Econ 2110, fall 2016, Part Ia Review of Probability Theory

Maximilian Kasy

Department of Economics, Harvard University

Textbooks

Main reference for part I of class:

Casella, G. and Berger, R. (2001). Statistical inference. Duxbury Press, chapters 1-4.

Alternative references

- Advanced undergrad text; many exercises:
 J. Blitzstein and Hwang J (2014). Introduction to Probability.
 Chapman & Hall
- More advanced / mathematical than this class:
 P. Billingsley (2012). Probability and Measure. Wiley

Roadmap

- la
- Basic definitions
- Conditional probability and independence
- ► Ib
- Random Variables
- Expectations
- Transformation of variables
- ► Ic
- Selected probability distributions
- Inequalities

Part la

Basic definitions

Conditional probability and independence

Review of Probability

Basic definitions

Practice problem

What is a "probability?"

Alternative approaches

- 1. A population share
- 2. A subjective assessment
- 3. An abstraction for coherent decision making under uncertainty
- 4. A mathematical object, mapping subsets of some set into [0,1]

1. A population share:

- "frequentist" perspective
- actual population (students in this class) or more often hypothetical population (infinitely repeated throws of a coin)
- useful for intuition probabilities behave like population shares
- no probabilities for one-time events ("is there life on Mars?")
 - "weaker" notion than the following two

2. A subjective assessment

- Subjective "Bayesian" perspective
- "psychological" entity
- one-time events have probabilities

- 3. An abstraction for coherent decision making under uncertainty
 - decision theoretic perspective part III of this class!
 - one-time events (states of the world) are assigned "probabilities" for the purpose of decision making
 - formally equivalent to subjective perspective, different interpretation and purpose
- 4. A mathematical object, mapping subsets of some set into [0,1]
 - purely formal perspective
 - axioms satisfied by the mapping justifiable by corresponding properties of population shares
 - perspective we will take in part I of class

Key definitions

Sample Space Ω

- Set of all possible outcomes, not necessarily numerical.
- Specific outcomes denoted ω.
- Examples:
 - survey 10 people on their employment status; outcome: number of unemployed among the surveyed
 - $\Omega = \{0, 1, 2, \dots, 10\}$
 - \blacktriangleright ask a random person about her income $\Omega=\mathbb{R}^+$

Events

- Subsets of Ω, typically denoted with capital letters, such as A
- Examples:
 - survey: more than 30% of interviewees are unemployed $A = \{4, 5, 6, \dots, 10\}$
 - income: person earns between 30.000\$ and 40.000\$ per year A = [30.000, 40.000]

σ -Algebra (or σ -field)

- Let $\mathscr F$ be a set of subsets of Ω (i.e. $\mathscr F$ is a set of events). $\mathscr F$ is a σ -algebra if and only if
 - 1. $\Omega \in \mathscr{F}$
 - 2. if $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$ (A^c is the complement of A, i.e. $A^c = \Omega \setminus A$)
 - 3. if $A_1, A_2, \ldots \in \mathscr{F}$, then $(\bigcup_{i=1}^{\infty} A_i) \in \mathscr{F}$
- Property (2) is called 'closed under complements'
- property (3) is called 'closed under countable unions'.

Example

- σ-Algebras allow to model "information"
- health insurance example: consider individuals who are young or old and healthy or sick
- Ω = { YH, YS, OH, OS}
- only age is public information
- insurer decisions can only condition on public information, that is on the σ-Algebra

$$\mathscr{F} = \{\varnothing, \{YH, YS\}, \{OH, OS\}, \Omega\}$$

• individual decisions can condition on the full σ -Algebra \mathscr{F}' of all subsets of Ω

- Note that we can set $\emptyset = A_{k+1} = A_{k+2} = ...$, in which case $\bigcup_{j=1}^{\infty} A_j = \bigcup_{j=1}^k A_j$.
- ▶ Recall de Morgan's Law $(A \cup B)^c = (A^c \cap B^c)$.
- ▶ ⇒ $(\bigcup_{j=1}^{\infty} A_j^c)^c = \bigcap_{j=1}^{\infty} A_j$, and σ -algebras are also closed under countable intersections.

Probability measure P

- ▶ A function that maps elements of the σ -algebra \mathscr{F} (i.e. certain subsets of Ω) into real numbers: $P: \mathscr{F} \mapsto \mathbb{R}$ with the following properties
 - 1. $P(A) \ge 0$
 - **2**. $P(\Omega) = 1$
 - 3. If $A_1, A_2, \ldots \in \mathscr{F}$ and $A_i \cap A_j = \varnothing$ for $i \neq j$, then $P(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} P(A_j)$
- Example: the probability of at most 1 person surveyed being unemployed

$$P({0,1}) = (1-p)^{10} + 10 \cdot p \cdot (1-p)^{9}$$

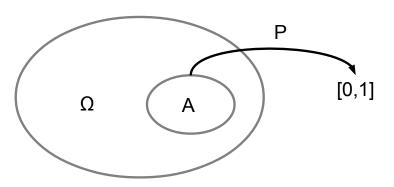
where p is the unemployment rate

Review of Probability
Basic definitions

Probability space

▶ The triple (Ω, \mathcal{F}, P) is called a probability space.

Figure: probability space



Remarks

- The same random experiment can be described by different σ-algebras.
- all possible subsets of Ω are a σ -Algebra
- Why restrict the domain of P to a σ-algebra? Why not define P to map all possible subsets of Ω to [0, 1]?
 - ► Fine for experiments with finite or countably many outcomes
 - Fairly complicated problems arise for sample spaces with uncountably many outcomes. We will basically ignore them.
 - Pretty much all things of interest to us are "measurable," that is in suitably defined σ -algebras.

Some useful properties

1.
$$P(A) = 1 - P(A^c)$$

2.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

3.
$$P(A \cup B) \geq P(A)$$

Practice problem

Show that these properties hold, based on our definition of a probability space.

Conditional probability

- Let A, B be events in (Ω, \mathcal{F}, P) , with P(B) > 0.
- ▶ The conditional probability of *A*, given *B*, is defined as

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

- ► Conditional probabilities can be understood as generating a new probability measure P', where $P'(A) = \frac{P(A \cap B)}{P(B)}$.
- Insurance example: probability of being healthy conditional on being old

$$P(H|O) = \frac{P(OH)}{P(\{OH, OS\})}$$

Practice problem

Show that P' is a probability measure.

Solution:

1.
$$P'(A) = \frac{P(A \cap B)}{P(B)} \ge 0$$

2.
$$P'(\Omega) = \frac{P(\Omega \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1$$

3.

$$P'(\bigcup_{j=1}^{\infty} A_j) = P(B)^{-1}P((\bigcup_{j=1}^{\infty} A_j) \cap B)$$

$$= P(B)^{-1}P(\bigcup_{j=1}^{\infty} (A_j \cap B))$$

$$= P(B)^{-1}\sum_{i=1}^{\infty} P(A_i \cap B) = \sum_{i=1}^{\infty} P'(A_i)$$

 all properties of probability measures carry over to conditional probabilities

e.g.
$$P(A \cup B|C) \ge P(A|C)$$

and $P(A \cup B|C) = P(A|C) + P(B|C) - P(A \cap B|C)$

- frequentist intuition: probability is a population share among everyone in Ω conditional probability is a population share among everyone in B
- multiplication rule:

$$P(A \cap B) = P(A|B)P(B)$$

Bayes' Rule

- ▶ Suppose we know P(B), P(A|B) and $P(A|B^c)$, but we are interested in P(B|A).
- Claim:

$$P(B|A) = \frac{P(A|B)P(B)}{P(A|B)P(B) + P(A|B^c)P(B^c)}$$

Practice problem

Show this is true.

Solution:

Apply the definition of conditional probability repeatedly

1.

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

numerator:

$$P(A \cap B) = P(A|B)P(B)$$

denominator:

$$P(A) = P((A \cap B) \cup (A \cap B^{c}))$$

$$= P(A \cap B) + P(A \cap B^{c})$$

$$= P(A|B)P(B) + P(A|B^{c})P(B^{c})$$

Example

- Suppose 1 in 10,000 people have a certain virus infection
- A medical test has the following properties
 - If somebody is actually infected, the test yields a "positive" result with a probability of 99%
 - If somebody is not infected, the test yields a "positive" result with a probability of 5%

Practice problem

If someone is tested positive, what is the probability that she is actually infected?

Solution:

Denote T the event of a positive test result, D the event of being infected with the disease.

1

$$P(D|T) = \frac{P(D,T)}{P(T)}$$

$$= \frac{P(T|D)P(D)}{P(T,D) + P(T,D^c)}$$

$$= \frac{P(T|D)P(D)}{P(T|D)P(D) + P(T|D^c)P(D^c)}$$

$$= \frac{.99 \cdot .0001}{.99 \cdot .0001 + .05 \cdot .9999} \approx .002.$$

- the test seems very good (correct result at least 95% of the time)
- but the probability of actually having the disease once you test positive is still very small (.002)

Example

Practice problem

Survey 2 random people What is the probability of both being female given that at least one is female?

Solution:

- $E_1 = \{FF, FM, MF\}$, with probability 3/4, $E_2 = \{FF\}$
- ▶ so $E_1 \cap E_2 = \{FF\}$ with probability 1/4,
- therefore

$$P(E_2|E_1) = \frac{P(E_1 \cap E_2)}{P(E_1)} = \frac{1/4}{3/4} = \frac{1}{3},$$

(not 1/2 as many people think at first.)

Independence

The events A and B are independent if

$$P(A\cap B)=P(A)P(B).$$

- Claim:
 - If P(A) = 0 or P(B) = 0, then A and B are independent.
 - ▶ If P(B) > 0, then independence of A and B implies that

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = P(A).$$

If A and B are independent, then so are A^c and B, A^c and B^c, and A and B^c

Practice problem

Verify these claims.

Joint independence

- ► Three events E₁, E₂ and E₃ are jointly independent if :
 - 1. 1.1 E_1 and E_2 are independent,
 - 1.2 E_1 and E_3 are independent,
 - 1.3 E_2 and E_3 are independent.

2.

$$P(E_1 \cap E_2 \cap E_3) = P(E_1) \cdot P(E_2) \cdot P(E_3).$$

- Joint independence of four events:
 - all combinations of three events are jointly independent
 - the probability of the intersection is equal to the product of the probabilities.
- etc.

Practice problem

Construct an example of three events which are pairwise independent but not jointly independent.

Example - unbreakable cryptography

- ▶ Suppose you want to transmit a binary message (X = 0 or X = 1)
- ► Take a random number $Y \in \{0,1\}$ ("fair coin toss") which you shared with your recipient beforehand
- ▶ transmit the encrypted message Z = 1 if X = Y and Z = 0 if $X \neq Y$

Practice problem

Verify that

- ▶ the events $\{X = 1\}$, $\{Y = 1\}$, and $\{Z = 1\}$ are pairwise independent but not mutually independent
- ▶ in particular P(X = 1 | Z = 1) = P(X = 1) ("the NSA won't learn anything about X if they intercept your Z")
- but your recipient can easily decode the message.

Conditional Independence

lacktriangle events A and B are conditionally independent given $\{C,C^c\}$ if

$$P(A \cap B|C) = P(A|C) \cdot P(B|C)$$

$$P(A \cap B|C^{c}) = P(A|C^{c}) \cdot P(B|C^{c})$$

- important in part II of class (causality), regression with controls,...
- conditional independence does not imply independence
- independence does not imply conditional independence

Example

▶ conditional probabilities given $\{C, C^c\}$:

	$A \cap B$	$A \cap B^c$	$A^c \cap B$	$A^c \cap B^c$
P(. C)	4/9	2/9	2/9	1/9
$P(. C^c)$	1/9	2/9	2/9	4/9

- ▶ P(C) = 1/2
- ▶ here *A* and *B* are conditionally independent but not independent
- verify!
- intuition: C makes both A and B more likely, but otherwise there is no connection between A and B

Example

• conditional probabilities given $\{C, C^c\}$:

	$A \cap B$	$A \cap B^c$	$A^c \cap B$	$A^c \cap B^c$
P(. C)	1/3	1/3	1/3	0
$P(. C^c)$	0	0	0	1

- ▶ P(C) = 3/4
- ▶ here A and B are independent but not conditionally independent
- verify!
- in this example: C holds if A or B holds for instance: getting into some school (C) requires that you fulfill at least criterion A or B