Econ 2140, spring 2018, Part IIc Applications of Statistical Decision Theory

Maximilian Kasy

Department of Economics, Harvard University

Takeaways for this part of class

- In a Normal means model with Normal prior, there are a number of equivalent ways to think about regularization:
 - posterior mean,
 - penalized least squares (penalty corresponds to prior),
 - shrinkage, etc.
- Applied to linear regression: Ridge regression as penalized OLS with quadratic penalty.
- Alternatively, using an absolute value penalty: Lasso regression. (Popular in machine learning.)
- Hierarchical normal models yield the estimators used in the "value added" literature.

Roadmap

Normal posterior means - equivalent representations

Ridge regression

Lasso regression

Value added models

Normal posterior means – equivalent representations

Normal posterior means – equivalent representations Setup

 $\bullet \ \theta \in \mathbb{R}^k$

•
$$\boldsymbol{X}|\theta \sim N(\theta, I_k)$$

Loss

$$L(\widehat{\theta}, \theta) = \sum_{i} (\widehat{\theta}_{i} - \theta_{i})^{2}$$

Prior

 $heta \sim N(0,C)$

- Normal posterior means - equivalent representations

6 equivalent representations of the posterior mean

- 1. Minimizer of weighted average risk
- 2. Minimizer of posterior expected loss
- 3. Posterior expectation
- 4. Posterior best linear predictor
- 5. Penalized least squares estimator
- 6. Shrinkage estimator

-Normal posterior means - equivalent representations

1) Minimizer of weighted average risk

- Minimize weighted average risk (= Bayes risk),
- averaging loss $L(\hat{\theta}, \theta) = (\hat{\theta} \theta)^2$ over both
 - 1. the sampling distribution $f_{\boldsymbol{X}|\theta}$, and
 - 2. weighting values of θ using the decision weights (prior) π_{θ} .

► Formally,

$$\widehat{\theta}(\cdot) = \operatorname*{argmin}_{t(\cdot)} \int E_{\theta}[L(t(\mathbf{X}), \theta)] d\pi(\theta).$$

-Normal posterior means - equivalent representations

2) Minimizer of posterior expected loss

- Minimize posterior expected loss,
- averaging loss $L(\widehat{\theta}, \theta) = (\widehat{\theta} \theta)^2$ over

1. just the posterior distribution $\pi_{\theta|\mathbf{X}}$.

Formally,

$$\widehat{\theta}(x) = \operatorname*{argmin}_{t} \int L(t, \theta) d\pi_{\theta | \mathbf{X}}(\theta | x).$$

- Normal posterior means - equivalent representations

3 and 4) Posterior expectation and posterior best linear predictor

Note that

$$\begin{pmatrix} X \\ \theta \end{pmatrix} \sim N\left(0, \begin{pmatrix} C+I & C \\ C & C \end{pmatrix}\right).$$

Posterior expectation:

$$\widehat{\theta} = E[\theta | \mathbf{X}].$$

Posterior best linear predictor:

$$\widehat{\theta} = E^*[\theta | \mathbf{X}] = C \cdot (C+I)^{-1} \cdot \mathbf{X}.$$

Normal posterior means – equivalent representations

5) Penalization

Minimize

- 1. the sum of squared residuals,
- 2. plus a quadratic penalty term.

Formally,

$$\widehat{\theta} = \operatorname*{argmin}_{t} \sum_{i=1}^{n} (X_i - t_i)^2 + ||t||^2,$$

where

$$||t||^2 = t'C^{-1}t.$$

- Normal posterior means - equivalent representations

6) Shrinkage

- Diagonalize C: Find
 - 1. orthonormal matrix U of eigenvectors, and
 - 2. diagonal matrix D of eigenvalues, so that

C = UDU'.

Change of coordinates, using U:

 $\tilde{\mathbf{X}} = U'\mathbf{X}$ $\tilde{\mathbf{\theta}} = U'\mathbf{ heta}.$

Componentwise shrinkage in the new coordinates:

$$\widehat{\widetilde{\theta}}_i = \frac{d_i}{d_i + 1} \widetilde{X}_i. \tag{1}$$

Statistical Decision Theory

Normal posterior means – equivalent representations

Practice problem

Show that these 6 objects are all equivalent to each other.

- Normal posterior means - equivalent representations

Solution (sketch)

- Minimizer of weighted average risk = minimizer of posterior expected loss: See decision slides.
- 2. Minimizer of posterior expected loss = posterior expectation:
 - First order condition for quadratic loss function,
 - pull derivative inside,
 - and switch order of integration.
- 3. Posterior expectation = posterior best linear predictor:
 - **X** and θ are jointly Normal,
 - conditional expectations for multivariate Normals are linear.
- 4. Posterior expectation \Rightarrow penalized least squares:
 - ► Posterior is symmetric unimodal ⇒ posterior mean is posterior mode.
 - Posterior mode = maximizer of posterior log-likelihood = maximizer of joint log likelihood,
 - since denominator f_X does not depend on θ .

- Normal posterior means - equivalent representations

Solution (sketch) continued

- 5. Penalized least squares \Rightarrow posterior expectation:
 - Any penalty of the form

ť At

for A symmetric positive definite

corresponds to the log of a Normal prior

$$\theta \sim N(0, A^{-1}).$$

- 6. Componentwise shrinkage = posterior best linear predictor:
 - Change of coordinates turns $\widehat{\theta} = C \cdot (C+I)^{-1} \cdot \mathbf{X}$ into

$$\widehat{\widetilde{\theta}} = D \cdot (D+I)^{-1} \cdot \boldsymbol{X}.$$

Diagonality implies

$$D\cdot (D+I)^{-1} = \operatorname{diag}\left(\frac{d_i}{d_i+1}\right).$$

- Ridge regression

Normal prior for linear regression

- Normal linear regression model:
- Suppose we observe n i.i.d. draws of (Y_i, X_i), where Y_i is real valued and X_i is a k vector.
- $\flat \quad Y_i = X_i \cdot \beta + \varepsilon_i$
- $\varepsilon_i | \boldsymbol{X}, \boldsymbol{\beta} \sim N(0, \sigma^2)$
- $\beta | \mathbf{X} \sim N(0, \Omega)$ (prior)
- ► Note: will leave conditioning on **X** implicit in following slides.

Ridge regression

Practice problem ("weight space view")

- Find the posterior expectation of β
- Hints:
 - 1. The posterior expectation is the maximum a posteriori.
 - 2. The log likelihood takes a penalized least squares form.
- Find the posterior expectation of x · β for some (non-random) point x.

Ridge regression

Solution

• Joint log likelihood of Y, β :

$$\log(f_{\boldsymbol{Y}\beta}) = \log(f_{\boldsymbol{Y}|\beta}) + \log(f_{\beta})$$
$$= const. - \frac{1}{2\sigma^2} \sum_{i} (Y_i - X_i\beta)^2 - \frac{1}{2}\beta'\Omega^{-1}\beta.$$

First order condition for maximum a posteriori:

$$0 = \frac{\partial f_{\mathbf{Y}\beta}}{\partial \beta} = \frac{1}{\sigma^2} \sum_{i} (Y_i - X_i \beta) \cdot X_i - \beta' \Omega^{-1}.$$

$$\Rightarrow \quad \widehat{\beta} = \left(\sum_{i} X_i' X_i + \sigma^2 \Omega^{-1} \right)^{-1} \cdot \sum X_i' Y_i.$$

Thus

$$E[x \cdot \beta | \mathbf{Y}] = x \cdot \widehat{\beta} = x \cdot (\mathbf{X}' \mathbf{X} + \sigma^2 \Omega^{-1})^{-1} \cdot \mathbf{X}' \mathbf{Y}.$$

- Previous derivation required inverting $k \times k$ matrix.
- Can instead do prediction inverting an $n \times n$ matrix.
- n might be smaller than k if there are many "features."
- This will lead to a "function space view" of prediction.

Practice problem ("kernel trick")

Find the posterior expectation of

$$f(x) = E[Y|X = x] = x \cdot \beta.$$

- Wait, didn't we just do that?
- Hints:
 - 1. Start by figuring out the variance / covariance matrix of $(x \cdot \beta, \mathbf{Y})$.
 - 2. Then deduce the best linear predictor of $x \cdot \beta$ given **Y**.

Solution

• The joint distribution of $(x \cdot \beta, \mathbf{Y})$ is given by

$$\begin{pmatrix} \boldsymbol{x} \cdot \boldsymbol{\beta} \\ \boldsymbol{Y} \end{pmatrix} \sim N \left(\boldsymbol{0}, \begin{pmatrix} \boldsymbol{x} \Omega \boldsymbol{x}' & \boldsymbol{x} \Omega \boldsymbol{X}' \\ \boldsymbol{X} \Omega \boldsymbol{x}' & \boldsymbol{X} \Omega \boldsymbol{X}' + \sigma^2 \boldsymbol{I}_n \end{pmatrix} \right)$$

• Denote
$$C = X\Omega X'$$
 and $c(x) = x\Omega X'$.

Then

$$E[x \cdot \beta | \mathbf{Y}] = c(x) \cdot (C + \sigma^2 I_n)^{-1} \cdot \mathbf{Y}.$$

Contrast with previous representation:

$$E[x \cdot \beta | \mathbf{Y}] = x \cdot (\mathbf{X}' \mathbf{X} + \sigma^2 \Omega^{-1})^{-1} \cdot \mathbf{X}' \mathbf{Y}.$$

-Lasso regression

Lasso regression

Ridge regression as penalization: Assume Var(β) = I, denote σ² = λ and ||β||²₂ = β' ⋅ β. Then

$$\widehat{eta} = \mathop{\mathrm{argmin}}_{eta} \sum_i (Y_i - X_ieta)^2 + \lambda \|eta\|_2^2,$$

- Could consider alternative penalties.
- For instance: $\|\beta\|_1 = \sum_j |\beta_j|$.
- This yields Lasso regression:

$$\widehat{eta} = \operatorname*{argmin}_{eta} \sum_{i} (Y_i - X_i eta)^2 + \lambda \|eta\|_1.$$

-Lasso regression

Lasso, simplified setting

- Consider again the normal means setting, as before, where $X | \theta \sim N(\theta, I_k)$.
- ► Let $\widehat{\theta} = \underset{t}{\operatorname{argmin}} \sum_{i=1}^{n} (X_i - t_i)^2 + 2\lambda \|t\|_1.$

Practice problem

Derive an explicit formula for $\widehat{\theta}$

- Lasso regression

Solution

We can treat each component separately:

$$\widehat{ heta}_i = \operatorname*{argmin}_{t_i} \frac{1}{2} (X_i - t_i)^2 + \lambda |t_i|.$$

Sub-derivative of objective function:

$$\frac{\partial}{\partial t_i} = -(X_i - t_i) + \begin{cases} -1 & t_i < 0\\ 0 & t_i = 0\\ 1 & t_i < 0. \end{cases}$$

Solution to optimization problem (first order condition):

$$\widehat{ heta}_i = egin{cases} X_i + \lambda & X_i < -\lambda \ 0 & -\lambda < X_i < \lambda \ X_i - \lambda & \lambda < X_i. \end{cases}$$

Lasso regression

Comparing methods of regularized regression

- Abadie and Kasy (2017): compare the risk of alternative regularization methods.
- No one method that's always optimal!

Neighborhood effects:

The effect of location during childhood on adult income (Chetty and Hendren, 2015)

Arms trading event study:

Changes in the stock prices of arms manufacturers following changes in the intensity of conflicts in countries under arms trade embargoes (DellaVigna and La Ferrara, 2010)

Nonparametric Mincer equation:

A nonparametric regression equation of log wages on education and potential experience (Belloni and Chernozhukov, 2011)

Estimated Risk

- Estimated risk \widehat{R} at the optimized tuning parameter $\widehat{\lambda}^*$
- for each application and estimator considered.

	n		Ridge	Lasso	Pre-test
location effects	595	Ŕ	0.29	0.32	0.41
		$\widehat{\lambda}^*$	2.44	1.34	5.00
arms trade	214	R	0.50	0.06	-0.02
		$\widehat{\lambda}^*$	0.98	1.50	2.38
returns to education	65	R	1.00	0.84	0.93
		$\widehat{\lambda}^*$	0.01	0.59	1.14

Value added models

- Chetty, R. and N. Hendren (2015). The impacts of neighborhoods on intergenerational mobility: Childhood exposure effects and county-level estimates. *Working Paper.*
- We are interested in the causal impact θ_i of cities i on intergenerational mobility.
- Suppose that for each city we have
 - a noisy but unbiased estimate Y_i of θ_i , with known standard error σ_i ,
 - and a biased but less noisy estimate X_i.
- Suppose that estimates and parameters are jointly normally distributed,

$$egin{aligned} &Y_i| heta_i,\sigma_i,X_i\sim \mathcal{N}(heta_i,\sigma_i^2)\ &(heta_i,X_i)|\sigma_i\sim \mathcal{N}((ar{ heta},ar{X}),\Sigma). \end{aligned}$$

- Value added models

The Geography of Intergenerational Mobility in the United States Predicted Income Rank at Age 30 for Children with Parents at 25th Percentile

What is the Average Causal Impact of Growing Up in place with Better Outcomes?

- Value added models

Practice problem

- Suppose you know Σ and observe a draw of (Y_i, X_i, σ_i) .
- What is the joint distribution of Y_i, X_i and θ_i ?
- What is the posterior expectation of θ_i?

Solution

• Joint distribution of Y_i, X_i and θ_i :

$$(\theta_i, Y_i, X_i) | \sigma_i \sim N\left(\begin{pmatrix} \bar{\theta} \\ \bar{\theta} \\ \bar{X} \end{pmatrix}, \begin{pmatrix} \Sigma_{11} & \Sigma_{11} & \Sigma_{12} \\ \Sigma_{11} & \Sigma_{11} + \sigma_i^2 & \Sigma_{12} \\ \Sigma_{12} & \Sigma_{12} & \Sigma_{22} \end{pmatrix}\right)$$

• Posterior expectation of θ_i = best linear predictor,

$$\begin{aligned} \widehat{\theta}_i &= E[\theta_i | Y_i, X_i, \sigma_i] \\ &= E[\theta_i] + \operatorname{Cov}(\theta_i, (Y_i, X_i)) \cdot \operatorname{Var}(Y_i, X_i)^{-1} \cdot ((Y_i, X_i) - E[(Y_i, X_i)]) \\ &= \overline{\theta} + (\Sigma_{11}, \Sigma_{12}) \cdot \begin{pmatrix} \Sigma_{11} + \sigma_i^2 & \Sigma_{12} \\ \Sigma_{12} & \Sigma_{22} \end{pmatrix}^{-1} \cdot ((Y_i, X_i) - (\overline{\theta}, \overline{X})) \end{aligned}$$

- Value added models

Practice problem

Suppose you observe i.i.d. draws of (Y_i, X_i, σ_i) . What is your estimate of $(\bar{\theta}, \bar{X})$ and of Σ ?

- Value added models

Solution

As shown before,

$$E[(Y_i, X_i)] = (\bar{\theta}, \bar{X}),$$
$$Var(Y_i, X_i) | \sigma_i = \begin{pmatrix} \Sigma_{11} + \sigma_i^2 & \Sigma_{12} \\ \Sigma_{12} & \Sigma_{22} \end{pmatrix},$$

$$\widehat{\Sigma} = \frac{1}{n-1} \sum_{i} \begin{pmatrix} (Y_i - \bar{Y})^2 - \sigma_i^2 & (Y_i - \bar{Y})(X_i - \bar{X}) \\ (Y_i - \bar{Y})(X_i - \bar{X}) & (X_i - \bar{X})^2 \end{pmatrix}.$$