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Review of Probability

Random Variables

Random Variables

I Let (Ω,F ,P) be a probability space.

I A Random Variable X is a function
that maps outcomes ω ∈ Ω to real numbers

X : Ω 7→ R.

I Let AX ⊂ R.

I Then the probability of the event that X ∈ AX is

P(X ∈ AX )

=PX (AX )

=P({ω : X(ω) ∈ AX})
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Review of Probability

Random Variables

I The probability measure P induces the probability measure PX

on the real line.

I equivalent notation:

P(X ≥ 3)

=PX ([3;∞))

=P({ω : X(ω)≥ 3})
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Review of Probability

Random Variables

Example

I Interviewing a random resident of Boston

I Ω = set of all residents

I F = is set of all subsets of Ω

I P({ω}) = 1/N for all residents ω ,
where N = |Ω|, the population size of Boston

I X(ω) = age of person ω

I Y (ω) = her income
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Review of Probability

Random Variables

Measurability

I Technical issue: we must ensure that {ω : X(ω) ∈ AX} ∈F for
all AX under consideration.

I consider FX is the smallest σ -algebra that contains all intervals
of the form (−∞,a) for a ∈ R

I require that for all AX ∈FX , {ω : X(ω) ∈ AX} ∈F .
“X is a measurable function”

I under these conditions (R,FX ,PX ) is a probability space.
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Review of Probability

Random Variables

Example

I Recall the health insurance example

I Ω = {YH,YS,OH,OS}
I insurance premium X has to condition on public information

I ⇒ X has to be measurable with respect to

F = {∅,{YH,YS},{OH,OS},Ω}
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Review of Probability

Random Variables

Functions of a Random Variable
I Let g : R 7→ R be a function, and X a random variable.

I Then
Y = g(X)

is a random variable.

I Example:
X = years of education
Y = attended some college = 1(X > 12)

I Probability of the event Y ∈ AY ∈FY = FX :

P(Y ∈ AY ) = PY (AY )

= PX ({x ∈ R : g(x) ∈ AY})
= P({ω : g(X(ω)) ∈ AY})
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Review of Probability

Random Variables

Figure: Functions of random variables

RΩ R

X g

Y

10 / 55



Review of Probability

Random Variables

Distribution functions (scalar case)
I The cumulative distribution function (CDF) of a random

variable X is defined as FX : R 7→ R

FX (x) :=P(X ≤ x)

=PX ((−∞,x])

=P({ω : X(ω)≤ x})
I Example:

X = income
FX (20.000) = share of population with incomes below 20k

Practice problem

Show that , for x2 ≥ x1,

FX (x2)−FX (x1) = P(x1 < X ≤ x2).
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Review of Probability

Random Variables

Figure: cumulative distribution function
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Review of Probability

Random Variables

Properties of the CDF

1. FX (·) is non-decreasing

2.
lim

x→−∞
FX (x) = 0

lim
x→∞

FX (x) = 1

3. FX (·) is right-continuous everywhere:
For all x ∈ R,

lim
h↓0

FX (x + h) = FX (x).

Practice problem

Show that properties 1 and 2 hold, based on the definition of a CDF
and the properties of probability measures.
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Review of Probability

Random Variables

Quantiles

I quantiles are given by the inverse of the cumulative distribution
function

Q(u) := inf{x : F(x)≥ u}

I if F is invertible:
Q(u) = F−1(u)

I what’s the value of x , such that a population share of u is below
that x?

I Example: what’s the income such that 99% of the population are
below that income?

I special case: median, Q(0.5)
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Review of Probability

Random Variables

Figure: CDF and quantile function
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Review of Probability

Random Variables

I For any function F that satisfies the three properties we showed,
one can construct a random variable whose distribution is F :

I Let U be uniformly distributed on [0,1] (FU(u) = u),

I Let
Y = Q(U),

where Q is the quantile function corresponding to F

I Then

FY (y) = P(F−1(U)≤ y) = P(U ≤ F(y)) = F(y)

I Useful for simulations!

I The CDF uniquely determines the probability measure PX
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Review of Probability

Random Variables

Discrete random variables

I If FX is constant except for a countable number of points
x1,x2, . . . (i.e., F is a step function)

I then X is a discrete random variable.

I the size of the jump

pi = FX (xi)− lim
h↓0

FX (xi −h)

is the probability that X takes on the value xi :

P(X = xi) = pi .
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Review of Probability

Random Variables

I Let
fX (x) = pi

if x = xi and 0 otherwise.

I Then fX is the probability mass function (pmf) of X

I we get
P(x1 < X ≤ x2) = ∑

x1<x≤x2

fX (x).

I Examples:
I Coinflip:

fX (0) = fX (1) =
1
2

I Years of education (completed):
fX (y) = share of population with exactly y years of edu
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Review of Probability

Random Variables

Continuous random variables

I If the CDF can be written as

FX (x) =
∫ x

−∞

fX (u)du

for some function fX (x)

I then X is called a continuous random variable

I At continuity points of fX , it then must be that

fX (x) = dFX (x)/dx

by the Fundamental Theorem of Calculus

I The function fX is called the probability density function of X
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Review of Probability

Random Variables

I for x2 ≥ x1

P(x1 < X ≤ x2) = FX (x2)−FX (x1)

=
∫ x2

x1

fX (x)dx

I Also, P(X = x) =
∫ x

x fX (u)du = 0 for a continuous RV.
I Examples: (approximately continuous)

I Income
I Hourly wage
I Prices
I Quantities
I Time spent unemployed
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Review of Probability

Random Variables

Example

I Suppose
FX (x) = 1−e−x

for x ≥ 0 and FX (x) = 0 for x < 0

I This is called the exponential distribution.

I Probability density of X :

fX (x) =
dFX (x)

dx
=

{
d(1−e−x )

dx = e−x for x ≥ 0
d0
dx = 0 for x < 0

I The support (set of points with positive pdf) of X is [0,∞).
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Review of Probability

Random Variables

Bivariate Distribution Functions

I 2 dimensional vector of random variables (X ,Y ) is a
(measurable) mapping from Ω to R2.

I joint CDF

FX ,Y (x ,y) = P(X ≤ x ,Y ≤ y)

= P({ω : X(ω)≤ x}∩{ω : Y (ω)≤ y})
= PX ,Y ((−∞,x]× (−∞,y ])

I Example: (X ,Y ) = age and income
F(40,30.000) = share of population with
age ≤ 40 and income ≤ 30k
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Review of Probability

Random Variables

I (X ,Y ) is a discrete random vector if

FX ,Y (x ,y) = ∑
u≤x

∑
v≤y

fX ,Y (u,v),

where fX ,Y (x ,y) = P(X = x ,Y = y).

I (X ,Y ) is a continuous random vector if

FX ,Y (x ,y) =
∫ x

−∞

∫ y

−∞

fX ,Y (u,v)dvdu

for some function fX ,Y : R2 7→ R.
I As in the scalar case, at continuity points of fX ,Y ,

fX ,Y (x ,y) =
∂ 2FX ,Y (x ,y)

∂x∂y .
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Review of Probability

Random Variables

Marginal Distribution

I Suppose we are given FX ,Y (x ,y) and want to recover FX (x).
Then

FX (x) = PX ,Y ((−∞,x]× (−∞,∞))

= lim
y→∞

FX ,Y (x ,y)

I Intuition: P(X ≤ x) = P(X ≤ X and Y ≤ ∞)
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Review of Probability

Random Variables

I Also

fX (x) = ∑
y

fX ,Y (x ,y) in the discrete case

fX (x) =
∫

∞

−∞

fX ,Y (x ,y)dy in the continuous case

Practice problem

Prove this for the discrete case.

I FX and fX (x) are called ’marginal distribution’ and ’marginal
density’
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Review of Probability

Random Variables

Independence of random variables

I X and Y are independent if and only if

FX ,Y (x ,y) = FX (x)FY (y) for all x ,y

I This implies
fX ,Y (x ,y) = fX (x)fY (y)

for all x and y .
(in both the discrete and continuous case)

I X and Y can only be independent if the support of X does not
depend on Y and vice versa
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Review of Probability

Random Variables

I X and Y are independent if (and only if)
fX ,Y (x ,y) can be written as a product of two nonnegative
functions gx and gy

fX ,Y (x ,y) = gx (x)gy (y),

I where gx (x) does not depend on y and gy (y) does not depend
on x

I if X and Y are independent, then so are h(X) and g(Y ), for any
choice of (measurable) functions h and g.
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Review of Probability

Random Variables

Conditional distributions
I Let X and Y be discrete.

Let x be such that fX (x) > 0.
I Then

fY |X (y |x) := P(Y = y |X = x) =
fX ,Y (x ,y)

fX (x)
.

I fY |X (y |x) is called the conditional pdf of Y given X = x .
I Properties:

fY |X (y |x)≥ 0

∑
y

fY |X (y |x) = ∑
y

fX ,Y (x ,y)

fX (x)

=
fX (x)

fX (x)
= 1

I ⇒ fY |X (y |x) is a well defined pdf of a discrete RV.
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Review of Probability

Random Variables

I continuous random variables,
for any x such that fX (x) > 0:

fY |X (y |x) :=
fX ,Y (x ,y)

fX (x)

I conditional pdf of Y given X = x

I as long as fX (x) > 0, fY |X (y |x) is a well defined pdf:

fY |X (y |x)≥ 0∫
∞

−∞

fY |X (y |x)dy = 1
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Review of Probability

Random Variables

I The conditional cdf is

FY |X (y |x) = P(Y ≤ y |X = x)

=
∫ y

−∞

fY |X (v |x)dv

or ∑
v≤y

fY |X (v |x)

I Note:
FY |X (y |x) 6= FY ,X (y ,x)/FX (x)!

I For independent random variables, fX ,Y (x ,y) = fX (x)fY (y), so
that

fY |X (y |x) = fY (y).

30 / 55



Review of Probability

Expectations

Expectations
I expectation of a discrete random variable:

E[X ] = ∑
x

xfX (x)

if ∑x |x |fX (x) < ∞.
Otherwise, the expectation is said not to exist.

I expectation of a continuous random variable:

E[X ] =
∫

∞

−∞

xfX (x)dx

if
∫

∞

−∞
|x |fX (x)dx < ∞.

Otherwise, the expectation is said not to exist.
I Riemann-Stieltjes integral – this can be summarized as

E[X ] =
∫

∞

−∞

xdFX (x).
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Review of Probability

Expectations

Linearity

I sums and integrals are linear, so is the expectation:

I For a random variable X and real numbers a and b

E[aX + b] = aE[X ] + b

I provided the expectations of X exists.
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Review of Probability

Expectations

Expectation of g(X)
I two ways to get E[Y ] for Y = g(X)

I

E[Y ] =
∫

∞

−∞

ydFY (y)

E[g(X)] =
∫

∞

−∞

g(x)dFX (x)

I proof for the discrete case:

∑
y

yfY (y) = ∑
y

y(∑
x

1[g(x) = y ]fX (x))

= ∑
x

∑
y

y1[g(x) = y ]fX (x)

= ∑
x

g(x)fX (x)
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Review of Probability

Expectations

Practice problem

1. Suppose X takes on the values {−1,0,1} with probability 1/3.
Let Y = g(X) = X 2.

I What is the pdf of Y ?
I Calculate the expectation of Y in two ways.

2. Suppose X is distributed uniformly on [0,1]
(FX (x) = x for x ∈ [0,1]).

I Calculate E[X ].
I Calculate E[X 2].
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Review of Probability

Expectations

I Probabilities as expectations:

P(X ∈ AX )

=E[1(X ∈ AX )]

=
∫

∞

−∞

1(x ∈ AX )dFX (x)

I Expectation of a function of several variables:
Let Z = h(X ,Y ), (X ,Y ) continuous. Then

E[Z ] =
∫

∞

−∞

zfZ (z)dz

=
∫

∞

−∞

∫
∞

−∞

h(x ,y)fX ,Y (x ,y)dxdy
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Review of Probability

Expectations

I by linearity, for any two random variables X and Y and real
numbers a and b,

E[aX + bY ] = aE[X ] + bE[Y ].

I if X and Y are independent,

E[XY ] =
∫

∞

−∞

∫
∞

−∞

xyfX (x)fY (y)dxdy

=
∫

∞

−∞

xfX (x)dx
∫

∞

−∞

yfY (y)dy

= E[X ]E[Y ]
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Review of Probability

Expectations

Moments

I k th moment of X : E[X k ]

I first moment: mean, µ = E[X ]
– a measure of location.

I k th centered moment: E[(X −µ)k ].

I second centered moment: variance σ2

– a measure of spread

σ
2 = E[(X −µ)2] = E[X 2−2µX + µ

2] = E[X 2]−µ
2

I square root of the variance, σ : standard deviation.
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Review of Probability

Expectations

I All odd centered moments are zero for RVs with symmetric
distribution
(i.e. fX (µ + x) = fX (µ− x) for all x).

I third centered moment: ’skewness’

I fourth centered moment: ’kurtosis’
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Review of Probability

Expectations

Moments for vector valued random variables
I suppose X = X = (X1, · · · ,Xn)′

I mean µ = E[X ], is defined as the n×1 vector

µ =

 E[X1]
...

E[X2]


I covariance matrix:

Σ = E[(X −µ)(X −µ)′]

I covariance between Xi and Xj :
σij = E[(Xi −µi)(Xj −µj)]

I Note that σij = σji , so that Σ is symmetric (Σ′ = Σ)
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Review of Probability

Expectations

I Let α and β be n×1 non-stochastic vectors.

I

E[α ′X ] = α
′
µX

Var [α ′X ] = α
′Σα ≥ 0

I ⇒ Σ is positive semi-definite.

I covariance between α ′X and β ′X :

E[(α
′X −α

′
µX )(β

′X −β
′
µX )] = α

′Σβ
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Expectations

Correlation

I Let ρij = σij/
√

σiiσjj . Then ρij is called the correlation between
Xi and Xj .

I Since Σ is positive semi-definite, so is

V =

(
σii σij

σji σjj

)
I thus

0≤ |V |= σiiσjj −σ
2
ij

I and −1≤ ρij ≤ 1.

I If Xi and Xj are independent, then ρij = σij = 0
(the converse is false)
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Review of Probability

Expectations

Conditional Expectations

I conditional expectation of Y given X = x (for fX (x) > 0):

I the expectation of Y with respect to the conditional probability
density fY |X (y |x)

I continuous case:

µY (x) = E[Y |X = x] =
∫

∞

−∞

yfY |X (y |x)dy

which is a function that depends on x .

I Viewed as such, µY (x) = E[Y |X = x] is sometimes called a
regression function.
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Review of Probability

Expectations

I Examples:
I average income Y for women (X = 0) and men (X = 1)
I share of unemployed (Y = 1) for people of different ages X

I Since µY (x) = E[Y |X = x] is a function R 7→ R,

I µY (X) = E[Y |X ] is a random variable
– functions of random variables are random variables.

I don’t need to worry about a definition of E[Y |X = x] for x with
fX (x) = 0, since the probability of observing X such x is zero.
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Review of Probability

Expectations

Law of iterated expectations
Theorem

For Random Variables X and Y , E[E[Y |X ]] = E[Y ]
(provided the expectations exist.)

Proof for the continuous case:

E[E[Y |X ]] =
∫

∞

−∞

∫
∞

−∞

yfY |X (y |x)dyfX (x)dx

=
∫

∞

−∞

∫
∞

−∞

yfY |X (y |x)fX (x)dydx

=
∫

∞

−∞

∫
∞

−∞

yfX ,Y (x ,y)dydx

=
∫

∞

−∞

y
∫

∞

−∞

fX ,Y (x ,y)dxdy

=
∫

∞

−∞

yfY (y)dy = E[Y ]
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Expectations

Alternative definition of conditional expectations

I Can also think of conditional expectation as an orthogonal
projection

I gives useful geometric intuition!

I Space of random variables (on Ω)
with E[X 2] < ∞

I equipped with inner product

〈X ,Y 〉 := E[X ·Y ]

I so-called L2 space
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Expectations

I Then E[Y |X ] is the orthogonal projection of Y
on the space of random variables which are functions of X

I µ(.) minimizes mean squared prediction error,

µ(.) = argmin
m(.)

E[(Y −m(X))2]

I implications:
1. orthogonal projections are linear
2. law of iterated expectations ∼ iterated projections
3. regression residuals are orthogonal to predictors

I can also project on other spaces,
eg. space of linear functions of X
⇒ best linear predictor
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Expectations

Practice problem

I Find the coefficients β = (β0,β1)

I of the best linear predictor

I for Y given X ,

β = argmin
b

E[(Y −b0−b1X)2].
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Transformation of variables

Transformation of Variables

I Let X be a random variable with cdf FX .

I Let Y = h(X), where h : R 7→ R has range
R = {y : y = h(x),x ∈ R} and is one-to-one with inverse h−1.

I What is the distribution of Y ?

I Discrete case: For y ∈ R,

fY (y) = P(Y = y) = P(X = h−1(y)) = fX (h−1(y))

and FY (y) = ∑v≤y ,v∈R fX (h−1(v)).
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Transformation of variables

Continuous case
I first suppose that h is increasing. For y ∈ R

FY (y) = P(Y ≤ y)

= P(X ≤ h−1(y))

= FX (h−1(y))

I and

fY (y) =
dFY (y)

dy

=
dFX (h−1(y))

dy

= fX (h−1(y))
dh−1(y)

dy
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Transformation of variables

I With h decreasing,

FY (y) = P(Y ≤ y)

= P(X ≥ h−1(y))

= 1−FX (h−1(y))

I so that fY (y) =−fX (h−1(y)) dh−1(y)
dy .

I combining the increasing / decreasing results, this yields

fY (y) = fX (h−1(y))

∣∣∣∣dh−1(y)

dy

∣∣∣∣
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Transformation of variables

Special case

I interesting special case: h(x) = FX (x)

I suppose FX is continuous.

I Let F−1
X (y) be defined as the smallest x such that FX (x) = y

I Then

FY (y) =P(FX (X)≤ y)

=P(F−1
X (FX (X))≤ F−1

X (y))

=P(X ≤ F−1
X (y))

=FX (F−1
X (y)) = y

I therefore FX (X) is distributed uniformly on [0;1].
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Transformation of variables

Bivariate case
I Let X1 and X2 be 2 random variables with joint density

fX1,X2(x1,x2),
I let h(x1,x2) = (h1(x1,x2),h2(x1,x2)) be one-to-one,
I with inverse mapping h−1(y1,y2) = (h−1

1 (y1,y2),h−1
2 (y1,y2))

I denote the range of h as R.
I on R, the pdf of Y = (Y1,Y2) = h(X1,X2) is given by

fY1,Y2(y1,y2) = fX (h−1(y)) · |J(y)|

I where the Jacobian determinant J is defined as

J(y1,y2) = det

(
∂h−1

1 (y1,y2)
∂y1

∂h−1
1 (y1,y2)

∂y2
∂h−1

2 (y1,y2)
∂y1

∂h−1
2 (y1,y2)

∂y2

)
.
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Transformation of variables

Practice problem

We are given that the joint pdf X1 and X2 is
fX1,X2(x1,x2) = e−(x1+x2)1[x1 ≥ 0]1[x2 ≥ 0]. What is distribution of

(Y1,Y2) = h(X1,X2) = (X1 + X2,X1−X2)?
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Transformation of variables

Solution:
I The range R is R = R×R
I h−1(y1,y2) = ( y1+y2

2 , y1−y2
2 ).

I Hence

J = det

( 1
2

1
2

1
2 −1

2

)
=−1

2

I therefore

fY 1,Y 2(y1,y2) = 1
2 e−(

y1+y2
2 +

y1−y2
2 )1[

y1 + y2

2
≥ 0]1[

y1− y2

2
≥ 0]

= 1
2 e−y11[y1 + y2 ≥ 0]1[y1 ≥ y2]
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Transformation of variables

I What is the implied distribution for Z = X1 + X2?

I

fZ (z) =fY1(y1)

=
∫

∞

−∞

fY1,Y2(y1,y2)dy2

=
∫

∞

−∞

1
2 e−y11[y1 + y2 ≥ 0]1[y1 ≥ y2]dy2

=1[y1 ≥ 0] 1
2 e−y1

∫ y1

−y1

dy2

=1[y1 ≥ 0]y1e−y1
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