Econ 2110, fall 2016, Part la Review of Probability Theory

Maximilian Kasy
Department of Economics, Harvard University

Textbooks

Main reference for part I of class:

- Casella, G. and Berger, R. (2001). Statistical inference. Duxbury Press, chapters 1-4.

Alternative references

- Advanced undergrad text; many exercises:
J. Blitzstein and Hwang J (2014). Introduction to Probability. Chapman \& Hall
- More advanced / mathematical than this class:
P. Billingsley (2012). Probability and Measure. Wiley

Roadmap

- la
- Basic definitions
- Conditional probability and independence
- lb
- Random Variables
- Expectations
- Transformation of variables
- Ic
- Selected probability distributions
- Inequalities

Part la

Basic definitions

Conditional probability and independence

Practice problem

What is a "probability?"

Alternative approaches

1. A population share
2. A subjective assessment
3. An abstraction for coherent decision making under uncertainty
4. A mathematical object, mapping subsets of some set into $[0,1]$
5. A population share:

- "frequentist" perspective
- actual population (students in this class) or more often hypothetical population (infinitely repeated throws of a coin)
- useful for intuition - probabilities behave like population shares
- no probabilities for one-time events ("is there life on Mars?")
- "weaker" notion than the following two

2. A subjective assessment

- Subjective "Bayesian" perspective
- "psychological" entity
- one-time events have probabilities

3. An abstraction for coherent decision making under uncertainty

- decision theoretic perspective - part III of this class!
- one-time events (states of the world) are assigned "probabilities" for the purpose of decision making
- formally equivalent to subjective perspective, different interpretation and purpose

4. A mathematical object, mapping subsets of some set into $[0,1]$

- purely formal perspective
- axioms satisfied by the mapping justifiable by corresponding properties of population shares
- perspective we will take in part I of class

Key definitions

Sample Space Ω

- Set of all possible outcomes, not necessarily numerical.
- Specific outcomes denoted ω.
- Examples:
- survey 10 people on their employment status; outcome: number of unemployed among the surveyed
$\Omega=\{0,1,2, \ldots, 10\}$
- ask a random person about her income $\Omega=\mathbb{R}^{+}$

Events

- Subsets of Ω, typically denoted with capital letters, such as A
- Examples:
- survey: more than 30% of interviewees are unemployed $A=\{4,5,6 \ldots, 10\}$
- income: person earns between $30.000 \$$ and $40.000 \$$ per year $A=[30.000,40.000]$
σ-Algebra (or σ-field)
- Let \mathscr{F} be a set of subsets of Ω (i.e. \mathscr{F} is a set of events). \mathscr{F} is a σ-algebra if and only if

1. $\Omega \in \mathscr{F}$
2. if $A \in \mathscr{F}$, then $A^{c} \in \mathscr{F}$ (A^{c} is the complement of A, i.e. $A^{c}=\Omega \backslash A$)
3. if $A_{1}, A_{2}, \ldots \in \mathscr{F}$, then $\left(\bigcup_{j=1}^{\infty} A_{j}\right) \in \mathscr{F}$

- Property (2) is called 'closed under complements'
- property (3) is called 'closed under countable unions'.

Example

- σ-Algebras allow to model "information"
- health insurance example: consider individuals who are young or old and healthy or sick
- $\Omega=\{Y H, Y S, O H, O S\}$
- only age is public information
- insurer decisions can only condition on public information, that is on the σ-Algebra

$$
\mathscr{F}=\{\varnothing,\{Y H, Y S\},\{O H, O S\}, \Omega\}
$$

- individual decisions can condition on the full σ-Algebra \mathscr{F}^{\prime} of all subsets of Ω
- Note that we can set $\varnothing=A_{k+1}=A_{k+2}=\ldots$, in which case $\bigcup_{j=1}^{\infty} A_{j}=\bigcup_{j=1}^{k} A_{j}$.
- Recall de Morgan's Law $(A \cup B)^{c}=\left(A^{C} \cap B^{C}\right)$.
- $\Rightarrow\left(\bigcup_{j=1}^{\infty} A_{j}^{c}\right)^{c}=\bigcap_{j=1}^{\infty} A_{j}$,
and σ-algebras are also closed under countable intersections.

Probability measure P

- A function that maps elements of the σ-algebra \mathscr{F} (i.e. certain subsets of Ω) into real numbers: $P: \mathscr{F} \mapsto \mathbb{R}$ with the following properties

1. $P(A) \geq 0$
2. $P(\Omega)=1$
3. If $A_{1}, A_{2}, \ldots \in \mathscr{F}$ and $A_{i} \cap A_{j}=\varnothing$ for $i \neq j$, then

$$
P\left(\bigcup_{j=1}^{\infty} A_{j}\right)=\sum_{j=1}^{\infty} P\left(A_{j}\right)
$$

- Example: the probability of at most 1 person surveyed being unemployed

$$
P(\{0,1\})=(1-p)^{10}+10 \cdot p \cdot(1-p)^{9}
$$

where p is the unemployment rate

Probability space

- The triple (Ω, \mathscr{F}, P) is called a probability space.

Figure: probability space

Remarks

- The same random experiment can be described by different σ-algebras.
- all possible subsets of Ω are a σ-Algebra
- Why restrict the domain of P to a σ-algebra? Why not define P to map all possible subsets of Ω to $[0,1]$?
- Fine for experiments with finite or countably many outcomes
- Fairly complicated problems arise for sample spaces with uncountably many outcomes. We will basically ignore them.
- Pretty much all things of interest to us are "measurable," that is in suitably defined σ-algebras.

Some useful properties

1. $P(A)=1-P\left(A^{C}\right)$
2. $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
3. $P(A \cup B) \geq P(A)$

Practice problem

Show that these properties hold, based on our definition of a probability space.

Conditional probability

- Let A, B be events in (Ω, \mathscr{F}, P), with $P(B)>0$.
- The conditional probability of A, given B, is defined as

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

- Conditional probabilities can be understood as generating a new probability measure P^{\prime}, where $P^{\prime}(A)=\frac{P(A \cap B)}{P(B)}$.
- Insurance example: probability of being healthy conditional on being old

$$
P(H \mid O)=\frac{P(O H)}{P(\{O H, O S\})}
$$

Practice problem

Show that P^{\prime} is a probability measure.

Solution:

1. $P^{\prime}(A)=\frac{P(A \cap B)}{P(B)} \geq 0$
2. $P^{\prime}(\Omega)=\frac{P(\Omega \cap B)}{P(B)}=\frac{P(B)}{P(B)}=1$
3.

$$
\begin{aligned}
P^{\prime}\left(\bigcup_{j=1}^{\infty} A_{j}\right) & =P(B)^{-1} P\left(\left(\bigcup_{j=1}^{\infty} A_{j}\right) \cap B\right) \\
& =P(B)^{-1} P\left(\bigcup_{j=1}^{\infty}\left(A_{j} \cap B\right)\right) \\
& =P(B)^{-1} \sum_{j=1}^{\infty} P\left(A_{j} \cap B\right)=\sum_{j=1}^{\infty} P^{\prime}\left(A_{j}\right)
\end{aligned}
$$

- all properties of probability measures carry over to conditional probabilities
e.g. $P(A \cup B \mid C) \geq P(A \mid C)$
and $P(A \cup B \mid C)=P(A \mid C)+P(B \mid C)-P(A \cap B \mid C)$
- frequentist intuition:
probability is a population share among everyone in Ω conditional probability is a population share among everyone in B
- multiplication rule:

$$
P(A \cap B)=P(A \mid B) P(B)
$$

Bayes' Rule

- Suppose we know $P(B), P(A \mid B)$ and $P\left(A \mid B^{C}\right)$, but we are interested in $P(B \mid A)$.
- Claim:

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A \mid B) P(B)+P\left(A \mid B^{c}\right) P\left(B^{c}\right)}
$$

Practice problem

Show this is true.

Solution:

- Apply the definition of conditional probability repeatedly

1.

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

2. numerator:

$$
P(A \cap B)=P(A \mid B) P(B)
$$

3. denominator:

$$
\begin{aligned}
P(A) & =P\left((A \cap B) \cup\left(A \cap B^{c}\right)\right) \\
& =P(A \cap B)+P\left(A \cap B^{c}\right) \\
& =P(A \mid B) P(B)+P\left(A \mid B^{c}\right) P\left(B^{c}\right)
\end{aligned}
$$

Example

- Suppose 1 in 10,000 people have a certain virus infection
- A medical test has the following properties
- If somebody is actually infected, the test yields a "positive" result with a probability of 99%
- If somebody is not infected, the test yields a "positive" result with a probability of 5\%

Practice problem

If someone is tested positive, what is the probability that she is actually infected?

Solution:

- Denote T the event of a positive test result, D the event of being infected with the disease.

$$
\begin{aligned}
P(D \mid T) & =\frac{P(D, T)}{P(T)} \\
& =\frac{P(T \mid D) P(D)}{P(T, D)+P\left(T, D^{c}\right)} \\
& =\frac{P(T \mid D) P(D)}{P(T \mid D) P(D)+P\left(T \mid D^{c}\right) P\left(D^{c}\right)} \\
& =\frac{.99 \cdot .0001}{.99 \cdot .0001+.05 \cdot .9999} \approx .002 .
\end{aligned}
$$

- the test seems very good (correct result at least 95% of the time)
- but the probability of actually having the disease once you test positive is still very small (.002)

Example

Practice problem

Survey 2 random people
What is the probability of both being female given that at least one is female?

Solution:

- $E_{1}=\{F F, F M, M F\}$, with probability $3 / 4, E_{2}=\{F F\}$
- so $E_{1} \cap E_{2}=\{F F\}$ with probability $1 / 4$,
- therefore

$$
P\left(E_{2} \mid E_{1}\right)=\frac{P\left(E_{1} \cap E_{2}\right)}{P\left(E_{1}\right)}=\frac{1 / 4}{3 / 4}=\frac{1}{3},
$$

- (not $1 / 2$ as many people think at first.)

Independence

- The events A and B are independent if

$$
P(A \cap B)=P(A) P(B)
$$

- Claim:
- If $P(A)=0$ or $P(B)=0$, then A and B are independent.
- If $P(B)>0$, then independence of A and B implies that

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=P(A) .
$$

- If A and B are independent, then so are A^{c} and B, A^{C} and B^{c}, and A and B^{C}

Practice problem

Verify these claims.

Joint independence

- Three events E_{1}, E_{2} and E_{3} are jointly independent if :

1. $1.1 E_{1}$ and E_{2} are independent,
$1.2 E_{1}$ and E_{3} are independent,
$1.3 E_{2}$ and E_{3} are independent.
2.

$$
P\left(E_{1} \cap E_{2} \cap E_{3}\right)=P\left(E_{1}\right) \cdot P\left(E_{2}\right) \cdot P\left(E_{3}\right) .
$$

- Joint independence of four events:

1. all combinations of three events are jointly independent
2. the probability of the intersection is equal to the product of the probabilities.

- etc.

Practice problem

Construct an example of three events which are pairwise independent but not jointly independent.

Example - unbreakable cryptography

- Suppose you want to transmit a binary message ($X=0$ or $X=1$)
- Take a random number $Y \in\{0,1\}$ ("fair coin toss") which you shared with your recipient beforehand
- transmit the encrypted message

$$
Z=1 \text { if } X=Y \text { and } Z=0 \text { if } X \neq Y
$$

Practice problem

Verify that

- the events $\{X=1\},\{Y=1\}$, and $\{Z=1\}$ are pairwise independent but not mutually independent
- in particular $P(X=1 \mid Z=1)=P(X=1)$ ("the NSA won't learn anything about X if they intercept your Z ")
- but your recipient can easily decode the message.

Conditional Independence

- events A and B are conditionally independent given $\left\{C, C^{C}\right\}$ if

$$
\begin{aligned}
P(A \cap B \mid C) & =P(A \mid C) \cdot P(B \mid C) \\
P\left(A \cap B \mid C^{C}\right) & =P\left(A \mid C^{C}\right) \cdot P\left(B \mid C^{C}\right)
\end{aligned}
$$

- important in part II of class (causality), regression with controls,...
- conditional independence does not imply independence
- independence does not imply conditional independence

Example

- conditional probabilities given $\left\{C, C^{C}\right\}$:

	$A \cap B$	$A \cap B^{C}$	$A^{C} \cap B$	$A^{C} \cap B^{C}$
$P(. \mid C)$	$4 / 9$	$2 / 9$	$2 / 9$	$1 / 9$
$P\left(. \mid C^{C}\right)$	$1 / 9$	$2 / 9$	$2 / 9$	$4 / 9$

- $P(C)=1 / 2$
- here A and B are conditionally independent but not independent
- verify!
- intuition: C makes both A and B more likely, but otherwise there is no connection between A and B

Example

- conditional probabilities given $\left\{C, C^{C}\right\}$:

	$A \cap B$	$A \cap B^{C}$	$A^{C} \cap B$	$A^{C} \cap B^{C}$
$P(. \mid C)$	$1 / 3$	$1 / 3$	$1 / 3$	0
$P\left(. \mid C^{C}\right)$	0	0	0	1

- $P(C)=3 / 4$
- here A and B are independent but not conditionally independent
- verify!
- in this example: C holds if A or B holds for instance: getting into some school (C) requires that you fulfill at least criterion A or B

