# Econ 2110, fall 2016, Part Ic Review of Probability Theory

Maximilian Kasy

Department of Economics, Harvard University

# Roadmap

- la
- Basic definitions
- Conditional probability and independence
- ► Ib
- Random Variables
- Expectations
- Transformation of variables
- ► Ic
- Selected probability distributions
- Inequalities

## Part Ic

Selected probability distributions

Inequalities

# Selected probability distributions Discrete Distributions

#### Bernoulli

- X takes on the values 0 and 1
- $f_X(1) = p$ ,  $f_X(0) = 1 - p$ .
- Example: will a given person find a job in the next month?

#### **Binomial**

- suppose X<sub>i</sub> are iid Bernoulli with parameter p
- $\blacktriangleright \text{ let } Y = \sum_{i=1}^{n} X_i$
- ▶ then Y takes on the values  $S = \{0, 1, \dots, n\}$
- for *y* ∈ *S*

$$f_Y(y) = \frac{n!}{(n-y)! \cdot y!} p^y (1-p)^{n-y}$$

Example: Number of highschool dropouts in a random sample of size n, when population share of dropouts is p

## Poisson distribution

▶ X takes on the values  $\{0,1,2,\cdots\}$ 

$$f_X(x) = \frac{m^x e^{-m}}{x!}$$

- ightharpoonup E[X] = Var[X] = m
- useful for modeling 'successes' that occur over intervals of time (people finding jobs, atoms decaying,...).
- ▶ limit as  $n \to \infty$  of a Binomial distribution with parameter  $p_n = m/n$
- Example: Number of people in the US finding a new job before noon today

#### **Continuous Distributions**

#### **Uniform distribution:**

- $f_X(x) = \mathbf{1}[a \le x \le b](b-a)^{-1}$  for b > a.
- ► Example:  $F_X(X)$  is uniform (0,1) distributed for any continuously distributed X

## Univariate normal distribution

Standard normal

$$Z \sim \mathcal{N}(0,1)$$

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}z^2\right]$$

General normal

$$X \sim \mathcal{N}(\mu, \sigma^2)$$
.

- ▶ Let  $X = \mu + \sigma Z$  for  $\sigma > 0$ .
- from the transformation formula we get

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right]$$

- ►  $E[X] = \mu$ ,  $E[X^2] = \sigma^2 + \mu^2$ ,  $E[(X - \mu)^2] = \sigma^2$ and  $E[(X - \mu)^4] = 3\sigma^4$
- Importance of normals: averages of independent stuff are approximately normal
- central limit theorem see part IV of class
- Examples: test scores, asset returns, physical height

## Chi-Squared distribution

- now come several distributions derived from the standard normal
- very useful for constructing confidence sets and tests (Part IV of class)
- we already did linear transformations, how about squares?
- ▶ let  $X_i \sim iid \mathcal{N}(0,1)$
- ▶ let  $Y = \sum_{i=1}^{k} X_i^2$
- then Yis distributed chi-squared with k degrees of freedom
- $ightharpoonup Y \sim \chi_k^2$
- ► E[Y] = kand Var[Y] = 2k (Why?)

#### F-distribution

- let  $Y_1 \sim \chi_k^2$  and  $Y_2 \sim \chi_l^2$
- ▶ where Y<sub>1</sub> and Y<sub>2</sub> are independent
- ▶ let

$$Q = \frac{Y_1/k}{Y_2/I}$$

- ▶ then Q is distributed F with k degrees of freedom in the numerator and I degrees of freedom in the denominator
- $ightharpoonup Q \sim F_{k,l}$

## Student's t-distribution

- ▶ let  $Z \sim \mathcal{N}(0,1)$ , and  $Y \sim \chi_k^2$
- where Z and Y are independent
- let

$$T = \frac{Z}{\sqrt{Y/k}}$$

- ▶ then *T* is distributed student-t with *k* degrees of freedom
- $ightharpoonup T \sim t_k$

## Multivariate Normal Distribution

- $X = (X_1, \dots, X_n)$  has a multivariate normal distribution
- if and only if  $\alpha'X$  is normally distributed
- for all  $\alpha \in \mathbb{R}^n$ .
- ▶ This definition allows that  $P(\alpha'X = 0) = 1$  for some  $\alpha$ .

- ▶ *X* multivariate normal  $\Rightarrow$   $X_i$  is normally distributed.
- The mean and covariance matrix of X exist.
- ▶ Denote them by  $\mu$  and  $\Sigma$
- Let  $\alpha$  be any nonstochatic  $n \times 1$  vector. Then  $Y = \alpha' X$  is normal with mean and variance

$$E[\alpha'X] = \mu'\alpha$$
 and  $Var[a'X] = a'\Sigma a$ 

▶ let  $\beta$  be a  $k \times 1$  nonstochastic vector, and let B and be  $n \times k$ . let  $Y = \beta + B'X$ . then

$$Y \sim \mathcal{N}(\beta + B'\mu, B'\Sigma B)$$

# Density of multivariate normal

- Can derive it from density of standard normal.
- ▶ If  $Z \sim \mathcal{N}_n(0, I_n)$ , then  $Z_i$  are iid standard normal.
- ► Independence ⇒ joint density is product of densities

$$f_Z(z) = \prod_{i=1}^n (2\pi)^{-1/2} \exp[-\frac{1}{2}z_i^2] = (2\pi)^{-n/2} \exp[-\frac{1}{2}z'z].$$

- suppose  $\Sigma$  is full rank let  $X = \Sigma^{1/2}Z + \mu$ , with inverse transformation  $Z = \Sigma^{-1/2}(X \mu)$
- $ightharpoonup X \sim N(\mu, \Sigma)$
- ▶ Jacobian of the transformation:  $|\Sigma^{-1/2}| = |\Sigma|^{-1/2}$
- ▶ ⇒ by the transformation formula

$$f_X(x) = (2\pi)^{-n/2} |\Sigma|^{-1/2} \exp\left[-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)\right]$$

#### Conditional distribution of multivariate normal

Let

$$X = \left( \begin{array}{c} X_1 \\ X_2 \end{array} \right) \sim \mathcal{N} \left( \left( \begin{array}{c} \mu_1 \\ \mu_2 \end{array} \right), \left( \begin{array}{cc} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{array} \right) \right)$$

- ▶  $X_1$  and  $X_2$  are independent if and only if  $\Sigma_{12} = 0$ . (holds only for normals!)
- Suppose  $\Sigma_{22}$  is full rank.
- ▶ Then the conditional distribution of  $X_1$ , given  $X_2 = x_2$ , is given by

$$X_1|X_2=x_2\sim \mathcal{N}\left(\mu_1+\Sigma_{12}\Sigma_{22}^{-1}(x_2-\mu_2),\Sigma_{11}-\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}\right).$$

The regression function

$$\mu_{X_1}(x_2) = E[X_1|X_2 = x_2]$$

is linear in  $x_2$ .

This holds for normals, but not in general!

## **Proposition**

Let A be an  $n \times n$  matrix which is

- ▶ symmetric: A' = A
- ▶ idempotent:  $A^2 = A$ .

If  $Z \sim N(0, I)$ , then

$$s^2 := Z'AZ \sim \chi_p^2$$

where p is the trace of A.

#### **Proof:**

- Symmetric matrices have orthonormal eigenvectors P
- Eigenvalue decomposition:

$$A = P\Lambda P'$$

▶ Let  $\widetilde{Z} = P'Z$ . Then  $Var(\widetilde{Z}) = PP' = I$ ,

$$\widetilde{Z} \sim N(0, I)$$

and

$$s^2 = Z'AZ = \widetilde{Z}'\Lambda\widetilde{Z} = \sum \lambda_i\widetilde{Z}_i^2.$$

- ▶ Idempotent matrices have eigenvalues  $\lambda_i$  equal to 0 or 1.
- $\operatorname{tr}(A) = \sum \lambda_i.$

#### Proposition (Distribution of t-statistic)

- ▶ Suppose  $X_i \sim iid \mathcal{N}(\mu, \sigma^2)$ .
- ▶ Let  $\overline{x} = \frac{1}{n}e^t X$ , where e = (1, ..., 1)
- $\blacktriangleright \text{ Let } s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$
- ► Then

$$rac{\sqrt{n}(\overline{x}-\mu)}{\sqrt{s^2}}\sim t_{n-1}$$

#### **Proof:**

- the claim follows if we can show that
  - 1.  $\sqrt{n}(\overline{x} \mu) \sim N(0, \sigma^2)$
  - 2.  $\frac{1}{\sigma^2}s^2 \sim \chi_{n-1}^2$
  - 3.  $\overline{x}$  and  $s^2$  are independent
- 1 is easy
- to show 2, rewrite

$$s^2 = \frac{1}{n-1} X' M X$$

where

$$M = I - \frac{1}{n}ee'$$

is symmetric, idempotent, and has trace n-1

▶ to show 3, let Y = MX, so that  $s^2 = \frac{1}{n-1}Y'Y$ , note that  $\overline{x}$  and Y are jointly normally distributed, and

$$Cov(\overline{x}, Y) = \sigma^2 \frac{1}{n} e' M = 0.$$

## Inequalities

- often too hard / cumbersome to compute some properties of random variables
- easier to bound these properties
- useful especially in asymptotics (part IV of class)
- allows to show that we can neglect some remainder terms in large samples, etc.

# Jensen's inequality

## **Proposition**

- ▶ Let h(x) be a convex function  $h : \mathbb{R} \to \mathbb{R}$ .
- ▶ Let *X* be a random variable.
- ► Then

$$E[h(X)] \geq h(E[X]).$$

Figure: Proof of Jensen's inequality



#### **Proof:**

▶ convexity ⇒ there is an a such that

$$h(x) \ge h(E[X]) + a(X - E[X])$$

take expectations on both sides

$$E[h(x)] \ge h(E[X]) + a(E[X] - E[X]) = h(E[X]).$$

# Markov's inequality

### **Proposition**

- ► Suppose *X* is a random variable,
- ▶  $X \ge 0$ , and  $E[X] < \infty$ .
- ▶ Then, for all M > 0

$$P(X \geq M) \leq \frac{E[X]}{M}$$

Figure: Proof of Markov's inequality



#### **Proof:**

$$X \geq M \cdot \mathbf{1}(X \geq M)$$

► Take expectations on both sides ⇒

$$E[X] \ge M \cdot P(X \ge M).$$

# Chebychev Inequality

#### **Proposition**

- ► Suppose *X* is a random variable,
- ▶ such that  $\sigma^2 = Var[X] < \infty$ .
- ▶ Then, for all M > 0

$$P(|X-\mu| \geq M) \leq \frac{\sigma^2}{M^2}$$

where  $\mu = E[X]$ .

#### **Proof:**

- ▶ Let  $Y = (X \mu)^2$
- Apply Markov's inequality to Y and the cutoff M<sup>2</sup>

$$P(Y \ge M^2) \le \frac{E[Y]}{M^2}$$

Rewrite

$$P(|X-\mu| \geq M) \leq \frac{\sigma^2}{M^2}$$