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Causality and Identification

Takeaways for this part of class

1. fundamental notions of causal inference:

I causality
I structural objects
I identification

2. identification approaches:

I randomized experiments
I instrumental variables
I approaches based on conditional independence
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Causality and Identification

Roadmap

Basic concepts

Origins: systems of structural equations

Treatment effects

Instrumental variables

Conditional independence
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Causality and Identification

Causal and structural objects in economics

I Returns to schooling

I Elasticity of the tax base with respect to tax rates

I Effect of minimum wage on employment

I Effect of deworming pills on school attendance

I Price elasticity of demand for gasoline

I ...
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Causality and Identification

Correlation and causality

Do observable distributions tell us something about causality?

I College graduates earn x% more than high school graduates

I Countries with higher GDP have higher tax rates on average

I Minimum wage levels seem uncorrelated with unemployment
levels across time and space

I Gasoline consumption and gasoline price are negatively
correlated over time

I ...
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Causality and Identification

Figure: correlation and causation
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Causality and Identification

Basic concepts

Identification vs inference

Population distribution

Observations

Underlying structure

Identification

Estimation, inference

Model, 
identifying assumptions

Sampling
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Causality and Identification

Basic concepts

Identification vs inference

I goal of econometrics:
learning interesting things (hopefully)
about economic phenomena from observations.

I two separate components of econometrics:

1. identification
2. estimation and inference
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Causality and Identification

Basic concepts

Estimation and Inference

1. learning about a population distribution

2. from a finite number of observations.

3. examples:

I estimate a difference in expectations
using a difference in means

I perform inference using a t-test.
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Causality and Identification

Basic concepts

Identification

1. learning about underlying structures, causal mechanisms

2. from a population distribution.

3. example:
identify a causal effect
by a difference in expectations
if we have a randomized experiment.

I identification inverts the mapping

I from underlying structures to a population distribution

I implied by a model and identifying assumptions.
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Causality and Identification

Basic concepts

Causality

Practice problem

How would you define causality?

11 / 71



Causality and Identification

Basic concepts

“Pure” statistics

I causality is meaningless

I observations only tell us about correlations
I more generally, joint distributions

I disclaimer: few statisticians today would say this!
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Causality and Identification

Basic concepts

Sciences

I Galileo Galilei: one of the first to follow experimental ideal

I full control of experimental circumstances.

I do the same thing
⇒ same thing happens to the outcomes you measure

I variation in experimental circumstances
⇒ difference in observed outcomes ≈ causal effect

I example:
I dropping a ball from different floors of the tower of Pisa
I different time till the ball hits the ground

I crucial component:
external intervention ( “exogenous variation”)
⇒ allows to interpret correlation as causation
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Causality and Identification

Basic concepts

Social and biological sciences

I economics is not physics

I this version of the experimental ideal is not very useful

I reason: many unobserved, and unknown, factors which we
cannot hope to control

I ⇒ can never replicate experimental circumstances fully

I there is “unobserved heterogeneity.”

I Aside:
I also think we should be careful with other concepts from the
sciences; for instance “theory testing”
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Causality and Identification

Basic concepts

Social and biological sciences ctd

I not all is lost, however

I can still hope create experimental circumstances which are the
same on average

I this is the idea of a randomized experiment!
I randomly pick treatment and control groups
⇒ they are identical on average.

I “compare apples with apples.”

I many settings of interest in economics:
not possible to run experiments

I but: definition of causality is intimately tied to randomized
experiment, hypothetical or actual
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Causality and Identification

Basic concepts

Recap

I Framework discussed in part I of class
I Does not allow to talk about causality,
I only joint distributions.

I Causality in the sciences:
I Additional concept:
I External intervention / exogeneous variation
I ⇒ experiments.

I Causality in econometrics, biostatistics,...:
I Additional concept:
I Unobserved heterogeneity.
I ⇒ randomized experiments
I (or “quasi-experiments”)
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Causality and Identification

Basic concepts

Structural objects

Practice problem

How would you define “structural?”
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Causality and Identification

Basic concepts

My preferred definition

I An object is structural, if it is invariant across relevant
counterfactuals.

I Example: dropping a ball from tower of Pisa
I acceleration is the same, no matter which floor you drop it from
I also the same if you do this on the Eiffel tower
I time to ground would not be the same
I acceleration is not the same if you do this on the moon
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Causality and Identification

Basic concepts

Possibly structural objects

I “economic primitives”
I preferences
I technologies
I assumed to be invariant across policy changes

I derived objects
I demand function, as supply, and thus price, varies
I more generally causal effects, as treatment varies

19 / 71



Causality and Identification

Basic concepts

Another common use for “structural”

I full specification of parametric forms for economic primitives

I assumptions strong enough to identify these primitives
I somewhat misleading terminology:

1. less ambitious approaches with weaker assumptions
can also identify structural objects

2. if assumptions for full identification of economic primitives are
violated
then the objects identified are not structural.

20 / 71



Causality and Identification

Origins: systems of structural equations

Origins: systems of structural equations

I econometrics pioneered by “Cowles commission” starting in the
1930s

I they were interested in demand (elasticities) for agricultural goods
I introduced systems of simultaneous equations

I outcomes as equilibria of some structural relationships
I goal: recover the slopes of structural relationships
I from observations of equilibrium outcomes and exogenous shifters
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Causality and Identification

Origins: systems of structural equations

System of structural equations

Y = A ·Y +B ·Z + ε,

I Y : k -dimensional vector of equilibrium outcomes

I Z : l-dimensional vector of exogenous variables

I A: unknown k× k matrix of coefficients of interest

I B: unknown k× l matrix

I ε : further unobserved factors affecting outcomes
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Causality and Identification

Origins: systems of structural equations

Example: supply and demand

Y = (P,Q)

P = A12 ·Q+B1 ·Z + ε1 demand

Q = A21 ·P +B2 ·Z + ε2 supply

I demand function: relates prices to quantity supplied
and shifters Z and ε1 of demand

I supply function relates quantities supplied to prices
and shifters Z and ε2 of supply.

I does not really matter which of the equations puts prices on the
“left hand side.’

I price and quantity in market equilibrium: solution of this system of
equations.
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Causality and Identification

Origins: systems of structural equations

Reduced form

I solve equation Y = A ·Y +B ·Z + ε

for Y as a function of Z and ε

I bring A ·Y to the left hand side,
pre-multiply by (I−A)−1 ⇒

Y = C ·Z +η “reduced form”

C := (I−A)−1 ·B reduced form coefficients

η := (I−A)−1 · ε

I suppose E[ε|Z ] = 0 (ie., Z is randomly assigned)

I then we can identify C from

E[Y |Z ] = C ·Z .
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Causality and Identification

Origins: systems of structural equations

Exclusion restrictions

I suppose we know C

I what we want is A, possibly B

I problem: k× l coefficients in C = (I−A)−1 ·B
k× (k + l) coefficients in A and B

I ⇒ further assumptions needed

I exclusion restrictions: assume that some of the coefficients in B
or A are = 0.

I Example: rainfall affects grain supply but not grain demand
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Causality and Identification

Origins: systems of structural equations

Supply and demand continued

I suppose Z is (i) random, E[ε|Z ] = 0

I and (ii) “excluded” from the demand equation
⇒ B11 = 0

I by construction, diag(A) = 0

I therefore

Cov(Z ,P) = Cov(Z ,A12 ·Q+B1 ·Z + ε1) = A12 ·Cov(Z ,Q),

I ⇒ the slope of demand is identified by

A12 =
Cov(Z ,P)
Cov(Z ,Q)

.

I Z is an instrumental variable
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Causality and Identification

Origins: systems of structural equations

Remarks

I historically, applied researchers have not been very careful about
choosing Z for which
(i) randomization and (ii) exclusion restriction are well justified.

I since the 1980s, more emphasis on credibility of identifying
assumptions

I some additional problematic restrictions we imposed:
1. linearity
2. constant (non-random) slopes
3. heterogeneity is k dimensional and enters additively

I ⇒ causal effects assumed to be the same for everyone

I next section: framework which does not impose this
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Causality and Identification

Treatment effects

Treatment effects and potential outcomes

I coming from biostatistics / medical trials

I potential outcome framework: answer to “what if” questions

I two “treatments:” D = 0 or D = 1

I eg. placebo vs. actual treatment in a medical trial

I Yi person i ’s outcome
eg. survival after 2 years

I potential outcome Y 0
i :

what if person i would have gotten treatment 0

I potential outcome Y 1
i :

what if person i would have gotten treatment 1

I question to you: is this even meaningful?
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Causality and Identification

Treatment effects

I causal effect / treatment effect for person i :
Y 1

i −Y 0
i .

I average causal effect / average treatment effect:

ATE = E[Y 1−Y 0],

I expectation averages over the population of interest
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Causality and Identification

Treatment effects

The fundamental problem of causal inference

I we never observe both Y 0 and Y 1 at the same time
I one of the potential outcomes is always missing from the data

I treatment D determines which of the two we observe

I formally:
Y = D ·Y 1 +(1−D) ·Y 0.
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Causality and Identification

Treatment effects

Selection problem

I distribution of Y 1 among those with D = 1
need not be the same as the distribution of Y 1 among everyone.

I in particular

E[Y |D = 1] = E[Y 1|D = 1] 6= E[Y 1]

E[Y |D = 0] = E[Y 0|D = 0] 6= E[Y 0]

E[Y |D = 1]−E[Y |D = 0] 6= E[Y 1−Y 0] = ATE .
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Causality and Identification

Treatment effects

Randomization
I no selection⇔ D is random

(Y 0,Y 1)⊥ D.

I in this case,

E[Y |D = 1] = E[Y 1|D = 1] = E[Y 1]

E[Y |D = 0] = E[Y 0|D = 0] = E[Y 0]

E[Y |D = 1]−E[Y |D = 0] = E[Y 1−Y 0] = ATE .

I can ensure this by actually randomly assigning D
I independence⇒ comparing treatment and control actually

compares “apples with apples”
I this gives empirical content to the “metaphysical” notion of

potential outcomes!
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Causality and Identification

Treatment effects

Empirical example

I Krueger, A. (1999). Experimental estimates of education
production functions. The Quarterly Journal of Economics,
114(2):497–532.

I project STAR experiment

I randomly assign primarily school students (and their teachers) to
large and small classes, within schools

I estimate causal effect on test-scores, later life outcomes
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Causality and Identification

Treatment effects

Empirical example

I Bertrand, M. and Mullainathan, S. (2004). Are Emily and Greg
More Employable Than Lakisha and Jamal? A Field Experiment
on Labor Market Discrimination. American Economic Review,
94(4):991–1013.

I randomly assign names which are statistically “white” or “black” to
resumes which are sent out as job applications

I estimate causal effect on likelihood of getting invited to a job
interview
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Causality and Identification

Treatment effects

Relation to linear structural equations?
I Linear structural equations

are a special case of treatment effect framework.
I Suppose

Y = α +βD+ ε,

I where this equation is “structural.”
⇔ Coefficients and the residual stay the same
if treatment is changed.

I Then

Y 0 = α + ε

Y 1 = α +β + ε,

I and ATE = β .
I Note: Causal effects are the same for everyone in the linear

framework.
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Causality and Identification

Treatment effects

Nonlinear structural equations

I without imposing linearity / restrictions on the dimension of
heterogeneity:

Y = g(D,ε).

I equivalent to potential outcomes

I potential outcomes notation: more compact

I structural function notation: more explicit
which determinants are held constant to define causal effects in
more complex settings? Eg.

Y = g(D,X ,W ,ε)
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Causality and Identification

Instrumental variables

Instrumental variables

I recall: simultaneous equations models with exclusion restrictions

I ⇒ instrumental variables

β =
Cov(Z ,Y )

Cov(Z ,D)
.

I we will now give a new interpretation to β

I using the potential outcomes framework, allowing for
heterogeneity of treatment effects

I “Local Average Treatment Effect” (LATE)

37 / 71



Causality and Identification

Instrumental variables

Empirical example

I Angrist, J.D. and Krueger, A.B. (1991). Does compulsory
school attendance affect schooling and earnings? The Quarterly
Journal of Economics, 106(4):979–1014.

I compare individuals born in different quarters of the year

I school start age and structure compulsory schooling laws

I ⇒ people born late in the year have to stay in school longer

I quarter of birth as an instrument for educational attainment in
estimates of returns to schooling

I estimates effect for those affected by compulsory schooling laws
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Causality and Identification

Instrumental variables

6 assumptions

Angrist, J., Imbens, G., and Rubin, D. (1996). Identification of
causal effects using instrumental variables. Journal of the American
Statistical Association, 91(434):444–455.

1. Z ∈ {0,1}, D ∈ {0,1}
2. Y = D ·Y 1 +(1−D) ·Y 0

3. D = Z ·D1 +(1−Z ) ·D0

4. D1 ≥ D0

5. Z ⊥ (Y 0,Y 1,D0,D1)

6. Cov(Z ,D) 6= 0
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Causality and Identification

Instrumental variables

Discussion of assumptions
Generalization of randomized experiment

I D is “partially randomized”

I instrument Z is randomized

I D depends on Z , but is not fully determined by it

1. Binary treatment and instrument:
both D and Z can only take two values
results generalize, but things get messier without this

2. Potential outcome equation for Y : Y = D ·Y 1 +(1−D) ·Y 0

I exclusion restriction: Z does not show up in the equation
determining the outcome.

I “stable unit treatment values assumption” (SUTVA): outcomes are
not affected by the treatment received by other units.
excludes general equilibrium effects or externalities.
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Causality and Identification

Instrumental variables

3. Potential outcome equation for D: D = Z ·D1 +(1−Z ) ·D0

SUTVA; treatment is not affected by the instrument values of
other units

4. No defiers: D1 ≥ D0

I four possible combinations for the potential treatments (D0,D1) in
the binary setting

I D1 = 0,D0 = 1, is excluded
I ⇔ monotonicity
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Causality and Identification

Instrumental variables

Table: No defiers

D0 D1

Never takers (NT) 0 0
Compliers (C) 0 1
Always takers (AT) 1 1
Defiers 1 0

Practice problem

Who do you think are the compliers for the quarter of birth instrument?
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Causality and Identification

Instrumental variables

5. Randomization: Z ⊥ (Y 0,Y 1,D0,D1)

I Z is (as if) randomized.
I in applications, have to justify both exclusion and randomization
I no reverse causality, common cause!

6. Instrument relevance: Cov(Z ,D) 6= 0

I guarantees that the IV estimand is well defined
I there are at least some compliers
I testable
I near-violation: weak instruments
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Causality and Identification

Instrumental variables

Graphical illustration

Z=1

Z=0

Never takers Compliers Always takers

D=0 D=1

44 / 71



Causality and Identification

Instrumental variables

Illustration explained
I 3 groups, never takers, compliers, and always takers
I by randomization of Z :

each group represented equally given Z = 0 / Z = 1
I depending on group:

observe different treatment values and potential outcomes.
I will now take the IV estimand

Cov(Z ,Y )

Cov(Z ,D)

I interpret it in terms of potential outcomes:
average causal effects for the subgroup of compliers

I idea of proof:
take the “top part” of figure 49, and subtract the “bottom part.”
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Causality and Identification

Instrumental variables

Preliminary result:

If Z is binary, then

Cov(Z ,Y )

Cov(Z ,D)
=

E[Y |Z = 1]−E[Y |Z = 0]
E[D|Z = 1]−E[D|Z = 0]

.

Practice problem

Try to prove this!
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Causality and Identification

Instrumental variables

Proof

I Consider the covariance in the numerator:

Cov(Z ,Y ) = E[YZ ]−E[Y ] ·E[Z ]
=E[Y |Z = 1]·E[Z ]−(E[Y |Z = 1]·E[Z ]−E[Y |Z = 0]·E[1−Z ])·E[Z ]

= (E[Y |Z = 1]−E[Y |Z = 0]) ·E[Z ] ·E[1−Z ].

I Similarly for the denominator:

Cov(Z ,D) = (E[D|Z = 1]−E[D|Z = 0]) ·E[Z ] ·E[1−Z ].

I The E[Z ] ·E[1−Z ] terms cancel when taking a ratio
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Causality and Identification

Instrumental variables

The “LATE” result

E[Y |Z = 1]−E[Y |Z = 0]
E[D|Z = 1]−E[D|Z = 0]

= E[Y 1−Y 0|D1 > D0]

Practice problem

Try to prove this!

Hint: decompose E[Y |Z = 1]−E[Y |Z = 0] in 3 parts
corresponding to our illustration
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Causality and Identification

Instrumental variables

Z=1

Z=0

Never takers Compliers Always takers

D=0 D=1
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Causality and Identification

Instrumental variables

Proof
I “top part” of figure:

E[Y |Z = 1] = E[Y |Z = 1,NT ] ·P(NT |Z = 1)

+E[Y |Z = 1,C] ·P(C|Z = 1)

+E[Y |Z = 1,AT ] ·P(AT |Z = 1)

= E[Y 0|NT ] ·P(NT )+E[Y 1|C] ·P(C)+E[Y 1|AT ] ·P(AT ).

I first equation relies on the no defiers assumption
I second equation uses the exclusion restriction and randomization

assumptions.
I Similarly

E[Y |Z = 0] = E[Y 0|NT ] ·P(NT )+

E[Y 0|C] ·P(C)+E[Y 1|AT ] ·P(AT ).
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Causality and Identification

Instrumental variables

proof continued:

I Taking the difference, only the complier terms remain, the others
drop out:

E[Y |Z = 1]−E[Y |Z = 0] =
(
E[Y 1|C]−E[Y 0|C]

)
·P(C).

I denominator:

E[D|Z = 1]−E[D|Z = 0] = E[D1]−E[D0]

= (P(C)+P(AT ))−P(AT ) = P(C).

I taking the ratio, the claim follows. �
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Causality and Identification

Instrumental variables

Recap

LATE result:

I take the same statistical object economists estimate a lot

I which used to be interpreted as average treatment effect

I new interpretation in a more general framework

I allowing for heterogeneity of treatment effects

I ⇒ treatment effect for a subgroup

Practice problem

Is the LATE, E[Y 1−Y 0|D1 > D0], a structural object?
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Causality and Identification

Instrumental variables

An alternative approach: Bounds

I keep the old structural object of interest: average treatment
effect

I but analyze its identification in the more general framework with
heterogeneous treatment effects

I in general: we can learn something, not everything

I ⇒ bounds / “partial identification”

Manski, C. (2003). Partial identification of probability distributions.
Springer Verlag.
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Causality and Identification

Instrumental variables

Same assumptions as before

1. Z ∈ {0,1}, D ∈ {0,1}
2. Y = D ·Y 1 +(1−D) ·Y 0

3. D = Z ·D1 +(1−Z ) ·D0

4. D1 ≥ D0

5. Z ⊥ (Y 0,Y 1,D0,D1)

6. Cov(Z ,D) 6= 0

additionally:

7. Y is bounded, Y ∈ [0,1]
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Causality and Identification

Instrumental variables

Decomposing ATE in known and unknown components

I decompose E[Y 1]:

E[Y 1] = E[Y 1|NT ] ·P(NT )+E[Y 1|C∨AT ] ·P(C∨AT ).

I terms that are identified:

E[Y 1|C∨AT ] = E[Y |Z = 1,D = 1]

P(C∨AT ) = E[D|Z = 1]

P(NT ) = E[1−D|Z = 1]

and thus

E[Y 1|C∨AT ] ·P(C∨AT ) = E[YD|Z = 1].
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Causality and Identification

Instrumental variables

I Data tell us nothing about is E[Y 1|NT ].
Y 1 is never observed for never takers.

I but we know, since Y is bounded, that

E[Y 1|NT ] ∈ [0,1]

I Combining these pieces, get upper and lower bounds on E[Y 1]:

E[Y 1] ∈ [E[YD|Z = 1],

E[YD|Z = 1]+E[1−D|Z = 1]].
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Causality and Identification

Instrumental variables

I For Y 0, similarly

E[Y 0] ∈ [E[Y (1−D)|Z = 0],

E[Y (1−D)|Z = 0]+E[D|Z = 0]].

I Data are uninformative about E[Y 0|AT ].

Practice problem

Show this.
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Causality and Identification

Instrumental variables

Combining to get bounds on ATE

I lower bound for E[Y 1], upper bound for E[Y 0]⇒ lower bound on
E[Y 1−Y 0]

E[Y 1−Y 0]≥ E[YD|Z = 1]−E[Y (1−D)|Z = 0]−E[D|Z = 0]

I upper bound for E[Y 1], lower bound for E[Y 0]
⇒ upper bound on E[Y 1−Y 0]

E[Y 1−Y 0]≤E[YD|Z = 1]−E[Y (1−D)|Z = 0]+E[1−D|Z = 1]
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Causality and Identification

Instrumental variables

Between randomized experiments and nothing

I bounds on ATE:

E[Y 1−Y 0] ∈ [E[YD|Z = 1]−E[Y (1−D)|Z = 0]−E[D|Z = 0],

E[YD|Z = 1]−E[Y (1−D)|Z = 0]+E[1−D|Z = 1]].

I length of this interval:

E[1−D|Z = 1]+E[D|Z = 0] = P(NT )+P(AT ) = 1−P(C)
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Causality and Identification

Instrumental variables

I Share of compliers→ 1
I interval (“identified set”) shrinks to a point
I In the limit, D = Z
I thus (Y 1,Y 0)⊥ D – randomized experiment

I Share of compliers→ 0
I length of the interval goes to 1
I In the limit the identified set is the same as without instrument
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Causality and Identification

Conditional independence

Conditional independence

I Two generalizations of randomized experiments:

I last section:
Generalizing from D random
to Z random.

I this section:
Generalizing from D random
to D random conditional on covariates X .

I If that’s the case,
“comparing apples with apples”
only requires comparing units with the same values of X .
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Causality and Identification

Conditional independence

Assumptions

1. D ∈ {0,1}
2. Y = D ·Y 1 +(1−D) ·Y 0

3. (Y 1,Y 0)⊥ D|X
4. 0 < p(X)< 1 for almost all X , where p(X) = P(D = 1|X)
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Causality and Identification

Conditional independence

Discussion of assumptions

1. Binary treatment:
easy to generalize the following to arbitrary support of D.

2. Potential outcome equation for Y : Y = D ·Y 1 +(1−D) ·Y 0

same as before (SUTVA!).
3. Conditional independence: (Y 1,Y 0)⊥ D|X

I within subgroups defined by X , we essentially have a randomized
experiment.

I somewhat hard to justify in practice
I best thought of as a plausible approximation, if X captures the

main components of heterogeneity which might drive dependence
between potential outcomes and treatment
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Causality and Identification

Conditional independence

4. Overlapping support: 0 < p(X)< 1
I there are no groups, defined by X , for which everybody (or

nobody) was treated.
I can be checked directly in the data (like instrument relevance)

Under these assumptions, the average treatment effect is identified

Practice problem

Try to prove this!
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Causality and Identification

Conditional independence

Identification of ATE,
proof using regression

I conditional expectation of outcomes given covariates and
treatment:

E[Y |X ,D = 1] = E[Y 1|X ,D = 1] = E[Y 1|X ].

I first equality holds by the potential outcomes equation.

I second equality uses conditional independence.

I E[Y |X ,D = 1] is identified as long as p(X)> 0.

I law of iterated expectations,
averaging across the distribution of X ⇒

E[Y 1] = EX [E[Y
1|X ]] = EX [E[Y |X ,D = 1]].
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Causality and Identification

Conditional independence

I note that
EX [E[Y |X ,D = 1]] 6= E[Y |D = 1]!

I left hand term averages E[Y |X ,D = 1] over the marginal
distribution of X

I right hand term averages E[Y |X ,D = 1] over the conditional
distribution of X given D.

I similarly for D = 0

E[Y 0] = EX [E[Y
0|X ]] = EX [E[Y |X ,D = 0]].

I average treatment effect is identified by

E[Y 1−Y 0] = EX [E[Y |X ,D = 1]−E[Y |X ,D = 0]].
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Causality and Identification

Conditional independence

Identification of ATE,
proof using reweighting

I intuition: units for which p(X) is small
are under-represented among the observations such that D = 1

I need to upweight them in order to get the distribution of Y 1

I upweight by factor 1/p(x) – “inverse probability weighting”
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Causality and Identification

Conditional independence

I Law of iterated expectations, D binary⇒

E[YD|X ] = E[YD|X ,D = 1] ·p(X)+E[YD|X ,D = 0] · (1−p(X))

= E[Y |X ,D = 1] ·p(X)

I Potential outcome equation, conditional independence⇒

E[Y |X ,D = 1] = E[Y 1|X ]

I Rearranging⇒

E
[

D
p(X) ·Y

∣∣∣X]= E[Y 1|X ]

I Iterated expectations, again⇒

E
[

D
p(X) ·Y

]
= E[Y 1]
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Causality and Identification

Conditional independence

I Similar argument for D = 0⇒

E

[
1−D

1−p(X)
·Y
]
= E[Y 0]

Practice problem

Show this.

I ⇒ Average treatment effect is identified by

E[Y 1−Y 0] = E

[(
D

p(X)
− 1−D

1−p(X)

)
·Y
]
.
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Causality and Identification

Conditional independence

Brief remark on estimation

I This entire part of class was about identification.

I Mapping features of the population distribution
into features of the underlying structure.

I Suggests analogous approaches for estimation.

I E[Y |X ,D] can be estimated as the predicted value
of a regression of Y on D, controlling for X
then average across X .

I “Propensity score” p(X) can be estimated, using flexible (logit)
regression of D on X
then average reweighted Y .
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Supplementary readings

I Applied microeconomics perspective:
Angrist, J. D. and Pischke, J. S. (2009). Mostly harmless
econometrics: an empiricist’s companion. Princeton Univ Press.

I Principled treatment of (partial) identification:
Manski, C. (2003). Partial identification of probability
distributions. Springer Verlag.

I Theoretical computer scientist on the notion of causality:
Pearl, J. (2000). Causality: Models, Reasoning, and Inference.
Cambridge University Press.

I Forthcoming book by Imbens and Rubin themselves:
Imbens, G. and D. Rubin (2014). Causal Inference in Statistics,
Social, and Biomedical Sciences: An Introduction. Cambridge
University Press.
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