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Statistical Decision Theory

Some relationships between these optimality criteria

Some relationships between these optimality criteria
Proposition (Minimax decision functions)

If δ ∗ is admissible with constant risk,
then it is a minimax decision function.

Proof:

I picture!

I Suppose that δ ′ had smaller worst-case risk than δ ∗

I Then

R(δ
′,θ ′)≤ sup

θ

R(δ
′,θ) < sup

θ

R(δ
∗,θ) = R(δ

∗,θ ′),

I used constant risk in the last equality

I This contradicts admissibility.
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Statistical Decision Theory

Some relationships between these optimality criteria

I despite this result,
minimax decision functions are very hard to find

I Example:
I if X ∼ N(µ, I), dim(X)≥ 3, then
I X has constant risk (mean squared error) as estimator for µ

I but: X is not an admissible estimator for µ

therefore not minimax
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Some relationships between these optimality criteria

Proposition (Bayes decisions are admissible)

Suppose:

I δ ∗ is the Bayes decision function

I π(θ) > 0 for all θ , R(δ ∗,π) < ∞

I R(δ ∗,θ) is continuous in θ

Then δ ∗ is admissible.

(We will prove the reverse of this statement in the next section.)

6 / 31



Statistical Decision Theory

Some relationships between these optimality criteria

Sketch of proof:

I picture!

I Suppose δ ∗ is not admissible

I ⇒ dominated by some δ ′

i.e. R(δ ′,θ)≤ R(δ ∗,θ) for all θ with strict inequality for some θ

I Therefore

R(δ
′,π) =

∫
R(δ

′,θ)π(θ)dθ <
∫

R(δ
∗,θ)π(θ)dθ = R(δ

∗,π)

I This contradicts δ ∗ being a Bayes decision function.
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Some relationships between these optimality criteria

Proposition (Bayes risk and minimax risk)

The Bayes risk
R(π) := infδ R(δ ,π)
is never larger than the minimax risk
R := infδ supθ R(δ ,θ).

Proof:

R(π) = inf
δ

R(δ ,π)

≤ sup
π

inf
δ

R(δ ,π)

≤ inf
δ

sup
π

R(δ ,π)

= inf
δ

sup
θ

R(δ ,θ) = R.

If there exists a prior π∗ such that R(π) = R, it is called the least
favorable distribution.
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Analogies to microeconomics

Analogies to microeconomics

1) Welfare economics

statistical decision theory social welfare analysis
different parameter values θ different people i
risk R(.,θ) individuals’ utility ui(.)

dominance Pareto dominance
admissibility Pareto efficiency
Bayes risk social welfare function
prior welfare weights (distributional preferences)
minimaxity Rawlsian inequality aversion
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Statistical Decision Theory

Analogies to microeconomics

2) choice under uncertainty / choice in strategic interactions

statistical decision theory strategic interactions
dominance of decision functions dominance of strategies
Bayes risk expected utility
Bayes optimality expected utility maximization
minimaxity (extreme) ambiguity aversion
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Two justifications of the Bayesian approach

Two justifications of the Bayesian approach
justification 1 – the complete class theorem

I last section: every Bayes decision function is admissible
(under some conditions)

I the reverse also holds true (under some conditions):
every admissible decision function is Bayes,
or the limit of Bayes decision functions

I can interpret this as:
all reasonable estimators are Bayes estimators

I will state a simple version of this result
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Statistical Decision Theory

Two justifications of the Bayesian approach

Preliminaries

I set of risk functions that correspond to some δ is the risk set,

R := {r(.) = R(.,δ ) for some δ}

I will assume convexity of R
– no big restriction, since we can always randomly “mix” decision
functions

I a class of decision functions δ is a complete class if it contains
every admissible decision function δ ∗
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Statistical Decision Theory

Two justifications of the Bayesian approach

Theorem (Complete class theorem)

Suppose

I the set Θ of possible values for θ is compact

I the risk set R is convex

I all decision functions have continuous risk

Then the Bayes decision functions constitute a complete class:
For every admissible decision function δ ∗, there exists a prior
distribution π such that δ ∗ is a Bayes decision function for π .
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Two justifications of the Bayesian approach

Figure: Complete class theorem

R(.,θ1)

R(.,θ0)

π(θ)R(δ,.)
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Statistical Decision Theory

Two justifications of the Bayesian approach

Intuition for the complete class theorem

I any choice of decision procedure has to trade off risk across θ

I slope of feasible risk set
= relative “marginal cost” of decreasing risk at different θ

I pick a risk function on the admissible frontier

I can rationalize it with a prior
= “marginal benefit” of decreasing risk at different θ

I for example, minimax decision rule:
rationalizable by least favorable prior
slope of feasible set at constant risk admissible point

I analogy to social welfare: any policy choice or allocation
corresponds to distributional preferences / welfare weights
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Statistical Decision Theory

Two justifications of the Bayesian approach

Proof of complete class theorem:

I application of the separating hyperplane theorem,
to the space of functions of θ , with the inner product

〈f ,g〉=
∫

f (θ)g(θ)dθ .

I for intuition: focus on binary θ , θ ∈ {0,1},
and 〈f ,g〉= ∑θ f (θ)g(θ)

I Let δ ∗ be admissible. Then R(.,δ ∗) belongs to the lower
boundary of R.

I convexity of R, separating hyperplane theorem
separating R from risk functions dominating δ ∗

⇒
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Statistical Decision Theory

Two justifications of the Bayesian approach

I ⇒ there exists a function π̃ (with finite integral) such that for all δ

〈R(.,δ ∗), π̃〉 ≤ 〈R(.,δ ), π̃〉.

I by construction π̃ ≥ 0

I thus π := π̃/
∫

π̃ defines a prior distribution.

I δ ∗ minimizes
〈R(.,δ ∗),π〉= R(δ

∗,π)

among the set of feasible decision functions

I and is therefore the optimal Bayesian decision function for the
prior π .
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Statistical Decision Theory

Two justifications of the Bayesian approach

justification 2 – subjective probability theory

I going back to Savage (1954) and Anscombe and Aumann (1963).

I discussed in chapter 6 of
Mas-Colell, A., Whinston, M., and Green, J. (1995),
Microeconomic theory, Oxford University Press

I and maybe in Econ 2010.
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Statistical Decision Theory

Two justifications of the Bayesian approach

I Suppose a decision maker ranks risk functions R(.,δ ) by a
preference relationship �

I properties � might have:
1. completeness: any pair of risk functions can be ranked
2. monotonicity: if the risk function R is (weakly) lower than R′ for

all θ , than R is (weakly) preferred
3. independence:

R1 � R2⇔ αR1 + (1−α)R3 � αR2 + (1−α)R3

for all R1,R2,R3 and α ∈ [0,1]

I Important: this independence has nothing to do with statistical
independence
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Statistical Decision Theory

Two justifications of the Bayesian approach

Theorem

If � is complete, monotonic, and satisfies independence, then there
exists a prior π such that

R(.,δ 1)� R(.,δ 2)⇔ R(π,δ 1)≤ R(π,δ 2).

Intuition of proof:

I Independence and completeness imply linear, parallel
indifference sets

I monotonicity makes sure prior is non-negative

20 / 31



Statistical Decision Theory

Two justifications of the Bayesian approach

Sketch of proof:
Using independence repeatedly, we can show that for all
R1,R2,R3 ∈ RX , and all α > 0,

1. R1 � R2 iff αR1 � αR2,

2. R1 � R2 iff R1 + R3 � R2 + R3,

3. {R : R � R1}= {R : R � 0}+ R1,

4. {R : R � 0} is a convex cone.

5. {R : R � 0} is a half space.

The last claim requires completeness. It immediately implies the
existence of π . Monotonicity implies that π is not negative.
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Statistical Decision Theory

Testing and the Neyman Pearson lemma

Testing and the Neyman Pearson lemma

I testing as a decision problem

I goal: decide whether H0 : θ ∈Θ0 is true

I decision a ∈ {0,1} (true / not true)

I statistical test is a decision function ϕ : X ⇒{0,1}
I ϕ = 1 corresponds to rejecting the null hypothesis

I more generally: randomized tests ϕ : X ⇒ [0,1]

I reject H0 with probability ϕ(X)
(for technical reasons only, as we will see)
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Statistical Decision Theory

Testing and the Neyman Pearson lemma

Two types of classification error

truth
decision a θ ∈Θ0 θ /∈Θ0

0 , Type II error
1 Type I error ,
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Statistical Decision Theory

Testing and the Neyman Pearson lemma

The power function

I suppose X ∼ fθ (x)

I f : probability mass function or probability density function

I probability of rejecting H0 given θ :
power function

β (θ) = Eθ [ϕ(X)] =
∫

ϕ(x)fθ (x)dx .
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Statistical Decision Theory

Testing and the Neyman Pearson lemma

Classification errors

I suppose that θ has only two points of support, θ0 and θ1

I then
1. P(Type I error) = β (θ0).
2. P(Type II error) = 1−β (θ1).

I β (θ0) is called “level” or “significance” of the test, often denoted
α .

I β (θ1) is called the “power” of a test, and is often denoted β .

I would like to have a small α and a large β
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Testing and the Neyman Pearson lemma

Figure: testing as a decision problem

1-β(θ1)

β(θ0)

(1,1)

α
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Testing and the Neyman Pearson lemma

Suppose we want ϕ∗ that solves

max
ϕ

β (θ1) s.t. β (θ0) = α

for a prespecified level α .

Lemma (Neyman-Pearson)

The solution to this problem is given by

ϕ
∗(x) =


1 for f1(x) > λ f0(x)
κ for f1(x) = λ f0(x)
0 for f1(x) < λ f0(x)

where λ and κ are chosen such that
∫

ϕ∗(x)f0(x)dx = α .
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Statistical Decision Theory

Testing and the Neyman Pearson lemma

Practice problem

Try to prove this!

Hint:
our problem is to solve

max
ϕ

∫
ϕ(x)f1(x)dx

subject to ∫
ϕ(x)f0(x)dx = α

and
ϕ(x) ∈ [0,1].
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Statistical Decision Theory

Testing and the Neyman Pearson lemma

Recall the proposed solution,

ϕ
∗(x) =


1 for f1(x) > λ f0(x)
κ for f1(x) = λ f0(x)
0 for f1(x) < λ f0(x)

Proof:

I let ϕ(x) be any other test of level α

i.e.
∫

ϕ(x)f0(x)dx = α .
I need to show that∫

ϕ∗(x)f1(x)dx ≥
∫

ϕ(x)f1(x)dx .
I Note that ∫

(ϕ
∗(x)−ϕ(x))(f1(x)−λ f0(x))dx ≥ 0

since ϕ∗(x) = 1≥ ϕ(x) for all x such that f1(x)−λ f0(x) > 0 and
ϕ∗(x) = 0≤ ϕ(x) for all x such that f1(x)−λ f0(x) < 0.
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Statistical Decision Theory

Testing and the Neyman Pearson lemma

I Therefore, using α =
∫

ϕ(x)f0(x)dx =
∫

ϕ∗(x)f0(x)dx ,∫
(ϕ
∗(x)−ϕ(x))(f1(x)−λ f0(x))dx

=
∫

(ϕ
∗(x)−ϕ(x))f1(x)dx

=
∫

ϕ
∗(x)f1(x)dx−

∫
ϕ(x)f1(x)dx ≥ 0

as required.

I proof in the discrete case: identical with all summations replaced
by integrals.
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Testing and the Neyman Pearson lemma

Practice problem

I you observe X ∼ N(µ,1)

I you know that either µ = 0 or µ = 1

I construct the test of largest power for H0 : µ = 0 and any level α
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