# Econ 2110, fall 2016, Part Ic Review of Probability Theory 

Maximilian Kasy<br>Department of Economics, Harvard University

## Roadmap

- la
- Basic definitions
- Conditional probability and independence
- lb
- Random Variables
- Expectations
- Transformation of variables
- Ic
- Selected probability distributions
- Inequalities

Part Ic

Selected probability distributions

Inequalities

## Selected probability distributions Discrete Distributions

## Bernoulli

- $X$ takes on the values 0 and 1
- $f_{X}(1)=p$,
$f_{X}(0)=1-p$.
- Example: will a given person find a job in the next month?


## Binomial

- suppose $X_{i}$ are iid Bernoulli with parameter $p$
- let $Y=\sum_{i=1}^{n} X_{i}$
- then $Y$ takes on the values $S=\{0,1, \cdots, n\}$
- for $y \in S$

$$
f_{Y}(y)=\frac{n!}{(n-y)!\cdot y!} p^{y}(1-p)^{n-y}
$$

- Example: Number of highschool dropouts in a random sample of size $n$, when population share of dropouts is $p$


## Poisson distribution

- $X$ takes on the values $\{0,1,2, \cdots\}$

$$
f_{X}(x)=\frac{m^{x} e^{-m}}{x!}
$$

- $E[X]=\operatorname{Var}[X]=m$
- useful for modeling 'successes' that occur over intervals of time (people finding jobs, atoms decaying,...).
- limit as $n \rightarrow \infty$ of a Binomial distribution with parameter $p_{n}=m / n$
- Example: Number of people in the US finding a new job before noon today


## Continuous Distributions

## Uniform distribution:

- $f_{X}(x)=\mathbf{1}[a \leq x \leq b](b-a)^{-1}$ for $b>a$.
- Example: $F_{X}(X)$ is uniform $(0,1)$ distributed for any continuously distributed $X$


## Univariate normal distribution

- Standard normal
$Z \sim \mathscr{N}(0,1)$

$$
f_{Z}(z)=\frac{1}{\sqrt{2 \pi}} \exp \left[-\frac{1}{2} z^{2}\right]
$$

- General normal $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right)$.
- Let $X=\mu+\sigma Z$ for $\sigma>0$.
- from the transformation formula we get

$$
f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}\right]
$$

- $E[X]=\mu$, $E\left[X^{2}\right]=\sigma^{2}+\mu^{2}$, $E\left[(X-\mu)^{2}\right]=\sigma^{2}$ and $E\left[(X-\mu)^{4}\right]=3 \sigma^{4}$
- Importance of normals:
averages of independent stuff are approximately normal
- central limit theorem - see part IV of class
- Examples: test scores, asset returns, physical height


## Chi-Squared distribution

- now come several distributions derived from the standard normal
- very useful for constructing confidence sets and tests (Part IV of class)
- we already did linear transformations, how about squares?
- let $X_{i} \sim \operatorname{iid} \mathscr{N}(0,1)$
- let $Y=\sum_{i=1}^{k} X_{i}^{2}$
- then $Y$ is distributed chi-squared with $k$ degrees of freedom
- $Y \sim \chi_{k}^{2}$
- $E[Y]=k$
and $\operatorname{Var}[Y]=2 k$ (Why?)


## F-distribution

- let $Y_{1} \sim \chi_{k}^{2}$ and $Y_{2} \sim \chi_{1}^{2}$
- where $Y_{1}$ and $Y_{2}$ are independent
- let

$$
Q=\frac{Y_{1} / k}{Y_{2} / l}
$$

- then $Q$ is distributed $F$ with $k$ degrees of freedom in the numerator and / degrees of freedom in the denominator
- $Q \sim F_{k, I}$


## Student's t-distribution

- let $Z \sim \mathscr{N}(0,1)$, and $Y \sim \chi_{k}^{2}$
- where $Z$ and $Y$ are independent
- let

$$
T=\frac{Z}{\sqrt{Y / k}}
$$

- then $T$ is distributed student-t with $k$ degrees of freedom
- $T \sim t_{k}$


## Multivariate Normal Distribution

- $X=\left(X_{1}, \cdots, X_{n}\right)$ has a multivariate normal distribution
- if and only if $\alpha^{\prime} X$ is normally distributed
- for all $\alpha \in \mathbb{R}^{n}$.
- This definition allows that $P\left(\alpha^{\prime} X=0\right)=1$ for some $\alpha$.
- $X$ multivariate normal $\Rightarrow X_{i}$ is normally distributed.
- The mean and covariance matrix of $X$ exist.
- Denote them by $\mu$ and $\Sigma$
- Let $\alpha$ be any nonstochatic $n \times 1$ vector. Then $Y=\alpha^{\prime} X$ is normal with mean and variance

$$
E\left[\alpha^{\prime} X\right]=\mu^{\prime} \alpha \quad \text { and } \quad \operatorname{Var}\left[a^{\prime} X\right]=a^{\prime} \Sigma a
$$

- let $\beta$ be a $k \times 1$ nonstochastic vector, and let $B$ and be $n \times k$. let $Y=\beta+B^{\prime} X$. then

$$
Y \sim \mathscr{N}\left(\beta+B^{\prime} \mu, B^{\prime} \Sigma B\right)
$$

## Density of multivariate normal

- Can derive it from density of standard normal.
- If $Z \sim \mathscr{N}_{n}\left(0, I_{n}\right)$, then $Z_{i}$ are iid standard normal.
- Independence $\Rightarrow$ joint density is product of densities

$$
f_{z}(z)=\prod_{i=1}^{n}(2 \pi)^{-1 / 2} \exp \left[-\frac{1}{2} z_{i}^{2}\right]=(2 \pi)^{-n / 2} \exp \left[-\frac{1}{2} z^{\prime} z\right]
$$

- suppose $\Sigma$ is full rank let $X=\Sigma^{1 / 2} Z+\mu$, with inverse transformation $Z=\Sigma^{-1 / 2}(X-\mu)$
- $\Rightarrow X \sim N(\mu, \Sigma)$
- Jacobian of the transformation: $\left|\Sigma^{-1 / 2}\right|=|\Sigma|^{-1 / 2}$
- $\Rightarrow$ by the transformation formula

$$
f_{X}(x)=(2 \pi)^{-n / 2}|\Sigma|^{-1 / 2} \exp \left[-\frac{1}{2}(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)\right]
$$

## Conditional distribution of multivariate normal

Let

$$
X=\binom{X_{1}}{X_{2}} \sim \mathscr{N}\left(\binom{\mu_{1}}{\mu_{2}},\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)\right)
$$

- $X_{1}$ and $X_{2}$ are independent if and only if $\Sigma_{12}=0$. (holds only for normals!)
- Suppose $\Sigma_{22}$ is full rank.
- Then the conditional distribution of $X_{1}$, given $X_{2}=x_{2}$, is given by

$$
X_{1} \mid X_{2}=x_{2} \sim \mathscr{N}\left(\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(x_{2}-\mu_{2}\right), \Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right) .
$$

- The regression function

$$
\mu_{X_{1}}\left(x_{2}\right)=E\left[X_{1} \mid X_{2}=x_{2}\right]
$$

is linear in $x_{2}$.

- This holds for normals, but not in general!


## Proposition

Let $A$ be an $n \times n$ matrix which is

- symmetric: $A^{\prime}=A$
- idempotent: $A^{2}=A$.

If $Z \sim N(0, I)$, then

$$
s^{2}:=Z^{\prime} A Z \sim \chi_{p}^{2}
$$

where $p$ is the trace of $A$.

## Proof:

- Symmetric matrices have orthonormal eigenvectors $P$
- Eigenvalue decomposition:

$$
A=P \wedge P^{\prime}
$$

- Let $\tilde{Z}=P^{\prime} Z$. Then $\operatorname{Var}(\tilde{Z})=P P^{\prime}=I$,

$$
\widetilde{Z} \sim N(0, l)
$$

and

$$
s^{2}=Z^{\prime} A Z=\widetilde{Z}^{\prime} \Lambda \widetilde{Z}=\sum \lambda_{i} \widetilde{Z}_{i}^{2} .
$$

- Idempotent matrices have eigenvalues $\lambda_{i}$ equal to 0 or 1 .
- $\operatorname{tr}(A)=\sum \lambda_{i}$.


## Proposition (Distribution of t-statistic)

- Suppose $X_{i} \sim i i d \mathscr{N}\left(\mu, \sigma^{2}\right)$.
- Let $\bar{x}=\frac{1}{n} e^{\prime} X$, where $e=(1, \ldots, 1)$
- Let $s^{2}=\frac{1}{n-1} \sum\left(X_{i}-\bar{x}\right)^{2}$
- Then

$$
\frac{\sqrt{n}(\bar{x}-\mu)}{\sqrt{s^{2}}} \sim t_{n-1}
$$

## Proof:

- the claim follows if we can show that

1. $\sqrt{n}(\bar{x}-\mu) \sim N\left(0, \sigma^{2}\right)$
2. $\frac{1}{\sigma^{2}} s^{2} \sim \chi_{n-1}^{2}$
3. $\bar{x}$ and $s^{2}$ are independent

- 1 is easy
- to show 2, rewrite

$$
s^{2}=\frac{1}{n-1} X^{\prime} M X
$$

where

$$
M=I-\frac{1}{n} e e^{\prime}
$$

is symmetric, idempotent, and has trace $n-1$

- to show 3, let $Y=M X$, so that $s^{2}=\frac{1}{n-1} Y^{\prime} Y$, note that $\bar{X}$ and $Y$ are jointly normally distributed, and

$$
\operatorname{Cov}(\bar{x}, Y)=\sigma^{2} \frac{1}{n} e^{\prime} M=0
$$

## Inequalities

- often too hard / cumbersome to compute some properties of random variables
- easier to bound these properties
- useful especially in asymptotics (part IV of class)
- allows to show that we can neglect some remainder terms in large samples, etc.


## Jensen's inequality

## Proposition

- Let $h(x)$ be a convex function $h: \mathbb{R} \mapsto \mathbb{R}$.
- Let $X$ be a random variable.
- Then

$$
E[h(X)] \geq h(E[X])
$$

Figure: Proof of Jensen's inequality


## Proof:

- convexity $\Rightarrow$ there is an a such that

$$
h(x) \geq h(E[X])+a(X-E[X])
$$

- take expectations on both sides

$$
E[h(x)] \geq h(E[X])+a(E[X]-E[X])=h(E[X])
$$

## Markov's inequality

## Proposition

- Suppose $X$ is a random variable,
- $X \geq 0$, and $E[X]<\infty$.
- Then, for all $M>0$

$$
P(X \geq M) \leq \frac{E[X]}{M}
$$

Figure: Proof of Markov's inequality


## Proof:

- $X \geq 0 \Rightarrow$

$$
X \geq M \cdot \mathbf{1}(X \geq M)
$$

- Take expectations on both sides $\Rightarrow$

$$
E[X] \geq M \cdot P(X \geq M)
$$

## Chebychev Inequality

## Proposition

- Suppose $X$ is a random variable,
- such that $\sigma^{2}=\operatorname{Var}[X]<\infty$.
- Then, for all $M>0$

$$
P(|X-\mu| \geq M) \leq \frac{\sigma^{2}}{M^{2}}
$$

where $\mu=E[X]$.

## Proof:

- Let $Y=(X-\mu)^{2}$
- Apply Markov's inequality to $Y$ and the cutoff $M^{2}$

$$
P\left(Y \geq M^{2}\right) \leq \frac{E[Y]}{M^{2}}
$$

- Rewrite

$$
P(|X-\mu| \geq M) \leq \frac{\sigma^{2}}{M^{2}}
$$

