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Causality and Identification

Takeaways for this part of class

1. fundamental notions of causal inference:

I causality
I structural objects
I identification

2. identification approaches:

I randomized experiments
I instrumental variables
I conditional independence
I difference in differences
I regression discontinuity

3. analog estimators

2 / 41



Causality and Identification

Roadmap

Conditional independence

Difference in Differences

Regression Discontinuity

Analog estimators

3 / 41



Causality and Identification

Conditional independence

Conditional independence

I Causal identification approaches as generalizations of
randomized experiments!

I last section:

1. Generalizing from D random to Z random.

I this section:
Generalizing from D random
to D random conditional on covariates X .

I If that is the case,
“comparing apples with apples”
only requires comparing units with the same values of X .
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Causality and Identification

Conditional independence

Assumptions

1. D ∈ {0,1}
2. Y = D ·Y 1 + (1−D) ·Y 0

3. (Y 1,Y 0)⊥ D|X
4. 0 < p(X) < 1 for almost all X , where p(X) = P(D = 1|X)
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Causality and Identification

Conditional independence

Discussion of assumptions

1. Binary treatment:
easy to generalize the following to arbitrary support of D.

2. Potential outcome equation for Y : Y = D ·Y 1 + (1−D) ·Y 0

same as before (SUTVA!).
3. Conditional independence: (Y 1,Y 0)⊥ D|X

I within subgroups defined by X , we essentially have a randomized
experiment.

I somewhat hard to justify in practice
I best thought of as a plausible approximation, if X captures the

main components of heterogeneity which might drive dependence
between potential outcomes and treatment
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Causality and Identification

Conditional independence

4. Overlapping support: 0 < p(X) < 1
I there are no groups, defined by X , for which everybody (or

nobody) was treated.
I can be checked directly in the data (like instrument relevance)

Under these assumptions, the average treatment effect is identified

Practice problem

Try to prove this!
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Causality and Identification

Conditional independence

Identification of ATE,
proof using regression

I conditional expectation of outcomes given covariates and
treatment:

E[Y |X ,D = 1] = E[Y 1|X ,D = 1] = E[Y 1|X ].

I first equality holds by the potential outcomes equation.

I second equality uses conditional independence.

I E[Y |X ,D = 1] is identified as long as p(X) > 0.

I law of iterated expectations,
averaging across the distribution of X ⇒

E[Y 1] = EX [E[Y 1|X ]] = EX [E[Y |X ,D = 1]].
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Causality and Identification

Conditional independence

I note that
EX [E[Y |X ,D = 1]] 6= E[Y |D = 1]!

I left hand term averages E[Y |X ,D = 1] over the marginal
distribution of X

I right hand term averages E[Y |X ,D = 1] over the conditional
distribution of X given D.

I similarly for D = 0

E[Y 0] = EX [E[Y 0|X ]] = EX [E[Y |X ,D = 0]].

I average treatment effect is identified by

E[Y 1−Y 0] = EX [E[Y |X ,D = 1]−E[Y |X ,D = 0]].
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Causality and Identification

Conditional independence

Identification of ATE,
proof using reweighting

I intuition: units for which p(X) is small
are under-represented among the observations such that D = 1

I need to upweight them in order to get the distribution of Y 1

I upweight by factor 1/p(x) – “inverse probability weighting”
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Causality and Identification

Conditional independence

I Law of iterated expectations, D binary⇒

E[YD|X ] = E[YD|X ,D = 1] ·p(X) + E[YD|X ,D = 0] · (1−p(X))

= E[Y |X ,D = 1] ·p(X)

I Potential outcome equation, conditional independence⇒

E[Y |X ,D = 1] = E[Y 1|X ]

I Rearranging⇒

E
[

D
p(X) ·Y

∣∣∣X]= E[Y 1|X ]

I Iterated expectations, again⇒

E
[

D
p(X) ·Y

]
= E[Y 1]
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Causality and Identification

Conditional independence

I Similar argument for D = 0⇒

E

[
1−D

1−p(X)
·Y
]

= E[Y 0]

Practice problem

Show this.

I ⇒ Average treatment effect is identified by

E[Y 1−Y 0] = E

[(
D

p(X)
− 1−D

1−p(X)

)
·Y
]

= E

[(
D−p(X)

p(X)(1−p(X)

)
·Y
]
.
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Causality and Identification

Difference in Differences

Difference in Differences

I Causal identification approaches as generalizations of
randomized experiments!

I Previous generalizations of randomized experiments:
1. Generalizing from D random to Z random.
2. Generalizing from D random to D random conditional on

covariates X .

I This section: Generalizing from D random to
D1−D0 (change over time) random relative to Y 0

1 −Y 0
0

(counterfactual trend).

I “Common trends”
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Causality and Identification

Difference in Differences

Difference-in-Differences Setup

I Two groups:
I D = 1: treated units
I D = 0: control units

I Two periods:
I t = 0: pre-treatment period
I t = 1: post-treatment period

I Potential outcomes:
I Y 1

t : outcome in period t if treated before t
I Y 0

t : outcome in period t if not treated before t
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Causality and Identification

Difference in Differences

Difference-in-Differences Setup
I Treatment effect for unit i at time t is

Y 1
t −Y 0

t .

I Observed outcomes Yt are realized as

Yt = Y 0
t (1−Dt) + Y 1

t Dt .

I Because the treatment occurs only after t = 0, we define

D = D1.

I It follows that,

Y0 = Y 0
0 ,

Y1 = Y 0
1 (1−D) + Y 1

1 D.
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Causality and Identification

Difference in Differences

I Consider the average treatment effect on the treated,

ATT = E[Y 1
1 −Y 0

1 |D = 1].

I Common trends assumption:

E[Y 0
1 −Y 0

0 |D = 1] = E[Y 0
1 −Y 0

0 |D = 0],

that is, the treated and non-treated would have exhibited the
same trend in the absence of the treatment.

I Under this assumption, the ATT is identified.

Practice problem

Prove this.
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Causality and Identification

Difference in Differences

Identification of ATT under common trends, proof

I By common trends,

(E[Y1|D = 1]−E[Y1|D = 0])− (E[Y0|D = 1]−E[Y0|D = 0])

=
(
E[Y 1

1 |D = 1]−E[Y 0
1 |D = 0]

)
−
(
E[Y 0

0 |D = 1]−E[Y 0
0 |D = 0]

)
=
(
E[Y 1

1 |D = 1]−E[Y 0
1 |D = 1]

)
= ATT .

Practice problem

Suppose you are interested in the ATT of D on logY ,

ATT = E[logY 1
1 − logY 0

1 |D = 1].

Is this effect identified under the above assumptions?
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Causality and Identification

Difference in Differences

Difference-in-Differences: Graphical Interpretation
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Causality and Identification

Difference in Differences
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Causality and Identification

Difference in Differences
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Causality and Identification

Difference in Differences
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Causality and Identification

Difference in Differences

Empirical example

I Card, D. (1990). The impact of the Mariel boatlift on the Miami
labor market. Industrial and Labor Relations Review,
43(2):245–257.

I The Mariel Boatlift from Cuba in 1980 increased the Miami labor
force by 7%

I Comparing individual-level data on unemployment from the
Current Population Survey (CPS) for Miami and four comparison
cities (Atlanta, Los Angeles, Houston and Tampa-St. Petersburg)
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Causality and Identification

Difference in Differences
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Causality and Identification

Difference in Differences

Empirical example

I Qian, N. (2008). Missing women and the price of tea in China:
The effect of sex-specific earnings on sex imbalance. The
Quarterly Journal of Economics, 123(3):1251–1285.

I Traditional tea growing requires more female labor, orchards
more male labor.

I These crops can only be grown in some regions.

I Post 1979 reforms increased the value of these crops.

I Finding: Increasing female income, holding male income
constant, improves survival rates for girls, whereas increasing
male income, holding female income constant, worsens survival
rates for girls.
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Causality and Identification

Difference in Differences

1272 QUARTERLY JOURNAL OF ECONOMICS

TABLE III
OLS AND 2SLS ESTIMATES OF THE EFFECT OF PLANTING TEA AND ORCHARDS ON SEX

RATIOS CONTROLLING FOR COUNTY LEVEL LINEAR COHORT TRENDS

Dependent variables

Fraction of males Tea × post Fraction of males

(1) (2) (3) (4) (5) (6)
OLS OLS OLS 1st IV IV

Tea × post −0.012 −0.013 −0.012 −0.072 −0.011
(0.007) (0.006) (0.005) (0.031) (0.007)

Orchard × post 0.005
(0.002)

Slope × post −0.002 0.26
(0.002) (0.057)

Linear trend No No Yes Yes No Yes
Observations 28,349 37,756 37,756 37,756 37,756 37,756

Notes. Coefficients of the interactions between dummies indicating whether a cohort was born post-reform
and the amount of tea planted in the county of birth. All regressions include county and birth year fixed effects
and controls for Han, and cashcrop × post. All standard errors are clustered at the county level. In column
(1), the sample includes all individuals born during 1970–1986. In columns (2)–(6), the sample includes all
individuals born during 1962–1990. Post = 1 if birthyear > 1979. Data for land area sown are from the 1997
China Agricultural Census.

V. EMPIRICAL RESULTS

V.A. Results for Survival Rates

The difference-in-differences estimates from equation (2) are
shown in column (1) of Table III. It shows that planting one addi-
tional mu of tea decreased the fraction of males by 1.2 percentage
points; planting one additional mu of orchards increased the frac-
tion of males by 0.5 percentage points; and planting cash crops in
general had no effect. The estimates for planting tea and orchards
are statistically significant at the 10% and 5% level, respectively.

The estimates for βl, δl and ρl from equation (3) are shown in
Appendix I.A. The coefficients for βl and δl are plotted in Figure V.
They show that for cohorts born prior to the reform, the effects of
planting tea and orchards on the fraction of males were similar
to each other and constant across cohorts. The effects diverge for
cohorts born around the time of the reform, when planting tea is
associated with fewer males, while planting orchards is associated
with more males. The differential effects persist over time. These
results lend credibility to the interpretation that the effect of tea
and orchard production on the fraction of males is attributable
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Causality and Identification

Difference in Differences

MISSING WOMEN AND THE PRICE OF TEA IN CHINA 1273
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FIGURE V
The Effect of Planting Tea and Orchards on Sex Ratios

Coefficients of the interactions of birth year × amount of tea planted and birth
year × amount of orchards planted controlling for year and county of birth FEs.

to the post-Mao agricultural reforms and not to other changes in
these regions.

Cohort fixed effects control for variation across cohorts that
do not also vary across counties. They cannot control for county-
varying cohort trends that may have occurred over the 29 years
of this study. I address this issue by controlling for linear cohort
trends at the county level (e.g., interaction terms of county dummy
variable with linear time trends). In order to make the estimates
comparable to the 2SLS estimates, I restrict the sample to only
counties for which there is geographic data and estimate the same
specification as the second stage of the 2SLS. This differences-in-
differences specification does not explicitly control for orchards
because planting orchards is likely to be endogenous. Column (2)
in Table III shows the basic fixed effects estimates. Column (3)
shows the estimate when I control for county-level cohort trends.
The point estimates are similar. They show that planting tea de-
creased the fraction of males by 1.3 and 1.2 percentage points.
Estimates from both specifications are statistically significant at
the 5% level. Thus, the OLS estimates are robust to differential
linear changes across cohorts between counties.
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Causality and Identification

Regression Discontinuity

Regression Discontinuity

I Causal identification approaches as generalizations of
randomized experiments!

I Previous generalizations of randomized experiments:
1. Generalizing from D random to Z random.
2. Generalizing from D random to D random conditional on

covariates X .
3. Generalizing from D random to (D1−D0) random relative to

(Y 0
1 −Y 0

0 )

I This section: Generalizing from D random,
which implies E[Y 1|D = d] and E[Y 0|D = d] constant in d ,
to E[Y 1|X = x] and E[Y 0|X = x] continuous in x .
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Causality and Identification

Regression Discontinuity

Sharp Regression Discontinuity Design
I Discontinuous assignment of treatment: Suppose assignment

for treatment D is determined based on whether a unit exceeds
some threshold c on a running variable X ,

D = 1(X ≥ c) =

{
1 if X ≥ c
0 if X < c.

I Continuous expectation of potential outcomes:
E[Y 1|X = x] and E[Y 0|X = x] are continuous in x .

I Under these assumptions, the conditional average treatment
effect given X = c, E[Y 1−Y 0|X = c], is identified.

Practice problem

Prove this.
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Causality and Identification

Regression Discontinuity

Identification for sharp RDD, proof

I Consider the right and left hand limits,

lim
x↓c

E[Y |X = x] = lim
x↓c

E[Y 1|X = x]

= E[Y 1|X = c]

lim
x↑c

E[Y |X = x] = lim
x↑c

E[Y 0|X = x]

= E[Y 0|X = c].
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Causality and Identification

Regression Discontinuity

Remarks
I Design arises often from administrative or legal rules.
I Usually X is correlated with the potential outcomes Y 1,Y 0, so

comparing treated and untreated does not provide causal
estimates.

I But we can use the discontinuity in E[Y |X ] at the cutoff value
X = c to estimate the effect of D on Y for units with X = c.

I RDD is a fairly old idea (Thistlethwaite and Campbell, 1960) but
this design experienced a renaissance in recent years.

I E.g., scholarships are given on the basis of whether or not the
student’s test score is larger than some cutting value.

I Treatment D is scholarship
I Forcing variable X is SAT score with cutoff c
I Outcome Y is subsequent college grades
I Y 0 denotes potential grades without the scholarship
I Y 1 is potential grades with the scholarship
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Causality and Identification

Regression Discontinuity

Sharp RDD: Graphical Interpretation
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Causality and Identification

Regression Discontinuity

Sharp RDD: Graphical Interpretation
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Causality and Identification

Regression Discontinuity

Empirical example

I Lee (2001). The Electoral Advantage to Incumbency and Voters’
Valuation of Politicians’ Experience: A Regression Discontinuity
Analysis of Elections to the U.S. House NBER working paper.

I Incumbent parties and candidates enjoy great electoral success
in the U.S. and other countries

I Measuring incumbent advantage is difficult because “better”
parties or candidates may be consistently favored by the
electorate

I But close elections might be “almost” random.

I Compare elections to the U.S. House of Representatives (1946 to
1998), where Democrats won but almost lost, versus elections
where they lost but almost won.
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Causality and Identification

Regression Discontinuity
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Causality and Identification

Regression Discontinuity

Fuzzy Regression Discontinuity Design
I Often: Cutoff does not perfectly determine treatment but creates a

discontinuity in the probability of receiving the treatment

I For example: The probability of being offered a scholarship may jump at
a certain SAT score, above which the applications are given “special
consideration.”

I Fuzzy RD assumptions:

Z = 1(X > c)

D = Z ·D1 + (1−Z ) ·D0

Y = D ·Y 1 + (1−D) ·Y 0

D1 ≥ D0,

and E[(Y 1D1,Y 1D0,Y 0(1−D1),Y 0(1−D0),D1,D0)|X = x] is
continuous in x .

I This design combines features of sharp RD and of IV.
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Causality and Identification

Regression Discontinuity

Identification for fuzzy RDD

I Under these assumption, the conditional local average treatment
effect

E[Y 1−Y 0|X = c,D1 > D0]

is identified.

Practice problem

Prove this.
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Causality and Identification

Regression Discontinuity

Proof

I Consider the right and left hand limits,

lim
x↓c

E[D|X = x] = lim
x↓c

E[D1|X = x] = E[D1|X = c]

lim
x↑c

E[D|X = x] = lim
x↑c

E[D0|X = x] = E[D0|X = c]

lim
x↓c

E[Y |X = x] = lim
x↓c

E[D1 ·Y 1 + (1−D1) ·Y 0|X = x]

= E[D1 ·Y 1 + (1−D1)|X = c]

lim
x↑c

E[Y |X = x] = lim
x↑c

E[D0 ·Y 1 + (1−D0) ·Y 0|X = x]

= E[D0 ·Y 1 + (1−D0) ·Y 0|X = c].
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Causality and Identification

Regression Discontinuity

Proof continued

I Thus

lim
x↓c

E[Y |X = x]− lim
x↑c

E[Y |X = x] = E[(Y 1−Y 0) · (D1−D0)|X = c]

lim
x↓c

E[D|X = x]− lim
x↑c

E[D|X = x] = E[(D1−D0)|X = c]

I and therefore

E[Y 1−Y 0|X = c,D1 >D0] =
limx↓c E[Y |X = x]− limx↑c E[Y |X = x]

limx↓c E[D|X = x]− limx↑c E[D|X = x]
.
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Causality and Identification

Analog estimators

Recap of identification results
Throughout: Y = D ·Y 1 + (1−D) ·Y 0.

1. Randomized experiments: If (Y 0,Y 1)⊥ D then

E[Y |D = 1]−E[Y |D = 0] = E[Y 1−Y 0] = ATE .

2. Instrumental variables: If
I D = Z ·D1 + (1−Z ) ·D0

I D1 ≥ D0

I Z ⊥ (Y 0,Y 1,D0,D1)
I Cov(Z ,D) 6= 0

then

Cov(Z ,Y )

Cov(Z ,D)
=

E[Y |Z = 1]−E[Y |Z = 0]

E[D|Z = 1]−E[D|Z = 0]

= E[Y 1−Y 0|D1 > D0] = LATE .
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Causality and Identification

Analog estimators

3. Conditional independence: If (Y 1,Y 0)⊥ D|X then

EX [E[Y |X ,D = 1]−E[Y |X ,D = 0]] = E

[(
D−p(X)

p(X)(1−p(X)

)
·Y
]

= E[Y 1−Y 0] = ATE .

4. Difference in differences: If
E[Y 0

1 −Y 0
0 |D = 1] = E[Y 0

1 −Y 0
0 |D = 0] then:

(E[Y1|D = 1]−E[Y1|D = 0])− (E[Y0|D = 1]−E[Y0|D = 0])

=E[Y 1
1 −Y 0

1 |D = 1] = ATT .

5. Sharp regression discontinuity: If E[Y 1|X = x] and
E[Y 0|X = x] continuous in x at x = c, D = 1(X > c), then

lim
x↓c

E[Y |X = x]− lim
x↑c

E[Y |X = x] = E[Y 1−Y 0|X = c].
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Causality and Identification

Analog estimators

Brief remark on estimation
I This entire part of class was about identification.
I Mapping features of the population distribution

into features of the underlying structure.
I Suggests analog-approaches for estimation:
I Replace expectations by sample means, e.g.

E[Y ]→ Ȳ = 1
n ∑

i
Yi

I Replace conditional expectations by sub-sample means, e.g.

E[Y |D = 1]→ Ȳ |D=1 = ∑
i

DiYi

/
∑

i
Di ,

or predicted values of regressions, e.g.

E[Y |D,X ]→ αD + βX + γD ·X .
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Analog estimators

1. Randomized experiments:

ÂTE = Ȳ |D=1− Ȳ |D=0.

2. Instrumental variables:

L̂ATE =
Ĉov(Z ,Y )

Ĉov(Z ,D)
=

Ȳ |Z=1− Ȳ |Z=0

D̄|Z=1− D̄|Z=0
.
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3. Conditional independence: If X is discrete,

Ê[Y |X ,D] = Ȳ |X ,D, p̂(X) = D̄|X=x ,

ÂTE = 1
n ∑

i

(
Ȳ |X=Xi ,D=1− Ȳ |X=Xi ,D=0

)
= 1

n ∑
i

(
Di − D̄|X=Xi

D̄|X=Xi (1− D̄|X=Xi )

)
·Yi

4. Difference in differences:

ÂTT =
(
Ȳ1|D=1− Ȳ1|D=0

)
−
(
Ȳ0|D=1− Ȳ0|D=0

)
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5. Sharp regression discontinuity:
I Idea 1: replace limit by local average,

l̂im
x↓c

E[Y |X = x] = Ȳ |c<X<c+h

I Idea 2 (better): replace limit by local regression intercept,

l̂im
x↓c

E[Y |X = x] = α̂

(α̂, β̂ ) = argmin
a,b

∑
i:c<Xi<c+h

(
Y 1−a−b · (Xi − c)

)2

I More on estimation later in this class!
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