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Review of Probability

Textbooks

Main reference for part I of class:

I Casella, G. and Berger, R. (2001). Statistical inference.
Duxbury Press, chapters 1-4.
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Review of Probability

Alternative references

I Advanced undergrad text; many exercises:
J. Blitzstein and Hwang J (2014). Introduction to Probability.
Chapman & Hall

I More advanced / mathematical than this class:
P. Billingsley (2012). Probability and Measure. Wiley
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Roadmap

I Ia
I Basic definitions
I Conditional probability and independence

I Ib
I Random Variables
I Expectations
I Transformation of variables

I Ic
I Selected probability distributions
I Inequalities
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Part Ia

Basic definitions

Conditional probability and independence
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Basic definitions

Practice problem

What is a “probability?”
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Basic definitions

Alternative approaches

1. A population share

2. A subjective assessment

3. An abstraction for coherent decision making under uncertainty

4. A mathematical object, mapping subsets of some set into [0,1]
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Review of Probability

Basic definitions

1. A population share:
I “frequentist” perspective
I actual population (students in this class) or more often

hypothetical population (infinitely repeated throws of a coin)
I useful for intuition – probabilities behave like population shares
I no probabilities for one-time events (“is there life on Mars?”)
I “weaker” notion than the following two

2. A subjective assessment
I Subjective “Bayesian” perspective
I “psychological” entity
I one-time events have probabilities
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Basic definitions

3. An abstraction for coherent decision making under uncertainty
I decision theoretic perspective – part III of this class!
I one-time events (states of the world) are assigned “probabilities”

for the purpose of decision making
I formally equivalent to subjective perspective, different

interpretation and purpose

4. A mathematical object, mapping subsets of some set into [0,1]
I purely formal perspective
I axioms satisfied by the mapping justifiable by corresponding

properties of population shares
I perspective we will take in part I of class
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Basic definitions

Key definitions

Sample Space Ω

I Set of all possible outcomes, not necessarily numerical.

I Specific outcomes denoted ω .

I Examples:

I survey 10 people on their employment status; outcome: number of
unemployed among the surveyed
Ω = {0,1,2, . . . ,10}

I ask a random person about her income
Ω = R+
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Basic definitions

Events

I Subsets of Ω, typically denoted with capital letters, such as A

I Examples:

I survey: more than 30% of interviewees are unemployed
A = {4,5,6 . . . ,10}

I income: person earns between 30.000$ and 40.000$ per year
A = [30.000,40.000]
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Basic definitions

σ -Algebra (or σ -field)

I Let F be a set of subsets of Ω (i.e. F is a set of events). F is a
σ -algebra if and only if

1. Ω ∈F
2. if A ∈F , then Ac ∈F (Ac is the complement of A, i.e. Ac = Ω\A)
3. if A1,A2, . . . ∈F , then (

⋃
∞
j=1 Aj ) ∈F

I Property (2) is called ’closed under complements’

I property (3) is called ’closed under countable unions’.
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Basic definitions

Example

I σ -Algebras allow to model “information”

I health insurance example:
consider individuals who are young or old and healthy or sick

I Ω = {YH,YS,OH,OS}
I only age is public information

I insurer decisions can only condition on public information, that is
on the σ -Algebra

F = {∅,{YH,YS},{OH,OS},Ω}

I individual decisions can condition on the full σ -Algebra F ′ of all
subsets of Ω
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Basic definitions

I Note that we can set ∅ = Ak+1 = Ak+2 = . . ., in which case⋃
∞
j=1 Aj =

⋃k
j=1 Aj .

I Recall de Morgan’s Law (A∪B)c = (Ac ∩Bc).

I ⇒ (
⋃

∞
j=1 Ac

j )c =
⋂

∞
j=1 Aj ,

and σ -algebras are also closed under countable intersections.
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Basic definitions

Probability measure P

I A function that maps elements of the σ -algebra F (i.e. certain
subsets of Ω) into real numbers: P : F 7→ R with the following
properties

1. P(A)≥ 0
2. P(Ω) = 1
3. If A1,A2, . . . ∈F and Ai ∩Aj = ∅ for i 6= j , then

P(
⋃

∞
j=1 Aj ) = ∑

∞
j=1 P(Aj )

I Example: the probability of at most 1 person surveyed being
unemployed

P({0,1}) = (1−p)10 + 10 ·p · (1−p)9

where p is the unemployment rate
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Basic definitions

Probability space

I The triple (Ω,F ,P) is called a probability space.
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Basic definitions

Figure: probability space

[0,1]
Ω A

P
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Basic definitions

Remarks

I The same random experiment can be described by different
σ -algebras.

I all possible subsets of Ω are a σ -Algebra
I Why restrict the domain of P to a σ -algebra? Why not define P to

map all possible subsets of Ω to [0,1]?
I Fine for experiments with finite or countably many outcomes
I Fairly complicated problems arise for sample spaces with

uncountably many outcomes. We will basically ignore them.
I Pretty much all things of interest to us are “measurable,” that is in

suitably defined σ -algebras.
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Basic definitions

Some useful properties

1. P(A) = 1−P(Ac)

2. P(A∪B) = P(A) + P(B)−P(A∩B)

3. P(A∪B)≥ P(A)

Practice problem

Show that these properties hold, based on our definition of a
probability space.
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Conditional probability and independence

Conditional probability
I Let A,B be events in (Ω,F ,P), with P(B) > 0.
I The conditional probability of A, given B, is defined as

P(A|B) =
P(A∩B)

P(B)

I Conditional probabilities can be understood as generating a new
probability measure P ′, where P ′(A) = P(A∩B)

P(B) .
I Insurance example: probability of being healthy conditional on

being old

P(H|O) =
P(OH)

P({OH,OS})

Practice problem

Show that P ′ is a probability measure.
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Conditional probability and independence

Solution:

1. P ′(A) = P(A∩B)
P(B) ≥ 0

2. P ′(Ω) = P(Ω∩B)
P(B) = P(B)

P(B) = 1

3.

P ′(
∞⋃

j=1

Aj) = P(B)−1P((
∞⋃

j=1

Aj)∩B)

= P(B)−1P(
∞⋃

j=1

(Aj ∩B))

= P(B)−1
∞

∑
j=1

P(Aj ∩B) =
∞

∑
j=1

P ′(Aj)
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Conditional probability and independence

I all properties of probability measures carry over to conditional
probabilities
e.g. P(A∪B|C)≥ P(A|C)
and P(A∪B|C) = P(A|C) + P(B|C)−P(A∩B|C)

I frequentist intuition:
probability is a population share among everyone in Ω
conditional probability is a population share among everyone in B

I multiplication rule:

P(A∩B) = P(A|B)P(B)
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Conditional probability and independence

Bayes’ Rule

I Suppose we know P(B), P(A|B) and P(A|Bc), but we are
interested in P(B|A).

I Claim:

P(B|A) =
P(A|B)P(B)

P(A|B)P(B) + P(A|Bc)P(Bc)

Practice problem

Show this is true.
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Conditional probability and independence

Solution:

I Apply the definition of conditional probability repeatedly
1.

P(B|A) =
P(A∩B)

P(A)

2. numerator:
P(A∩B) = P(A|B)P(B)

3. denominator:

P(A) = P((A∩B)∪ (A∩Bc))

= P(A∩B) + P(A∩Bc)

= P(A|B)P(B) + P(A|Bc)P(Bc)
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Conditional probability and independence

Example

I Suppose 1 in 10,000 people have a certain virus infection
I A medical test has the following properties

I If somebody is actually infected, the test yields a “positive” result
with a probability of 99%

I If somebody is not infected, the test yields a “positive” result with a
probability of 5%

Practice problem

If someone is tested positive, what is the probability that she is actually
infected?
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Conditional probability and independence

Solution:
I Denote T the event of a positive test result, D the event of being

infected with the disease.
I

P(D|T ) =
P(D,T )

P(T )

=
P(T |D)P(D)

P(T ,D) + P(T ,Dc)

=
P(T |D)P(D)

P(T |D)P(D) + P(T |Dc)P(Dc)

=
.99 · .0001

.99 · .0001 + .05 · .9999
≈ .002.

I the test seems very good (correct result at least 95% of the time)
I but the probability of actually having the disease once you test

positive is still very small (.002)
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Conditional probability and independence

Example

Practice problem

Survey 2 random people
What is the probability of both being female given that at least one is
female?
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Conditional probability and independence

Solution:
I E1 = {FF ,FM,MF}, with probability 3/4, E2 = {FF}
I so E1∩E2 = {FF} with probability 1/4,

I therefore

P(E2|E1) =
P(E1∩E2)

P(E1)
=

1/4
3/4

=
1
3
,

I (not 1/2 as many people think at first.)
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Conditional probability and independence

Independence
I The events A and B are independent if

P(A∩B) = P(A)P(B).

I Claim:
I If P(A) = 0 or P(B) = 0, then A and B are independent.
I If P(B) > 0, then independence of A and B implies that

P(A|B) =
P(A∩B)

P(B)
= P(A).

I If A and B are independent, then so are Ac and B, Ac and Bc , and
A and Bc

Practice problem

Verify these claims.
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Conditional probability and independence

Joint independence

I Three events E1, E2 and E3 are jointly independent if :
1. 1.1 E1 and E2 are independent,

1.2 E1 and E3 are independent,
1.3 E2 and E3 are independent.

2.
P(E1∩E2∩E3) = P(E1) ·P(E2) ·P(E3).

I Joint independence of four events:
1. all combinations of three events are jointly independent
2. the probability of the intersection is equal to the product of the

probabilities.

I etc.
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Conditional probability and independence

Practice problem

Construct an example of three events which are pairwise independent
but not jointly independent.
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Conditional probability and independence

Example - unbreakable cryptography
I Suppose you want to transmit a binary message (X = 0 or X = 1)
I Take a random number Y ∈ {0,1} (“fair coin toss”)

which you shared with your recipient beforehand
I transmit the encrypted message

Z = 1 if X = Y and Z = 0 if X 6= Y

Practice problem

Verify that

I the events {X = 1}, {Y = 1}, and {Z = 1} are pairwise
independent but not mutually independent

I in particular P(X = 1|Z = 1) = P(X = 1)
(“the NSA won’t learn anything about X if they intercept your Z ”)

I but your recipient can easily decode the message.
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Conditional probability and independence

Conditional Independence

I events A and B are conditionally independent given {C,Cc} if

P(A∩B|C) = P(A|C) ·P(B|C)

P(A∩B|Cc) = P(A|Cc) ·P(B|Cc)

I important in part II of class (causality),
regression with controls,. . .

I conditional independence does not imply independence

I independence does not imply conditional independence
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Conditional probability and independence

Example

I conditional probabilities given {C,Cc}:
A∩B A∩Bc Ac ∩B Ac ∩Bc

P(.|C) 4/9 2/9 2/9 1/9
P(.|Cc) 1/9 2/9 2/9 4/9

I P(C) = 1/2

I here A and B are conditionally independent but not independent

I verify!

I intuition: C makes both A and B more likely, but otherwise there
is no connection between A and B
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Conditional probability and independence

Example

I conditional probabilities given {C,Cc}:
A∩B A∩Bc Ac ∩B Ac ∩Bc

P(.|C) 1/3 1/3 1/3 0
P(.|Cc) 0 0 0 1

I P(C) = 3/4

I here A and B are independent but not conditionally independent

I verify!

I in this example: C holds if A or B holds
for instance: getting into some school (C) requires that you fulfill
at least criterion A or B
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