Econ 2110, fall 2016, Part II Causality and Identification

Maximilian Kasy
Department of Economics, Harvard University

Takeaways for this part of class

1. fundamental notions of causal inference:

- causality
- structural objects
- identification

2. identification approaches:

- randomized experiments
- instrumental variables
- approaches based on conditional independence

Roadmap

Basic concepts

Origins: systems of structural equations

Treatment effects

Instrumental variables

Conditional independence

Causal and structural objects in economics

- Returns to schooling
- Elasticity of the tax base with respect to tax rates
- Effect of minimum wage on employment
- Effect of deworming pills on school attendance
- Price elasticity of demand for gasoline
- ...

Correlation and causality

Do observable distributions tell us something about causality?

- College graduates earn $x \%$ more than high school graduates
- Countries with higher GDP have higher tax rates on average
- Minimum wage levels seem uncorrelated with unemployment levels across time and space
- Gasoline consumption and gasoline price are negatively correlated over time
- ...

Figure: correlation and causation

Identification vs inference

Identification vs inference

- goal of econometrics:
learning interesting things (hopefully) about economic phenomena from observations.
- two separate components of econometrics:

1. identification
2. estimation and inference

Estimation and Inference

1. learning about a population distribution
2. from a finite number of observations.
3. examples:

- estimate a difference in expectations using a difference in means
- perform inference using a t-test.

Identification

1. learning about underlying structures, causal mechanisms
2. from a population distribution.
3. example:
identify a causal effect
by a difference in expectations
if we have a randomized experiment.

- identification inverts the mapping
- from underlying structures to a population distribution
- implied by a model and identifying assumptions.

Causality

Practice problem

How would you define causality?

"Pure" statistics

- causality is meaningless
- observations only tell us about correlations
- more generally, joint distributions
- disclaimer: few statisticians today would say this!

Sciences

- Galileo Galilei: one of the first to follow experimental ideal
- full control of experimental circumstances.
- do the same thing
\Rightarrow same thing happens to the outcomes you measure
- variation in experimental circumstances
\Rightarrow difference in observed outcomes \approx causal effect
- example:
- dropping a ball from different floors of the tower of Pisa
- different time till the ball hits the ground
- crucial component:
external intervention ("exogenous variation")
\Rightarrow allows to interpret correlation as causation

Social and biological sciences

- economics is not physics
- this version of the experimental ideal is not very useful
- reason: many unobserved, and unknown, factors which we cannot hope to control
- \Rightarrow can never replicate experimental circumstances fully
- there is "unobserved heterogeneity."
- Aside:

I also think we should be careful with other concepts from the sciences; for instance "theory testing"

Social and biological sciences ctd

- not all is lost, however
- can still hope create experimental circumstances which are the same on average
- this is the idea of a randomized experiment!
- randomly pick treatment and control groups
\Rightarrow they are identical on average.
- "compare apples with apples."
- many settings of interest in economics: not possible to run experiments
- but: definition of causality is intimately tied to randomized experiment, hypothetical or actual

Recap

- Framework discussed in part I of class
- Does not allow to talk about causality,
- only joint distributions.
- Causality in the sciences:
- Additional concept:
- External intervention / exogeneous variation
- \Rightarrow experiments.
- Causality in econometrics, biostatistics,...:
- Additional concept:
- Unobserved heterogeneity.
- \Rightarrow randomized experiments
- (or "quasi-experiments")

Structural objects

Practice problem

How would you define "structural?"

My preferred definition

- An object is structural, if it is invariant across relevant counterfactuals.
- Example: dropping a ball from tower of Pisa
- acceleration is the same, no matter which floor you drop it from
- also the same if you do this on the Eiffel tower
- time to ground would not be the same
- acceleration is not the same if you do this on the moon

Possibly structural objects

- "economic primitives"
- preferences
- technologies
- assumed to be invariant across policy changes
- derived objects
- demand function, as supply, and thus price, varies
- more generally causal effects, as treatment varies

Another common use for "structural"

- full specification of parametric forms for economic primitives
- assumptions strong enough to identify these primitives
- somewhat misleading terminology:

1. less ambitious approaches with weaker assumptions can also identify structural objects
2. if assumptions for full identification of economic primitives are violated
then the objects identified are not structural.

Origins: systems of structural equations

- econometrics pioneered by "Cowles commission" starting in the 1930s
- they were interested in demand (elasticities) for agricultural goods
- introduced systems of simultaneous equations
- outcomes as equilibria of some structural relationships
- goal: recover the slopes of structural relationships
- from observations of equilibrium outcomes and exogenous shifters

System of structural equations

$$
Y=A \cdot Y+B \cdot Z+\varepsilon
$$

- Y : k-dimensional vector of equilibrium outcomes
- Z: I-dimensional vector of exogenous variables
- A: unknown $k \times k$ matrix of coefficients of interest
- B: unknown $k \times I$ matrix
- ε : further unobserved factors affecting outcomes

Example: supply and demand

$$
\begin{aligned}
& Y=(P, Q) \\
& P=A_{12} \cdot Q+B_{1} \cdot Z+\varepsilon_{1} \text { demand } \\
& Q=A_{21} \cdot P+B_{2} \cdot Z+\varepsilon_{2} \text { supply }
\end{aligned}
$$

- demand function: relates prices to quantity supplied and shifters Z and ε_{1} of demand
- supply function relates quantities supplied to prices and shifters Z and ε_{2} of supply.
- does not really matter which of the equations puts prices on the "left hand side.'
- price and quantity in market equilibrium: solution of this system of equations.

Reduced form

- solve equation $Y=A \cdot Y+B \cdot Z+\varepsilon$ for Y as a function of Z and ε
- bring $A \cdot Y$ to the left hand side, pre-multiply by $(I-A)^{-1} \Rightarrow$

$$
\begin{aligned}
& Y=C \cdot Z+\eta \text { "reduced form" } \\
& C:=(I-A)^{-1} \cdot B \text { reduced form coefficients } \\
& \eta:=(I-A)^{-1} \cdot \varepsilon
\end{aligned}
$$

- suppose $E[\varepsilon \mid Z]=0$ (ie., Z is randomly assigned)
- then we can identify C from

$$
E[Y \mid Z]=C \cdot Z
$$

Exclusion restrictions

- suppose we know C
- what we want is A, possibly B
- problem: $k \times I$ coefficients in $C=(I-A)^{-1} \cdot B$ $k \times(k+l)$ coefficients in A and B
- \Rightarrow further assumptions needed
- exclusion restrictions: assume that some of the coefficients in B or A are $=0$.
- Example: rainfall affects grain supply but not grain demand

Supply and demand continued

- suppose Z is (i) random, $E[\varepsilon \mid Z]=0$
- and (ii) "excluded" from the demand equation
$\Rightarrow B_{11}=0$
- by construction, $\operatorname{diag}(A)=0$
- therefore

$$
\operatorname{Cov}(Z, P)=\operatorname{Cov}\left(Z, A_{12} \cdot Q+B_{1} \cdot Z+\varepsilon_{1}\right)=A_{12} \cdot \operatorname{Cov}(Z, Q),
$$

- \Rightarrow the slope of demand is identified by

$$
A_{12}=\frac{\operatorname{Cov}(Z, P)}{\operatorname{Cov}(Z, Q)}
$$

- Z is an instrumental variable

Remarks

- historically, applied researchers have not been very careful about choosing Z for which
(i) randomization and (ii) exclusion restriction are well justified.
- since the 1980s, more emphasis on credibility of identifying assumptions
- some additional problematic restrictions we imposed:

1. linearity
2. constant (non-random) slopes
3. heterogeneity is k dimensional and enters additively

- \Rightarrow causal effects assumed to be the same for everyone
- next section: framework which does not impose this

Treatment effects and potential outcomes

- coming from biostatistics / medical trials
- potential outcome framework: answer to "what if" questions
- two "treatments:" $D=0$ or $D=1$
- eg. placebo vs. actual treatment in a medical trial
- Y_{i} person i's outcome
eg. survival after 2 years
- potential outcome Y_{i}^{0} : what if person i would have gotten treatment 0
- potential outcome Y_{i}^{1} : what if person i would have gotten treatment 1
- question to you: is this even meaningful?
- causal effect / treatment effect for person i : $Y_{i}^{1}-Y_{i}^{0}$.
- average causal effect / average treatment effect:

$$
A T E=E\left[Y^{1}-Y^{0}\right]
$$

- expectation averages over the population of interest

The fundamental problem of causal inference

- we never observe both Y^{0} and Y^{1} at the same time
- one of the potential outcomes is always missing from the data
- treatment D determines which of the two we observe
- formally:

$$
Y=D \cdot Y^{1}+(1-D) \cdot Y^{0}
$$

Selection problem

- distribution of Y^{1} among those with $D=1$ need not be the same as the distribution of Y^{1} among everyone.
- in particular

$$
\begin{aligned}
& E[Y \mid D=1]=E\left[Y^{1} \mid D=1\right] \neq E\left[Y^{1}\right] \\
& E[Y \mid D=0]=E\left[Y^{0} \mid D=0\right] \neq E\left[Y^{0}\right] \\
& E[Y \mid D=1]-E[Y \mid D=0] \neq E\left[Y^{1}-Y^{0}\right]=A T E .
\end{aligned}
$$

Randomization

- no selection $\Leftrightarrow D$ is random

$$
\left(Y^{0}, Y^{1}\right) \perp D
$$

- in this case,

$$
\begin{aligned}
& E[Y \mid D=1]=E\left[Y^{1} \mid D=1\right]=E\left[Y^{1}\right] \\
& E[Y \mid D=0]=E\left[Y^{0} \mid D=0\right]=E\left[Y^{0}\right] \\
& E[Y \mid D=1]-E[Y \mid D=0]=E\left[Y^{1}-Y^{0}\right]=A T E .
\end{aligned}
$$

- can ensure this by actually randomly assigning D
- independence \Rightarrow comparing treatment and control actually compares "apples with apples"
- this gives empirical content to the "metaphysical" notion of potential outcomes!

Empirical example

- Krueger, A. (1999). Experimental estimates of education production functions. The Quarterly Journal of Economics, 114(2):497-532.
- project STAR experiment
- randomly assign primarily school students (and their teachers) to large and small classes, within schools
- estimate causal effect on test-scores, later life outcomes

Empirical example

- Bertrand, M. and Mullainathan, S. (2004). Are Emily and Greg More Employable Than Lakisha and Jamal? A Field Experiment on Labor Market Discrimination. American Economic Review, 94(4):991-1013.
- randomly assign names which are statistically "white" or "black" to resumes which are sent out as job applications
- estimate causal effect on likelihood of getting invited to a job interview

Relation to linear structural equations?

- Linear structural equations are a special case of treatment effect framework.
- Suppose

$$
Y=\alpha+\beta D+\varepsilon
$$

- where this equation is "structural."
\Leftrightarrow Coefficients and the residual stay the same if treatment is changed.
- Then

$$
\begin{aligned}
& Y^{0}=\alpha+\varepsilon \\
& Y^{1}=\alpha+\beta+\varepsilon,
\end{aligned}
$$

- and $A T E=\beta$.
- Note: Causal effects are the same for everyone in the linear framework.

Nonlinear structural equations

- without imposing linearity / restrictions on the dimension of heterogeneity:

$$
Y=g(D, \varepsilon)
$$

- equivalent to potential outcomes
- potential outcomes notation: more compact
- structural function notation: more explicit which determinants are held constant to define causal effects in more complex settings? Eg.

$$
Y=g(D, X, W, \varepsilon)
$$

Instrumental variables

- recall: simultaneous equations models with exclusion restrictions
- \Rightarrow instrumental variables

$$
\beta=\frac{\operatorname{Cov}(Z, Y)}{\operatorname{Cov}(Z, D)}
$$

- we will now give a new interpretation to β
- using the potential outcomes framework, allowing for heterogeneity of treatment effects
- "Local Average Treatment Effect" (LATE)

Empirical example

- Angrist, J.D. and Krueger, A.B. (1991). Does compulsory school attendance affect schooling and earnings? The Quarterly Journal of Economics, 106(4):979-1014.
- compare individuals born in different quarters of the year
- school start age and structure compulsory schooling laws
- \Rightarrow people born late in the year have to stay in school longer
- quarter of birth as an instrument for educational attainment in estimates of returns to schooling
- estimates effect for those affected by compulsory schooling laws

6 assumptions

Angrist, J., Imbens, G., and Rubin, D. (1996). Identification of causal effects using instrumental variables. Journal of the American Statistical Association, 91(434):444-455.

$$
\begin{aligned}
& \text { 1. } Z \in\{0,1\}, D \in\{0,1\} \\
& \text { 2. } Y=D \cdot Y^{1}+(1-D) \cdot Y^{0} \\
& \text { 3. } D=Z \cdot D^{1}+(1-Z) \cdot D^{0} \\
& \text { 4. } D^{1} \geq D^{0} \\
& \text { 5. } Z \perp\left(Y^{0}, Y^{1}, D^{0}, D^{1}\right) \\
& \text { 6. } \operatorname{Cov}(Z, D) \neq 0
\end{aligned}
$$

Discussion of assumptions

Generalization of randomized experiment

- D is "partially randomized"
- instrument Z is randomized
- D depends on Z, but is not fully determined by it

1. Binary treatment and instrument: both D and Z can only take two values results generalize, but things get messier without this
2. Potential outcome equation for $Y: Y=D \cdot Y^{1}+(1-D) \cdot Y^{0}$

- exclusion restriction: Z does not show up in the equation determining the outcome.
- "stable unit treatment values assumption" (SUTVA): outcomes are not affected by the treatment received by other units. excludes general equilibrium effects or externalities.

3. Potential outcome equation for $D: D=Z \cdot D^{1}+(1-Z) \cdot D^{0}$ SUTVA; treatment is not affected by the instrument values of other units
4. No defiers: $D^{1} \geq D^{0}$

- four possible combinations for the potential treatments (D^{0}, D^{1}) in the binary setting
- $D^{1}=0, D^{0}=1$, is excluded
- \Leftrightarrow monotonicity

Table: No defiers

	D^{0}	D^{1}
Never takers (NT)	0	0
Compliers (C)	0	1
Always takers (AT)	1	1
Defiers	1	0

Practice problem

Who do you think are the compliers for the quarter of birth instrument?
5. Randomization: $Z \perp\left(Y^{0}, Y^{1}, D^{0}, D^{1}\right)$

- Z is (as if) randomized.
- in applications, have to justify both exclusion and randomization
- no reverse causality, common cause!

6. Instrument relevance: $\operatorname{Cov}(Z, D) \neq 0$

- guarantees that the IV estimand is well defined
- there are at least some compliers
- testable
- near-violation: weak instruments

Graphical illustration

Illustration explained

- 3 groups, never takers, compliers, and always takers
- by randomization of Z :
each group represented equally given $Z=0 / Z=1$
- depending on group: observe different treatment values and potential outcomes.
- will now take the IV estimand

$$
\frac{\operatorname{Cov}(Z, Y)}{\operatorname{Cov}(Z, D)}
$$

- interpret it in terms of potential outcomes: average causal effects for the subgroup of compliers
- idea of proof: take the "top part" of figure 49, and subtract the "bottom part."

Preliminary result:

If Z is binary, then

$$
\frac{\operatorname{Cov}(Z, Y)}{\operatorname{Cov}(Z, D)}=\frac{E[Y \mid Z=1]-E[Y \mid Z=0]}{E[D \mid Z=1]-E[D \mid Z=0]} .
$$

Practice problem

Try to prove this!

Proof

- Consider the covariance in the numerator:

$$
\begin{aligned}
& \operatorname{Cov}(Z, Y)=E[Y Z]-E[Y] \cdot E[Z] \\
&= E[Y \mid Z=1] \cdot E[Z]-(E[Y \mid Z=1] \cdot E[Z]-E[Y \mid Z=0] \cdot E[1-Z]) \cdot E[Z] \\
&=(E[Y \mid Z=1]-E[Y \mid Z=0]) \cdot E[Z] \cdot E[1-Z] .
\end{aligned}
$$

- Similarly for the denominator:

$$
\operatorname{Cov}(Z, D)=(E[D \mid Z=1]-E[D \mid Z=0]) \cdot E[Z] \cdot E[1-Z] .
$$

- The $E[Z] \cdot E[1-Z]$ terms cancel when taking a ratio

The "LATE" result

$$
\frac{E[Y \mid Z=1]-E[Y \mid Z=0]}{E[D \mid Z=1]-E[D \mid Z=0]}=E\left[Y^{1}-Y^{0} \mid D^{1}>D^{0}\right]
$$

Practice problem

Try to prove this!
Hint: decompose $E[Y \mid Z=1]-E[Y \mid Z=0]$ in 3 parts corresponding to our illustration

Proof

- "top part" of figure:

$$
\begin{aligned}
E[Y \mid Z=1]= & E[Y \mid Z=1, N T] \cdot P(N T \mid Z=1) \\
& +E[Y \mid Z=1, C] \cdot P(C \mid Z=1) \\
& +E[Y \mid Z=1, A T] \cdot P(A T \mid Z=1) \\
= & E\left[Y^{0} \mid N T\right] \cdot P(N T)+E\left[Y^{1} \mid C\right] \cdot P(C)+E\left[Y^{1} \mid A T\right] \cdot P(A T) .
\end{aligned}
$$

- first equation relies on the no defiers assumption
- second equation uses the exclusion restriction and randomization assumptions.
- Similarly

$$
\begin{aligned}
& E[Y \mid Z=0]=E\left[Y^{0} \mid N T\right] \cdot P(N T)+ \\
& E\left[Y^{0} \mid C\right] \cdot P(C)+E\left[Y^{1} \mid A T\right] \cdot P(A T) .
\end{aligned}
$$

proof continued:

- Taking the difference, only the complier terms remain, the others drop out:

$$
E[Y \mid Z=1]-E[Y \mid Z=0]=\left(E\left[Y^{1} \mid C\right]-E\left[Y^{0} \mid C\right]\right) \cdot P(C)
$$

- denominator:

$$
\begin{aligned}
E[D \mid Z=1]-E[D \mid Z= & 0]=E\left[D^{1}\right]-E\left[D^{0}\right] \\
& =(P(C)+P(A T))-P(A T)=P(C) .
\end{aligned}
$$

- taking the ratio, the claim follows.

Recap

LATE result:

- take the same statistical object economists estimate a lot
- which used to be interpreted as average treatment effect
- new interpretation in a more general framework
- allowing for heterogeneity of treatment effects
- \Rightarrow treatment effect for a subgroup

Practice problem

Is the LATE, $E\left[Y^{1}-Y^{0} \mid D^{1}>D^{0}\right]$, a structural object?

An alternative approach: Bounds

- keep the old structural object of interest: average treatment effect
- but analyze its identification in the more general framework with heterogeneous treatment effects
- in general: we can learn something, not everything
- \Rightarrow bounds / "partial identification"

Manski, C. (2003). Partial identification of probability distributions.
Springer Verlag.

Same assumptions as before

1. $Z \in\{0,1\}, D \in\{0,1\}$
2. $Y=D \cdot Y^{1}+(1-D) \cdot Y^{0}$
3. $D=Z \cdot D^{1}+(1-Z) \cdot D^{0}$
4. $D^{1} \geq D^{0}$
5. $Z \perp\left(Y^{0}, Y^{1}, D^{0}, D^{1}\right)$
6. $\operatorname{Cov}(Z, D) \neq 0$
additionally:
7. Y is bounded, $Y \in[0,1]$

Decomposing ATE in known and unknown components

- decompose $E\left[Y^{1}\right]$:

$$
E\left[Y^{1}\right]=E\left[Y^{1} \mid N T\right] \cdot P(N T)+E\left[Y^{1} \mid C \vee A T\right] \cdot P(C \vee A T) .
$$

- terms that are identified:

$$
\begin{aligned}
E\left[Y^{1} \mid C \vee A T\right] & =E[Y \mid Z=1, D=1] \\
P(C \vee A T) & =E[D \mid Z=1] \\
P(N T) & =E[1-D \mid Z=1]
\end{aligned}
$$

and thus

$$
E\left[Y^{1} \mid C \vee A T\right] \cdot P(C \vee A T)=E[Y D \mid Z=1] .
$$

- Data tell us nothing about is $E\left[Y^{1} \mid N T\right]$. Y^{1} is never observed for never takers.
- but we know, since Y is bounded, that

$$
E\left[Y^{1} \mid N T\right] \in[0,1]
$$

- Combining these pieces, get upper and lower bounds on $E\left[Y^{1}\right]$:

$$
\begin{aligned}
& E\left[Y^{1}\right] \in[E[Y D \mid Z=1], \\
& E[Y D \mid Z=1]+E[1-D \mid Z=1]] .
\end{aligned}
$$

- For Y^{0}, similarly

$$
\begin{aligned}
E\left[Y^{0}\right] \in[E[Y(1-D) \mid Z & =0], \\
E[Y(1-D) \mid Z & =0]+E[D \mid Z=0]] .
\end{aligned}
$$

- Data are uninformative about $E\left[Y^{0} \mid A T\right]$.

Practice problem

Show this.

Combining to get bounds on ATE

- lower bound for $E\left[Y^{1}\right]$, upper bound for $E\left[Y^{0}\right] \Rightarrow$ lower bound on $E\left[Y^{1}-Y^{0}\right]$

$$
E\left[Y^{1}-Y^{0}\right] \geq E[Y D \mid Z=1]-E[Y(1-D) \mid Z=0]-E[D \mid Z=0]
$$

- upper bound for $E\left[Y^{1}\right]$, lower bound for $E\left[Y^{0}\right]$
\Rightarrow upper bound on $E\left[Y^{1}-Y^{0}\right]$

$$
E\left[Y^{1}-Y^{0}\right] \leq E[Y D \mid Z=1]-E[Y(1-D) \mid Z=0]+E[1-D \mid Z=1]
$$

Between randomized experiments and nothing

- bounds on ATE:

$$
\left.\left.\left.\begin{array}{rl}
E\left[Y^{1}-Y^{0}\right] \in[E[Y D \mid Z & =1]-E[Y(1-D) \mid Z
\end{array}\right)=0\right]-E[D \mid Z=0], ~ 子[Y D \mid Z=1]-E[Y(1-D) \mid Z=0]+E[1-D \mid Z=1]\right] .
$$

- length of this interval:

$$
E[1-D \mid Z=1]+E[D \mid Z=0]=P(N T)+P(A T)=1-P(C)
$$

- Share of compliers $\rightarrow 1$
- interval ("identified set") shrinks to a point
- In the limit, $D=Z$
- thus $\left(Y^{1}, Y^{0}\right) \perp D$ - randomized experiment
- Share of compliers $\rightarrow 0$
- length of the interval goes to 1
- In the limit the identified set is the same as without instrument

Conditional independence

- Two generalizations of randomized experiments:
- last section:

Generalizing from D random
to Z random.

- this section:

Generalizing from D random
to D random conditional on covariates X.

- If that's the case,
"comparing apples with apples"
only requires comparing units with the same values of X.

Assumptions

1. $D \in\{0,1\}$
2. $Y=D \cdot Y^{1}+(1-D) \cdot Y^{0}$
3. $\left(Y^{1}, Y^{0}\right) \perp D \mid X$
4. $0<p(X)<1$ for almost all X, where $p(X)=P(D=1 \mid X)$

Discussion of assumptions

1. Binary treatment: easy to generalize the following to arbitrary support of D.
2. Potential outcome equation for $Y: Y=D \cdot Y^{1}+(1-D) \cdot Y^{0}$ same as before (SUTVA!).
3. Conditional independence: $\left(Y^{1}, Y^{0}\right) \perp D \mid X$

- within subgroups defined by X, we essentially have a randomized experiment.
- somewhat hard to justify in practice
- best thought of as a plausible approximation, if X captures the main components of heterogeneity which might drive dependence between potential outcomes and treatment

4. Overlapping support: $0<p(X)<1$

- there are no groups, defined by X, for which everybody (or nobody) was treated.
- can be checked directly in the data (like instrument relevance)

Under these assumptions, the average treatment effect is identified

Practice problem

Try to prove this!

Identification of ATE,

 proof using regression- conditional expectation of outcomes given covariates and treatment:

$$
E[Y \mid X, D=1]=E\left[Y^{1} \mid X, D=1\right]=E\left[Y^{1} \mid X\right] .
$$

- first equality holds by the potential outcomes equation.
- second equality uses conditional independence.
- $E[Y \mid X, D=1]$ is identified as long as $p(X)>0$.
- law of iterated expectations, averaging across the distribution of $X \Rightarrow$

$$
E\left[Y^{1}\right]=E_{X}\left[E\left[Y^{1} \mid X\right]\right]=E_{X}[E[Y \mid X, D=1]] .
$$

- note that

$$
E_{X}[E[Y \mid X, D=1]] \neq E[Y \mid D=1]!
$$

- left hand term averages $E[Y \mid X, D=1]$ over the marginal distribution of X
- right hand term averages $E[Y \mid X, D=1]$ over the conditional distribution of X given D.
- similarly for $D=0$

$$
E\left[Y^{0}\right]=E_{X}\left[E\left[Y^{0} \mid X\right]\right]=E_{X}[E[Y \mid X, D=0]] .
$$

- average treatment effect is identified by

$$
E\left[Y^{1}-Y^{0}\right]=E_{X}[E[Y \mid X, D=1]-E[Y \mid X, D=0]] .
$$

Identification of ATE, proof using reweighting

- intuition: units for which $p(X)$ is small are under-represented among the observations such that $D=1$
- need to upweight them in order to get the distribution of Y^{1}
- upweight by factor $1 / p(x)$ - "inverse probability weighting"
- Law of iterated expectations, D binary \Rightarrow

$$
\begin{aligned}
E[Y D \mid X] & =E[Y D \mid X, D=1] \cdot p(X)+E[Y D \mid X, D=0] \cdot(1-p(X)) \\
& =E[Y \mid X, D=1] \cdot p(X)
\end{aligned}
$$

- Potential outcome equation, conditional independence \Rightarrow

$$
E[Y \mid X, D=1]=E\left[Y^{1} \mid X\right]
$$

- Rearranging \Rightarrow

$$
E\left[\left.\frac{D}{p(X)} \cdot Y \right\rvert\, X\right]=E\left[Y^{1} \mid X\right]
$$

- Iterated expectations, again \Rightarrow

$$
E\left[\frac{D}{p(X)} \cdot Y\right]=E\left[Y^{1}\right]
$$

- Similar argument for $D=0 \Rightarrow$

$$
E\left[\frac{1-D}{1-p(X)} \cdot Y\right]=E\left[Y^{0}\right]
$$

Practice problem

Show this.

- \Rightarrow Average treatment effect is identified by

$$
E\left[Y^{1}-Y^{0}\right]=E\left[\left(\frac{D}{p(X)}-\frac{1-D}{1-p(X)}\right) \cdot Y\right]
$$

Brief remark on estimation

- This entire part of class was about identification.
- Mapping features of the population distribution into features of the underlying structure.
- Suggests analogous approaches for estimation.
- $E[Y \mid X, D]$ can be estimated as the predicted value of a regression of Y on D, controlling for X then average across X.
- "Propensity score" $p(X)$ can be estimated, using flexible (logit) regression of D on X then average reweighted Y.

Supplementary readings

- Applied microeconomics perspective: Angrist, J. D. and Pischke, J. S. (2009). Mostly harmless econometrics: an empiricist's companion. Princeton Univ Press.
- Principled treatment of (partial) identification:

Manski, C. (2003). Partial identification of probability distributions. Springer Verlag.

- Theoretical computer scientist on the notion of causality:

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge University Press.

- Forthcoming book by Imbens and Rubin themselves:

Imbens, G. and D. Rubin (2014). Causal Inference in Statistics, Social, and Biomedical Sciences: An Introduction. Cambridge University Press.

