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Statistical Decision Theory

Roadmap

> lla
» Basic definitions
» Optimality criteria
> llb
» Relationships between optimality criteria
> Analogies to microeconomics
» Two justifications of the Bayesian approach
» Testing and the Neyman Pearson lemma
> llc
» Value added estimation
> Ridge regression and Lasso
» Experimental design
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Some relationships between these optimality criteria

Proposition (Minimax decision functions)

If * is admissible with constant risk,
then it is a minimax decision function.

Proof:

> picture!
» Suppose that 8’ had smaller worst-case risk than 6*
» Then

R(8',6') < supR(8',0) < supR(5*,0) = R(5",6),
7] 6

» used constant risk in the last equality
» This contradicts admissibility.

31



e
Statistical Decision Theory

LSome relationships between these optimality criteria

» despite this result,
minimax decision functions are very hard to find
» Example:
» if X ~ N(u,1), dim(X) > 3, then
» X has constant risk (mean squared error) as estimator for u
» but: X is not an admissible estimator for
therefore not minimax
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Proposition (Bayes decisions are admissible)

Suppose:
» 0™ is the Bayes decision function
» m(6)>0forall 8, R(6*, 1) <
» R(d*,0) is continuous in 6
Then 6* is admissible.

(We will prove the reverse of this statement in the next section.)
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Sketch of proof:

>

v

v

v

picture!
Suppose 6* is not admissible

= dominated by some &’
i.e. R(6',0) < R(8*,0) for all 6 with strict inequality for some 6

Therefore
/H5’ d9</R5* n(6)d6 = R(6%,

This contradicts 6* being a Bayes decision function.

)
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Proposition (Bayes risk and minimax risk)

The Bayes risk
R(m) :=infs R(J,7)
is never larger than the minimax risk

R :=infs supg R(J,0).

Proof:
R(m) = ing(S,ﬂf)

< supinfR(6, )
T O

<infsupR(6, )
6 =«

=infsupR(5,0) = R.
5 0

If there exists a prior 7* such that R(r) = R, it is called the least
favorable distribution.
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Analogies to microeconomics

1) Welfare economics

statistical decision theory

social welfare analysis

different parameter values 6

different people i

risk R(.,0) individuals’ utility u;(.)

dominance Pareto dominance

admissibility Pareto efficiency

Bayes risk social welfare function

prior welfare weights (distributional preferences)
minimaxity Rawlsian inequality aversion
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LAnalogwes to microeconomics

2) choice under uncertainty / choice in strategic interactions

statistical decision theory

strategic interactions

dominance of decision functions
Bayes risk

Bayes optimality

minimaxity

dominance of strategies
expected utility

expected utility maximization
(extreme) ambiguity aversion
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Two justifications of the Bayesian approach
justification 1 — the complete class theorem

» last section: every Bayes decision function is admissible
(under some conditions)

» the reverse also holds true (under some conditions):
every admissible decision function is Bayes,
or the limit of Bayes decision functions

» can interpret this as:
all reasonable estimators are Bayes estimators

» will state a simple version of this result
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Preliminaries

» set of risk functions that correspond to some § is the risk set,
% :={r(.)=R(.,8) for some &}

» will assume convexity of %
— no big restriction, since we can always randomly “mix” decision
functions

» a class of decision functions 6 is a complete class if it contains
every admissible decision function 6*
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Theorem (Complete class theorem)

Suppose
> the set © of possible values for 6 is compact
> the risk set Z is convex
» all decision functions have continuous risk

Then the Bayes decision functions constitute a complete class:
For every admissible decision function 6*, there exists a prior
distribution 7 such that 6* is a Bayes decision function for 7.
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Figure: Complete class theorem

R(.,01)
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Intuition for the complete class theorem

» any choice of decision procedure has to trade off risk across 0

» slope of feasible risk set
= relative “marginal cost” of decreasing risk at different 0

» pick a risk function on the admissible frontier

» can rationalize it with a prior
= “marginal benefit” of decreasing risk at different 0
» for example, minimax decision rule:
rationalizable by least favorable prior
slope of feasible set at constant risk admissible point
» analogy to social welfare: any policy choice or allocation
corresponds to distributional preferences / welfare weights
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Proof of complete class theorem:

» application of the separating hyperplane theorem,
to the space of functions of 6, with the inner product

(t.0)= [ 1(0)a(6)ab.

» for intuition: focus on binary 6, 6 € {0,1},
and (f,g) = ¥ f(6)g(6)

» Let 6* be admissible. Then R(.,8*) belongs to the lower
boundary of Z.

» convexity of %, separating hyperplane theorem
separating Z from risk functions dominating 6*
=

16/31



Statistical Decision Theory

LTwo justifications of the Bayesian approach

» = there exists a function 7 (with finite integral) such that for all o
(R(.,8%),7) <(R(.,8),7).

» by construction T > 0
» thus 7w := 7/ [ 7 defines a prior distribution.
» &* minimizes
(R(.,6%),m) = R(0", )
among the set of feasible decision functions

» and is therefore the optimal Bayesian decision function for the
prior 7.
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justification 2 — subjective probability theory

» going back to Savage (1954) and Anscombe and Aumann (1963).
» discussed in chapter 6 of
Mas-Colell, A., Whinston, M., and Green, J. (1995),
Microeconomic theory, Oxford University Press

» and maybe in Econ 2010.
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» Suppose a decision maker ranks risk functions R(.,d) by a
preference relationship >~
» properties = might have:

1. completeness: any pair of risk functions can be ranked

2. monotonicity: if the risk function R is (weakly) lower than R’ for
all 8, than R is (weakly) preferred

3. independence:

R'-ReaR' +(1-a)RP=aRP+(1-a)R®

forall R', R?,R® and a € [0,1]

» Important: this independence has nothing to do with statistical
independence
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Theorem

If = is complete, monotonic, and satisfies independence, then there
exists a prior 7 such that

R(.,8") = R(.,6%) < R(x,8") < R(x, §?).

Intuition of proof:

» Independence and completeness imply linear, parallel
indifference sets

» monotonicity makes sure prior is non-negative
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Sketch of proof:

Using independence repeatedly, we can show that for all
R',R?,R® ¢ R* ,and all o > 0,

1. R" = R?iff aR' = aR?,

2. R = R?iff R+ R® = R? + RS,
3. {R:R=R'}={R:R>=0}+AR',
4. {R: R > 0} is a convex cone.

5. {R: R0} is a half space.

The last claim requires completeness. It immediately implies the
existence of . Monotonicity implies that 7 is not negative.
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Testing and the Neyman Pearson lemma

» testing as a decision problem

» goal: decide whether Hy : 0 € Oy is true

» decision a € {0,1} (true / not true)

» statistical test is a decision function ¢ : X = {0,1}
» @ = 1 corresponds to rejecting the null hypothesis
» more generally: randomized tests ¢ : X = [0,1]

> reject Hp with probability ¢(X)
(for technical reasons only, as we will see)

22/31



Statistical Decision Theory

|—Testing and the Neyman Pearson lemma

Two types of classification error

truth
decisiona | 6 ¢€©g 0 ¢ Oy
0 © Type Il error
1 Type | error ©)
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LTesting and the Neyman Pearson lemma

The power function

> suppose X ~ fg(x)
» f: probability mass function or probability density function

» probability of rejecting Hy given O:
power function

B(6) = Ealp(X)] = [ @(0)a(x)dx.
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Classification errors

» suppose that 8 has only two points of support, 683 and 6,
» then

1. P(Type | error) = B(6p).
2. P(Type ll error) =1 —B(61).

> B(6) is called “level” or “significance” of the test, often denoted
o.

» [(6,) is called the “power” of a test, and is often denoted f3.
» would like to have a small o and a large 3
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Figure: testing as a decision problem

(1.1

1-B(61)

a B(00)
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Suppose we want ¢* that solves
m(gxﬁ(&) s.t. B(6) =

for a prespecified level o.

Lemma (Neyman-Pearson)

The solution to this problem is given by

1 for f (X) > lfo(X)
0" (x) =< K forfi(x) = Af(x)
0 for f; (X) < lfo(X)

where A and K are chosen such that [ @*(x)f(x)dx = a.
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Practice problem

Try to prove this!

Hint:
our problem is to solve

mq?x/(p(x)ﬁ (x)dx
subject to

/ P(x)h(x)dx = a
and

¢(x) € [0,1].
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Recall the proposed solution,

1 for f(x) > Afp(x)
e (x) =1 Kfor fi(x) = Ah(x)
0 for fi(x) < Afp(x)

Proof:
» let @(x) be any other test of level
i.e. [ o(x)fh(x)dx = .
» need to show that
Jo*(x)f(x)ax > [ o(x)fi (x)ax.
> Note that

/(‘P*(X) — @(x)) (A (x) = Afo(x))ax > 0

since *(x) =1 > ¢@(x) for all x such that f;(x) —Af(x) >0 and
¢©*(x) =0 < @(x) for all x such that f;(x) —Af(x) < 0.
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» Therefore, using o = [ @(x)fh(x)dx = [ @*(x)f(x)dx,

(0700 = 0(0)(1 (1) ~ ()
= [(9"(x)~ 9(x))A (x)ax
_ / 0" (x)fy (x)ax — / o(x)f (x)dx > 0

as required.

» proof in the discrete case: identical with all summations replaced
by integrals.
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Practice problem

> you observe X ~ N(u,1)

> you know that either u =0 or it =1
» construct the test of largest power for Hp : 1 = 0 and any level o
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