, assuming the imposed
models for µ and Σ asymptotically contain the truth. As a consequence the
corresponding TMLE of βCIV will be consistent and achieve the semiparamet-
ric efficiency bound.

Let’s now look at βEIV . Choosing a model flexible enough to get all
the relevant (nuisance) parameters right is somewhat more tricky here. For effi-
cient estimation we need to consistently estimate E[T |I], E[Y |I], Cov(Y,E[T |I])
as well as Cov(T,E[T |I]). The following type of model achieves this:

• Assume (T, Y )|I ∼ N(µ(I),Σ(I)), with, in particular, µ(I) polynomial
of order k
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• Choose a family of densities for I that allows the first 2k moments to be
estimated consistently, such as a nonparametric kernel density estimator.

Consistency of the first 2k moments is required because of the covariances,
which in the case of polynomial of order k conditional means are a (linear)
function of these 2k moments.

βCEIV requires similar considerations as βEIV , conditional on X.
Furthermore, we need again some general purpose model for X. The following
should deliver consistent estimators of the relevant nuisance parameters:

• Assume (T, Y )|I,X ∼ N(µ(I,X),Σ(I,X)), with, in particular, µ(I,X)
polynomial of order k in both X and I

• Choose a family of densities for (X, I) that allows the first 2k moments
of I conditional on X to be consistently estimated. A kernel density
estimator seems again a reasonable choice.

Finally, note that we can use the same models if we impose a priori
that I ⊥ X or p(I|X) is known. While direct imposition of these restrictions
will improve efficiency of the first stage, and hence seems quite reasonable in
practice, asymptotic performance of the TMLE for our various parameters of
interest should be unaffected by whether or not the restrictions are imposed,
since asymptotic efficiency only requires consistency of the first stage.

6 Some Monte Carlo evidence

To illustrate the practical performance of estimators based upon the influence
curves derived, I will present Monte Carlo evidence in this section, without
however attempting a systematic evaluation of the finite sample properties of
all estimators proposed which would be beyond the scope of the present paper.
I will restrict discussion to estimation of βCIV using the estimating function
approach. The Matlab/Octave code for the estimators and for the simulations
are available from the author upon request.

For all simulation designs, I estimate the parameter βCIV using the
efficient influence curve given knowledge of P (I|X), using the nonparametric
efficient influence curve, using the “naive” estimator E[β̂(X)] and using the
unconditional two stage least squares estimator ˆCov(I, Y )/ ˆCov(I, T ). The de-
signs use uniformly or normally distributed X, with I, T and Y being jointly
normally distributed conditional on X. The conditional means and covari-
ances of I, T and Y are chosen to be polynomials in X or smooth functions of
such polynomials.

11

Kasy: Efficient Conditional IV

Published by The Berkeley Electronic Press, 2009



As it turned out in the simulations, the fact that estimated condi-
tional covariances appear in the denominators of the various terms averaged
to obtain the respective estimators leads to ill behaved estimators due to “out-
liers” generated by almost-zero estimated denominators. This problem bears
some resemblance to estimators using inverse probability weighting, where
estimated densities appear in the denominator. The solution to this problem
proposed in the literature is trimming, i.e. averaging over the subset of the sup-
port of the conditioning variables on which the denominator is bounded away
from zero by some constant. If the true propensity scores are not bounded
away from zero, this affects rates of convergence and asymptotic distribution
theory more generally.

I use a related approach, based on symmetrically “censoring” the
estimating functions around an initial estimate. The estimators are hence
censored means of β̂(X) for the naive estimator, censored means of φ + β̂ for
the influence curve based estimators. Values of φ that are larger (or smaller)
than a prespecified amount (30 times ±β̂ in my case) are replaced by that
amount before calculating the mean. If the true conditional covariances are
bounded away from zero, the asymptotic distribution should not be affected as
long as asymptotically no terms are censored. A formal proof of this assertion
is left for future research.

The following tables 1, 2 and 3 show means and variances for the
various estimators under the designs used as well as the implied mean squared
errors. Full model specifications for each design can be found in appendix
B. Additional tables showing median and mean absolute deviation for these
simulations can be found in appendix C. For ease of reading, the true βCIV
has been normalized to 1 in all designs.

Studying these tables reveals - exceptions notwithstanding - the fol-
lowing general patterns:

• The bias of the unconditional IV estimator is very large. This is not sur-
prising given the choice of designs which illustrate the motivating point
of this paper that exogeneity assumptions might hold conditionally but
not unconditionally. Somewhat more surprisingly, the variance of the
unconditional IV estimator is also much larger than the one of the con-
ditional estimators, although this might be driven by small denominators
in the designs used.

• For designs 1 and 2, conditioning on one dimensional X, the bias of the
influence curve based estimator using information on P (I|X) tends to
be smaller then the bias of the fully nonparametric efficient estimator,
which in turn has a smaller bias then the naive estimator. For designs 3
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and 4, conditioning on two dimensional X, the nonparametric efficient
estimator tends to perform best in terms of bias.

• For the smaller of the sample sizes chosen, there does not appear a con-
sistent pattern in terms of relative variances. For the larger sample sizes,
variances become roughly similar, with the nonparametric estimator of-
ten performing best.

• The combination of these patterns implies that the mean squared error
for the nonparametric efficient estimator tends to be smallest of the four
estimators shown for most of the designs and sample sizes of 1000 and
larger, although the naive estimator shows a fairly similar performance.

• Finally, the tables in the appendix displaying statistics that are more
robust to outliers show a similar pattern. The nonparametric estimator
consistently performs best in terms of median bias and is on a par with
the naive estimator in terms of mean absolute deviation.

I take these results to suggest that the efficient influence curve based
estimator not imposing any restrictions indeed tends to perform well as im-
plied by asymptotic theory - at least given that the dimensionality of condi-
tioning covariates is low and that the conditional means and covariances are
smooth functions of the covariates. The estimator using additional knowledge
of P (I|X), on the other hand, appears to be hurt by the necessity of more
demanding first stage nonparametric regressions.
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Table 1: Bias of Estimators in Monte Carlo Simulations

design n using P (I|X) nonparametric naive unconditional
1 300 -0.5798 0.1794 0.1124 1.0027

1,000 -0.0276 0.0409 0.0467 0.8837
3,000 -0.0005 0.0128 0.0131 0.8613

10,000 0.0010 0.0040 0.0041 0.8508
2 300 -0.1855 0.1165 0.1463 8.7849

1,000 -0.0379 0.0297 0.0394 8.5778
3,000 -0.0056 0.0116 0.0136 7.7459

10,000 -0.0006 0.0034 0.0036 7.5538
3 300 -1.0746 -0.0281 0.1936 0.5384

1,000 -0.2126 0.0664 0.1018 0.4677
3,000 -0.0362 0.0267 0.0314 0.4499

10,000 -0.0110 0.0072 0.0077 0.4437
4 300 -0.4108 0.0312 0.1402 5.1441

1,000 -0.1223 0.0421 0.0701 4.2165
3,000 -0.1818 -0.0141 0.0557 3.1938

10,000 -0.0044 0.0077 0.0082 3.9397

Table 2: Variance of Estimators in Monte Carlo Simulations

design n using P (I|X) nonparametric naive unconditional
1 300 748.9410 57.8526 5.7851 0.8404

1,000 0.0767 0.0334 0.0352 0.0906
3,000 0.0102 0.0091 0.0091 0.0279

10,000 0.0030 0.0025 0.0025 0.0080
2 300 1.6365 13.0942 17.3428 188.1762

1,000 0.0542 0.0345 0.0320 22.0399
3,000 0.0138 0.0093 0.0091 2.9138

10,000 0.0038 0.0024 0.0024 0.7373
3 300 26.2986 11.0989 3.7751 0.3043

1,000 0.3880 0.0746 0.0589 0.0539
3,000 0.0122 0.0099 0.0102 0.0161

10,000 0.0029 0.0025 0.0025 0.0047
4 300 9.0956 9.0313 5.3545 56.7395

1,000 0.1955 0.1750 0.0822 2.1868
3,000 0.1100 0.0283 0.0203 0.3004

10,000 0.0031 0.0025 0.0025 0.1314
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Table 3: Mean Squared Error of Estimators in Monte Carlo Sim-
ulations

design n using P (I|X) nonparametric naive unconditional
1 300 350.1285 27.0522 2.7146 1.3978

1,000 0.0366 0.0173 0.0186 0.8232
3,000 0.0048 0.0044 0.0044 0.7549

10,000 0.0014 0.0012 0.0012 0.7275
2 300 1.5269 11.9558 15.8385 248.7957

1,000 0.0509 0.0324 0.0307 93.6791
3,000 0.0126 0.0086 0.0085 62.6566

10,000 0.0035 0.0022 0.0022 57.7329
3 300 12.2212 4.6712 1.6260 0.4179

1,000 0.2084 0.0358 0.0351 0.2414
3,000 0.0064 0.0049 0.0053 0.2092

10,000 0.0013 0.0011 0.0011 0.1988
4 300 8.4735 8.2470 4.9086 78.2678

1,000 0.1934 0.1616 0.0800 19.7756
3,000 0.0927 0.0156 0.0141 10.3632

10,000 0.0029 0.0024 0.0024 15.6409

7 Conclusion

In this paper I have introduced a series of conditional IV parameters that
combine the intuitions from identification strategies for structural parameters
using variation in treatment orthogonal to covariates (conditioning) and iden-
tification strategies using variation in treatment driven by covariates (instru-
mental variables). In the context of several structural models of the random
coefficients type I give interpretations to these parameters as weighted condi-
tional local average treatment effects, if “exogeneity” and “exclusion” of the
instrument are satisfied conditional on covariates.

The central part of the paper then proceeds deriving the efficient
influence curves for these parameters, both in a fully unrestricted (saturated)
model and under restrictions on the distribution of the instrument conditional
on covariates. These influence curves give, first, the efficiency bound for any
regular asymptotically linear estimator. They allow, second, the construc-
tion of estimators that asymptotically achieve this efficiency bound. I sketch
two approaches from the literature and show how they can be applied in the
present context, based either on estimating functions or on the recently intro-
duced targeted maximum likelihood approach. Both approaches require first
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stage nonparametric estimation of nuisance parameters and only yield useful
estimators if the dimensionality of covariates is low, due to the “curse of di-
mensionality”.

Finally, I conduct a series of Monte Carlo experiments that illus-
trate the performance of some of the estimators introduced. The estimators
have to be slightly modified to account for outliers driven by small estimated
denominators.

From these experiments I conclude that the efficient estimator based
on the fully nonparametric influence curve has good finite sample properties
within the range of models used in the simulations.

A Appendix - proofs

Proof of Theorem 1: Any score can be written as

s(x, i, t, y) = s(x) + s(i, t, y|x)

Let us first consider submodels of the form pε = p(1 + εs(x)) indexed by the
one dimensional parameter ε. Subscripting by ε will henceforth indicate that
the corresponding expressions are evaluated with respect to the probability
distribution pε. Then

∂βCIV (ε)

∂ε
=

∫
p(x)s(x)

[
Cov(Y, I|X)

Cov(T, I|X)

]
dx

= E[(β̄(x)− βCIV )s(x)] (15)

where we define

β̄(x) =
Cov(Y, I|X)

Cov(T, I|X)

and −βCIV is added to the influence curve to ensure mean zero.

Next let us turn to the models pε = p(1 + εs(i, t, y|x)). For such
models we have

∂Covε(Y, I|X)

∂ε
=

∂

∂ε

[∫
iypε(i, t, y|x)didtdy

−
∫
ipε(i, t, y|x)didtdy

∫
ypε(i, t, y|x)didtdy

]
= E[IY s|X]− E[Is|X]E[Y |X]− E[Y s|x]E[I|X]

= E[(I − E[I|X])(Y − E[Y |X))s|X] (16)
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where I took the liberty in the last line to insert the term E[Y |X]E[I|X]s
which has to have zero expectation conditional on X since s is a conditional
score with conditional zero expectation.

Equation 16 then implies

∂β̄ε(x)

∂ε
= β̄(x)

(
∂
∂ε
Covε(Y, I|X)

Cov(Y, I|X)
−

∂
∂ε
Covε(T, I|X)

Cov(T, I|X)

)

= E

[
β̄(x)

(
(I − E[I|X])(Y − E[Y |X))

Cov(Y, I|X)
− (I − E[I|X])(T − E[T |X))

Cov(T, I|X)

)
s|X

]
(17)

whereby we have found the influence curve for variations in the conditional
probabilities. As it also turns out, we have already arranged things such that
the influence curve implicit in 17 has conditional mean zero. But now, by linear
combination, we have covered all possible scores, hence combining equations
15 and 17 proofs the theorem. �

Proof of Theorem 2: As before, we consider the directional
derivatives in direction s by looking at one dimensional submodels of the form
p(1 + εs). Let’s first consider the numerator of βEIV and remember that we
set k(I) := E[T |I]:

∂Covε(Y,E[T |I])

∂ε
=

∂

∂ε

[∫
y

[∫
tpε(t|i)

]
pε(i, y)didy −

∫
tpε(t)dt

∫
ypε(y)dy

]
= E[k(I)Y s]− E[Ts]E[Y ]− E[Y s]E[T ] + E[Y E[T (s− E[s|I])]] (18)

= E[(Y − E[Y ])(k(I)− E[k(I))s]

+E[Y ]E[(k(I)− T )s] + E[Y E[T (s− E[s|I])]]

= E[(Y − E[Y ])(k(I)− E[k(I))s]

+E[(E[Y |I]− E[Y ])(T − E[T |I])s] (19)

where the last term in 18 reflects the fact that k(.) has to be estimated and
s− E[s|I] is the score of pε(t|i). 19 then follows by noting that

−E[(k(I)− T )s] = E[Cov(T, s|I)] = E[T (s− E[s|I])]

By a similar argument

∂Covε(T,E[T |I])

∂ε
= E[(T − E[T ])(k(I)− E[k(I))s]

+E[(E[T |I]− E[T ])(T − E[T |I])s] (20)

17

Kasy: Efficient Conditional IV

Published by The Berkeley Electronic Press, 2009



Now from 19 and 20 the claim is immediate.�

Proof of Theorem 3: The claim follows from a straightforward
combination of the arguments in the proofs of theorem 1 and 2. �

Proof of Lemma 1: This follows since every element of the or-
thocomplement has to be uncorrelated with any function of X (i.e. any s1),
hence we need E[s|X] = 0, similarly E[s|I] = 0 and s has to be a function of
X and I only in order to be orthogonal to any score s3. Furthermore these
conditions are sufficient.�

Proof of Lemma 2: sp lies in So: E[sp|X] = E[s|I] − E|s|I] −
E[E[s|I]|X] = E[s] = 0 where the second equality follows from independence
of X and Y .
Furthermore, for any so ∈ So

E[(s− sp)so] = E[(s− E[s|X, I] + E[s|X] + E[s|I])so]

= E[soE[(s− E[s|X, I])|X, I]] + E[E[s|X]E[so|X]] + E[E[s|I]E[so|I]] = 0

�

Proof of theorem 4: Let us first consider conditional IV. We
have to compute the three conditional expectations referred to in Lemma 2.
Two of those are straightforward. E[φCIV |X] = β̄(X)− βCIV and

E[φCIV |X, I] = −βCIV + β̄(X)·

·
(

1 +
[

(E[Y |I,X]− E[Y |X])(I − E[I|X])
Cov(Y, I|X)

]
−
[

(E[T |I,X]− E[T |X])(I − E[I|X])
Cov(T, I|X)

])
Finally, reminding ourselves of the independence of X and I, we get an ex-
pression that unfortunately does not simplify much for

E[φCIV |I] =

E

[
β̄(X)

([
(E[Y |I,X]− E[Y |X])(I − E[I|X])

Cov(Y, I|X)

]
−

−
[

(E[T |I,X]− E[T |X])(I − E[I|X])

Cov(T, I|X)

])∣∣∣∣ I]
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As for CEIV, the result follows by the same argument. The σ term
for the influence curve for OICV remains unchanged relative to the unrestricted
case as it is already orthogonal to So - its expectation given I,X equals zero.�

Proof of theorem 5: Straightforward from the characterization
of the orthocomplement of the tangent space and the proof of theorem 4. �

Proof of Proposition 1: Let’s consider case 13, the other case is
analogous. If Ê[I|X] = E[I|X], then

E[(Y − Ê[Y |X])(I − Ê[I|X])|X] = Cov(Y, I|X)

and
E[(T − Ê[T |X])(I − Ê[I|X])|X] = Cov(T, I|X)

(as a side remark, this implies the possibility of consistent estimation of
Cov(T, I|X), if we have correct model for it). Now, under assumption 13,
take

E[φ̂CIV (βCIV )] =

= E

[
ˆCov(Y, I|X)

ˆCov(T, I|X)

(
1 +

[
(Y − Ê[Y |X])(I − Ê[I|X])

ˆCov(Y, I|X)

]

−

[
(T − Ê[T |X])(I − Ê[I|X])

ˆCov(T, I|X)

])
− βCIV

]

= E

[
ˆCov(Y, I|X)

Cov(T, I|X)

(
1 +

[
Cov(Y, I|X)

ˆCov(Y, I|X)

]
−
[
Cov(T, I|X)

Cov(T, I|X)

])
− βCIV

]

= E

[
Cov(Y, I|X)

Cov(T, I|X)
− βCIV

]
= 0

�
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B Appendix - Monte Carlo designs

The Monte Carlo designs used in section 6 are as follows:
For all designs

(I, T, Y )|X ∼ N(µ(X),Σ(X))

Furthermore, in all designs Σ(X)I,T and Σ(X)I,Y - which determine β(X) -
are specified first, the other components are chosen to give a positive definite
covariance matrix:

Σ(X)I,I = |Σ(X)I,T |+ |Σ(X)I,Y |

Σ(X)T,T = 16 · Σ(X)2
I,T/Σ(X)I,I

Σ(X)Y,Y = 16 · Σ(X)2
I,Y /Σ(X)I,I

Σ(X)T,Y = .25
√

Σ(X)T,TΣ(X)Y,Y

these choices imply conditional correlations of .25 between all three variables.

Design 1:
X ∼ U([0, 1])

µ(X) = (1, X,X2)β

with

β =

 3 2 4
2 0 0
1 3 3

′

Σ(X)I,T = (1, X,X2) · (5 0 1)′

Σ(X)I,Y = (1, X,X2) · (3 0 2)′

Design 2:
X ∼ N(0, 1)

µ(X) as in design 1,

Σ(X)I,T = atan((1, X,X2) · (5 0 1)′)

Σ(X)I,Y = atan((1, X,X2) · (3 0 2)′)
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Design 3:
X ∼ U([0, 1]2)

µ(X) = XP · β

where
XP = (1, X,X2

1 , X
2
2 , X1X2)

and

β =

 3 2 4 .1 .3 0
2 0 0 0 0 0
1 2 3 .2 .4 .1

′

Σ(X)I,T = XP · βIT

Σ(X)I,Y = XP · βIY
with

βIT = (5 0 0 2 0 0)′

βIY = (3 0 0 1 1 0)′

Design 4:
X ∼ N((0, 0), I2)

µ(X) as in design 3,

Σ(X)I,T = atan(XP · βIT )

Σ(X)I,Y = atan(XP · β′
IY )

C Additional statistics for Monte Carlos

Tables 4 and 5 show additional, robust statistics for the same set of simulations
discussed in section 6.
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Table 4: Median Bias of Estimators in Monte Carlo Simulations

design n using P (I|X) nonparametric naive unconditional
1 300 -0.1278 0.0215 0.0587 0.8374

1,000 -0.0245 0.0230 0.0275 0.8466
3,000 -0.0042 0.0074 0.0080 0.8486

10,000 -0.0003 0.0029 0.0027 0.8469
2 300 -0.1296 0.0061 0.0356 6.9717

1,000 -0.0377 0.0108 0.0213 7.4853
3,000 -0.0086 0.0065 0.0083 7.4724

10,000 -0.0015 0.0020 0.0021 7.4705
3 300 -0.5136 -0.0460 0.0726 0.4443

1,000 -0.1388 0.0434 0.0746 0.4457
3,000 -0.0351 0.0216 0.0253 0.4436

10,000 -0.0121 0.0062 0.0065 0.4419
4 300 -0.3149 -0.0240 0.0562 3.8656

1,000 -0.1027 0.0264 0.0528 3.9029
3,000 -0.1453 -0.0119 0.0462 3.1280

10,000 -0.0064 0.0065 0.0069 3.9167

Table 5: Mean absolute deviation of Estimators in Monte Carlo
Simulations
design n using P (I|X) nonparametric naive unconditional

1 300 1.0336 0.5145 0.4108 0.5083
1,000 0.1531 0.1409 0.1434 0.2324
3,000 0.0803 0.0755 0.0754 0.1323

10,000 0.0432 0.0396 0.0396 0.0707
2 300 0.4366 0.4105 0.4027 7.2313

1,000 0.1710 0.1395 0.1374 2.8537
3,000 0.0924 0.0751 0.0751 1.2849

10,000 0.0493 0.0392 0.0393 0.6730
3 300 1.2235 0.6455 0.5020 0.3649

1,000 0.2505 0.1715 0.1724 0.1812
3,000 0.0839 0.0783 0.0796 0.1010

10,000 0.0428 0.0400 0.0401 0.0546
4 300 0.6458 0.5435 0.4408 3.3559

1,000 0.2013 0.1706 0.1579 1.0512
3,000 0.1493 0.0881 0.0969 0.4256

10,000 0.0446 0.0403 0.0404 0.2872
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