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Statistical Decision Theory

Examples of decision problems

I Decide whether or not the hypothesis of no racial discrimination
in job interviews is true

I Provide a forecast of the unemployment rate next month

I Provide an estimate of the returns to schooling

I Pick a portfolio of assets to invest in

I Decide whether to reduce class sizes for poor students

I Recommend a level for the top income tax rate
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Statistical Decision Theory

Takeaways for this part of class

1. A general framework to think about what makes a “good”
estimator, test, etc.

2. How the foundations of statistics relate to those of microeconomic
theory.

3. In what sense the set of Bayesian estimators contains most
“reasonable” estimators.
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Statistical Decision Theory

Textbooks

I Robert, C. (2007). The Bayesian choice: from decision-theoretic
foundations to computational implementation. Springer Verlag,
chapter 2.

I Casella, G. and Berger, R. (2001). Statistical inference.
Duxbury Press, chapter 7.3.4.
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Statistical Decision Theory

Roadmap

I IIa
I Basic definitions
I Optimality criteria

I IIb
I Relationships between optimality criteria
I Analogies to microeconomics
I Two justifications of the Bayesian approach
I Testing and the Neyman Pearson lemma

I IIc
I Value added estimation
I Ridge regression and Lasso
I Experimental design
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Statistical Decision Theory

Part IIIa

Basic definitions

Optimality criteria
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Statistical Decision Theory

Basic definitions

Components of a general statistical decision problem

I Observed data X

I A statistical decision a

I A state of the world θ

I A loss function L(a,θ) (the negative of utility)

I A statistical model f (X |θ)

I A decision function a = δ (X)
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Statistical Decision Theory

Basic definitions

How they relate

I underlying state of the world θ

⇒ distribution of the observation X .

I decision maker: observes X ⇒ picks a decision a

I her goal: pick a decision that minimizes loss L(a,θ)
(θ unknown state of the world)

I X is useful⇔ reveals some information about θ

⇔ f (X |θ) does depend on θ .

I problem of statistical decision theory:
find decision functions δ which “make loss small.”

8 / 35



Statistical Decision Theory

Basic definitions

Graphical illustration

Figure: A general decision problem
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Statistical Decision Theory

Basic definitions

Examples

I investing in a portfolio of assets:
I X : past asset prices
I a: amount of each asset to hold
I θ : joint distribution of past and future asset prices
I L: minus expected utility of future income

I decide whether or not to reduce class size:
I X : data from project STAR experiment
I a: class size
I θ : distribution of student outcomes for different class sizes
I L: average of suitably scaled student outcomes, net of cost
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Statistical Decision Theory

Basic definitions

Practice problem

For each of the examples on slide 2, what are

I the data X ,

I the possible actions a,

I the relevant states of the world θ , and

I reasonable choices of loss function L?

11 / 35



Statistical Decision Theory

Basic definitions

Loss functions in estimation
I goal: find an a
I which is close to some function µ of θ .
I for instance: µ(θ) = E[X ]

I loss is larger if the difference between our estimate and the true
value is larger

Some possible loss functions:

1. squared error loss,

L(a,θ) = (a−µ(θ))2

2. absolute error loss,

L(a,θ) = |a−µ(θ)|
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Statistical Decision Theory

Basic definitions

Loss functions in testing

I goal: decide whether H0 : θ ∈Θ0 is true

I decision a ∈ {0,1} (true / not true)

Possible loss function:

L(a,θ) =


1 if a = 1, θ ∈Θ0

c if a = 0, θ /∈Θ0

0 else.

truth
decision a θ ∈Θ0 θ /∈Θ0

0 0 c
1 1 0
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Statistical Decision Theory

Basic definitions

Risk function

R(δ ,θ) = Eθ [L(δ (X),θ)].

I expected loss of a decision function δ

I R is a function of the true state of the world θ

I crucial intermediate object in evaluating a decision function

I small R⇔ good δ

I δ might be good for some θ , bad for other θ

I decision theory deals with this trade-off
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Statistical Decision Theory

Basic definitions

Example: estimation of mean

I observe X ∼ N(µ,1)

I want to estimate µ

I L(a,θ) = (a−µ(θ))2

I δ (X) = α + β ·X

Practice problem (Estimation of means)

Find the risk function for this decision problem.

15 / 35



Statistical Decision Theory

Basic definitions

Variance / Bias trade-off

Solution:

R(δ ,µ) = E[(δ (X)−µ)2]

= Var(δ (X)) + Bias(δ (X))2

= β
2 Var(X) + (α + βE[X ]−E[X ])2

= β
2 + (α + (β −1)µ)2.

I equality 1 and 2: always true for squared error loss

I Choosing b (and a) involves a trade-off of bias and variance,

I this trade-off depends on µ .
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Statistical Decision Theory

Optimality criteria

Optimality criteria

I ranking provided by the risk function is multidimensional:

I a ranking of performance between decision functions for every θ

I to get a global comparison of their performance, have to
aggregate this ranking into a global ranking

I preference relationship on space of risk functions
⇒ preference relationship on space of decision functions
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Statistical Decision Theory

Optimality criteria

Illustrations for intuition
I suppose θ can only take two values,
I ⇒ risk functions are points in a 2D-graph,
I each axis corresponds to R(δ ,θ) for θ = θ0,θ1

R(.,θ1)

R(.,θ0)
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Statistical Decision Theory

Optimality criteria

Three approaches to get a global ranking

1. partial ordering:
a decision function is better relative to another
if it is better for every θ

2. complete ordering, weighted average:
a decision function is better relative to another
if a weighted average of risk across θ is lower
weights ∼ prior distribution

3. complete ordering, worst case:
a decision function is better relative to another
if it is better under its worst-case scenario.
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Statistical Decision Theory

Optimality criteria

Approach 1: Admissibility

Dominance:
δ is said to dominate another function δ ′ if

R(δ ,θ)≤ R(δ
′,θ)

for all θ , and
R(δ ,θ) < R(δ

′,θ)

for at least one θ .

Admissibility:
decisions functions which are not dominated are called admissible,
all other decision functions are inadmissible.
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Statistical Decision Theory

Optimality criteria

Figure: Feasible and admissible risk functions

R(.,θ1)

R(.,θ0)

feasible

admissible
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Statistical Decision Theory

Optimality criteria

I admissibility ∼ “Pareto frontier”

I dominance only generates a partial ordering of decision functions

I in general: many different admissible decision functions.
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Statistical Decision Theory

Optimality criteria

Practice problem

I you observe Xi ∼iid N(µ,1), i = 1, . . . ,n

I your goal is to estimate µ , with squared error loss
I consider the estimators

1. δ (X) = X1

2. δ (X) = 1
n ∑i Xi

I can you show that one of them is inadmissible?
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Statistical Decision Theory

Optimality criteria

Approach 2: Bayes optimality

I natural approach for economists:

I trade off risk across different θ

I by assigning weights π(θ) to each θ

Integrated risk:

R(δ ,π) =
∫

R(δ ,θ)π(θ)dθ .

24 / 35



Statistical Decision Theory

Optimality criteria

Bayes decision function:
minimizes integrated risk,

δ
∗ = argmin

δ

R(δ ,π).

I Integrated risk ∼ linear indifference planes in space of risk
functions

I prior ∼ normal vector for indifference planes
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Statistical Decision Theory

Optimality criteria

Figure: Bayes optimality

R(.,θ1)

R(.,θ0)

π(θ)R(δ*,.)
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Statistical Decision Theory

Optimality criteria

Decision weights as prior probabilities

I suppose 0 <
∫

π(θ)dθ < ∞

I then wlog
∫

π(θ)dθ = 1 (normalize)

I if additionally π ≥ 0

I then π is called a prior distribution
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Statistical Decision Theory

Optimality criteria

Posterior

I suppose π is a prior distribution

I posterior distribution:

π(θ |X) =
f (X |θ)π(θ)

m(X)

I normalizing constant = prior likelihood of X

m(X) =
∫

f (X |θ)π(θ)dθ
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Statistical Decision Theory

Optimality criteria

Practice problem

I you observe X ∼ N(θ ,1)

I consider the prior
θ ∼ N(0,τ2)

I calculate
1. π(θ |X)
2. m(X)
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Statistical Decision Theory

Optimality criteria

Posterior expected loss

R(δ ,π|X) :=
∫

L(δ (X),θ)π(θ |X)dθ

Proposition

Any Bayes decision function δ ∗

can be obtained by minimizing R(δ ,π|X)
through choice of δ (X) for every X .

Practice problem

Show that this is true.

Hint: show first that

R(δ ,π) =
∫

R(δ (X),π|X)m(X)dX .
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Statistical Decision Theory

Optimality criteria

Bayes estimator with quadratic loss

I assume quadratic loss, L(a,θ) = (a−µ(θ))2

I posterior expected loss:

R(δ ,π|X) = Eθ |X [L(δ (X),θ)|X ]

= Eθ |X
[
(δ (X)−µ(θ))2|X

]
= Var(µ(θ)|X) + (δ (X)−E[µ(θ)|X ])2

I Bayes estimator minimizes posterior expected loss⇒

δ
∗(X) = E[µ(θ)|X ].
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Statistical Decision Theory

Optimality criteria

Practice problem

I you observe X ∼ N(θ ,1)

I your goal is to estimate θ , with squared error loss

I consider the prior
θ ∼ N(0,τ2)

I calculate
1. R(δ (X),π|X)
2. R(δ ,π)
3. the Bayes optimal estimator δ ∗
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Statistical Decision Theory

Optimality criteria

Practice problem

I you observe Xi iid., Xi ∈ {1,2, . . . ,k},
P(Xi = j) = θj

I consider the so called Dirichlet prior, for αj > 0:

π(θ) = const. ·
k

∏
j=1

θ
αj−1
j

I calculate π(θ |X)

I look up the Dirichlet distribution on Wikipedia

I calculate E[θ |X ]
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Statistical Decision Theory

Optimality criteria

Approach 3: Minimaxity

I Don’t want to pick a prior?

I Can instead always assume the worst.

I worst = θ which maximizes risk

worst-case risk:
R(δ ) = sup

θ

R(δ ,θ).

minimax decision function:

δ
∗ = argmin

δ

R(δ ) = argmin
δ

sup
θ

R(δ ,θ).

(does not always exist!)
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Statistical Decision Theory

Optimality criteria

Figure: Minimaxity (“Leontieff” indifference curves)

R(.,θ1)

R(.,θ0)

R(δ*,.)
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