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Statistical Decision Theory

Takeaways for this part of class

I In a Normal means model with Normal prior, there are a number
of equivalent ways to think about regularization:

I posterior mean,
I penalized least squares (penalty corresponds to prior),
I shrinkage, etc.

I Applied to linear regression:
Ridge regression as penalized OLS with quadratic penalty.

I Alternatively, using an absolute value penalty:
Lasso regression. (Popular in machine learning.)

I Hierarchical normal models yield the estimators used in the
“value added” literature.
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Statistical Decision Theory

Roadmap

Normal posterior means – equivalent representations

Ridge regression

Lasso regression

Value added models
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Statistical Decision Theory

Normal posterior means – equivalent representations

Normal posterior means – equivalent representations
Setup

I θ ∈ Rk

I X |θ ∼ N(θ , Ik )

I Loss
L(θ̂ ,θ) = ∑

i
(θ̂i −θi)

2

I Prior
θ ∼ N(0,C)
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Statistical Decision Theory

Normal posterior means – equivalent representations

6 equivalent representations of the posterior mean

1. Minimizer of weighted average risk

2. Minimizer of posterior expected loss

3. Posterior expectation

4. Posterior best linear predictor

5. Penalized least squares estimator

6. Shrinkage estimator
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Statistical Decision Theory

Normal posterior means – equivalent representations

1) Minimizer of weighted average risk

I Minimize weighted average risk (= Bayes risk),

I averaging loss L(θ̂ ,θ) = (θ̂ −θ)2 over both
1. the sampling distribution fX |θ , and
2. weighting values of θ using the decision weights (prior) πθ .

I Formally,

θ̂(·) = argmin
t(·)

∫
Eθ [L(t(X),θ)]dπ(θ).
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Statistical Decision Theory

Normal posterior means – equivalent representations

2) Minimizer of posterior expected loss

I Minimize posterior expected loss,

I averaging loss L(θ̂ ,θ) = (θ̂ −θ)2 over
1. just the posterior distribution πθ |X .

I Formally,

θ̂(x) = argmin
t

∫
L(t,θ)dπθ |X (θ |x).

7 / 30



Statistical Decision Theory

Normal posterior means – equivalent representations

3 and 4) Posterior expectation and
posterior best linear predictor

I Note that (
X
θ

)
∼ N

(
0,

(
C + I C

C C

))
.

I Posterior expectation:
θ̂ = E[θ |X ].

I Posterior best linear predictor:

θ̂ = E∗[θ |X ] = C · (C + I)−1 ·X .
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Statistical Decision Theory

Normal posterior means – equivalent representations

5) Penalization

I Minimize
1. the sum of squared residuals,
2. plus a quadratic penalty term.

I Formally,

θ̂ = argmin
t

n

∑
i=1

(Xi − ti)
2 +‖t‖2,

I where
‖t‖2 = t ′C−1t.
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Statistical Decision Theory

Normal posterior means – equivalent representations

6) Shrinkage

I Diagonalize C: Find
1. orthonormal matrix U of eigenvectors, and
2. diagonal matrix D of eigenvalues, so that

C = UDU ′.

I Change of coordinates, using U:

X̃ = U ′X

θ̃ = U ′θ .

I Componentwise shrinkage in the new coordinates:

̂̃
θ i =

di

di + 1
X̃i . (1)

10 / 30



Statistical Decision Theory

Normal posterior means – equivalent representations

Practice problem

Show that these 6 objects are all equivalent to each other.
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Statistical Decision Theory

Normal posterior means – equivalent representations

Solution (sketch)
1. Minimizer of weighted average risk = minimizer of posterior

expected loss: See decision slides.
2. Minimizer of posterior expected loss = posterior expectation:

I First order condition for quadratic loss function,
I pull derivative inside,
I and switch order of integration.

3. Posterior expectation = posterior best linear predictor:
I X and θ are jointly Normal,
I conditional expectations for multivariate Normals are linear.

4. Posterior expectation⇒ penalized least squares:
I Posterior is symmetric unimodal⇒ posterior mean is posterior

mode.
I Posterior mode = maximizer of posterior log-likelihood =

maximizer of joint log likelihood,
I since denominator fX does not depend on θ .
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Statistical Decision Theory

Normal posterior means – equivalent representations

Solution (sketch) continued
5. Penalized least squares⇒ posterior expectation:

I Any penalty of the form
t ′At

for A symmetric positive definite
I corresponds to the log of a Normal prior

θ ∼ N
(
0,A−1) .

6. Componentwise shrinkage = posterior best linear predictor:
I Change of coordinates turns θ̂ = C · (C + I)−1 ·X intỗ

θ = D · (D + I)−1 ·X .

I Diagonality implies

D · (D + I)−1 = diag

(
di

di + 1

)
.
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Statistical Decision Theory

Ridge regression

Normal prior for linear regression

I Normal linear regression model:

I Suppose we observe n i.i.d. draws of (Yi ,Xi), where Yi is real
valued and Xi is a k vector.

I Yi = Xi ·β + εi

I εi |X ,β ∼ N(0,σ2)

I β |X ∼ N(0,Ω) (prior)

I Note: will leave conditioning on X implicit in following slides.
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Statistical Decision Theory

Ridge regression

Practice problem (“weight space view”)

I Find the posterior expectation of β

I Hints:
1. The posterior expectation is the maximum a posteriori.
2. The log likelihood takes a penalized least squares form.

I Find the posterior expectation of x ·β for some (non-random)
point x .
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Statistical Decision Theory

Ridge regression

Solution
I Joint log likelihood of Y ,β :

log(fY β ) = log(fY Y |β ) + log(fβ )

=const.− 1
2σ2 ∑

i
(Yi −Xiβ )2− 1

2
β
′Ω−1

β .

I First order condition for maximum a posteriori:

0 =
∂ fY β

∂β
=

1
σ2 ∑

i
(Yi −Xiβ ) ·Xi −β

′Ω−1.

⇒ β̂ =

(
∑

i
X ′i Xi + σ

2Ω−1

)−1

·∑X ′i Yi .

I Thus

E[x ·β |Y ] = x · β̂ = x ·
(
X ′X + σ

2Ω−1)−1 ·X ′Y .

16 / 30



Statistical Decision Theory

Ridge regression

I Previous derivation required inverting k× k matrix.
I Can instead do prediction inverting an n×n matrix.
I n might be smaller than k if there are many “features.”
I This will lead to a “function space view” of prediction.

Practice problem (“kernel trick”)

I Find the posterior expectation of

f (x) = E[Y |X = x] = x ·β .

I Wait, didn’t we just do that?
I Hints:

1. Start by figuring out the variance / covariance matrix of (x ·β ,Y ).
2. Then deduce the best linear predictor of x ·β given Y .
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Statistical Decision Theory

Ridge regression

Solution

I The joint distribution of (x ·β ,Y ) is given by(
x ·β

Y

)
∼ N

(
0,

(
xΩx ′ xΩX ′

XΩx ′ XΩX ′+ σ2In

))
I Denote C = XΩX ′ and c(x) = xΩX ′.

I Then
E[x ·β |Y ] = c(x) ·

(
C + σ

2In
)−1 ·Y .

I Contrast with previous representation:

E[x ·β |Y ] = x ·
(
X ′X + σ

2Ω−1)−1 ·X ′Y .
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Statistical Decision Theory

Lasso regression

Lasso regression

I Ridge regression as penalization:
Assume Var(β ) = I , denote σ2 = λ and ‖β‖2

2 = β ′ ·β . Then

β̂ = argmin
β

∑
i

(Yi −Xiβ )2 + λ‖β‖2
2,

I Could consider alternative penalties.

I For instance: ‖β‖1 = ∑j |βj |.
I This yields Lasso regression:

β̂ = argmin
β

∑
i

(Yi −Xiβ )2 + λ‖β‖1.
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Statistical Decision Theory

Lasso regression

Lasso, simplified setting

I Consider again the normal means setting, as before, where
X |θ ∼ N(θ , Ik ).

I Let

θ̂ = argmin
t

n

∑
i=1

(Xi − ti)
2 + 2λ‖t‖1.

Practice problem

Derive an explicit formula for θ̂
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Statistical Decision Theory

Lasso regression

Solution
I We can treat each component separately:

θ̂i = argmin
ti

1
2 (Xi − ti)

2 + λ |ti |.

I Sub-derivative of objective function:

∂

∂ ti
=−(Xi − ti) +


−1 ti < 0

0 ti = 0

1 ti < 0.

I Solution to optimization problem (first order condition):

θ̂i =


Xi + λ Xi <−λ

0 −λ < Xi < λ

Xi −λ λ < Xi .
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Statistical Decision Theory

Lasso regression

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

22 / 30



Statistical Decision Theory

Lasso regression

Comparing methods of regularized regression

I Abadie and Kasy (2017):
compare the risk of alternative regularization methods.

I No one method that’s always optimal!

I Neighborhood effects:
The effect of location during childhood on adult income
(Chetty and Hendren, 2015)

I Arms trading event study:
Changes in the stock prices of arms manufacturers following
changes in the intensity of conflicts in countries under arms trade
embargoes (DellaVigna and La Ferrara, 2010)

I Nonparametric Mincer equation:
A nonparametric regression equation of log wages on education
and potential experience (Belloni and Chernozhukov, 2011)
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Statistical Decision Theory

Lasso regression

Estimated Risk

I Estimated risk R̂ at the optimized tuning parameter λ̂ ∗

I for each application and estimator considered.

n Ridge Lasso Pre-test
location effects 595 R̂ 0.29 0.32 0.41

λ̂ ∗ 2.44 1.34 5.00
arms trade 214 R̂ 0.50 0.06 -0.02

λ̂ ∗ 0.98 1.50 2.38
returns to education 65 R̂ 1.00 0.84 0.93

λ̂ ∗ 0.01 0.59 1.14
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Statistical Decision Theory

Value added models

Value added models
I Chetty, R. and N. Hendren (2015). The impacts of

neighborhoods on intergenerational mobility: Childhood exposure
effects and county-level estimates. Working Paper.

I We are interested in the causal impact θi of cities i on
intergenerational mobility.

I Suppose that for each city we have
I a noisy but unbiased estimate Yi of θi ,

with known standard error σi ,
I and a biased but less noisy estimate Xi .

I Suppose that estimates and parameters are jointly normally
distributed,

Yi |θi ,σi ,Xi ∼ N(θi ,σ
2
i )

(θi ,Xi)|σi ∼ N((θ̄ , X̄),Σ).
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Statistical Decision Theory

Value added models

The Geography of Intergenerational Mobility in the United States
Predicted Income Rank at Age 30 for Children with Parents at 25th Percentile

Mean	Percentile	
Rank
>	55.4

51.4	- 55.4

48.7- 51.4

46.8	- 48.7

45.3	- 46.8

43.6	- 45.3

42.0	- 43.6

40.3	- 42.0

37.7	- 40.3

<	37.7

Insufficient	
Data

What is the Average Causal Impact of Growing Up in place with Better Outcomes?
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Statistical Decision Theory

Value added models

Practice problem

I Suppose you know Σ and observe a draw of (Yi ,Xi ,σi).

I What is the joint distribution of Yi ,Xi and θi?

I What is the posterior expectation of θi?
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Statistical Decision Theory

Value added models

Solution

I Joint distribution of Yi ,Xi and θi :

(θi ,Yi ,Xi)|σi ∼ N

θ̄

θ̄

X̄

 ,

Σ11 Σ11 Σ12

Σ11 Σ11 + σ2
i Σ12

Σ12 Σ12 Σ22


I Posterior expectation of θi = best linear predictor,

θ̂i = E[θi |Yi ,Xi ,σi ]

= E[θi ] + Cov(θi ,(Yi ,Xi)) ·Var(Yi ,Xi)
−1 · ((Yi ,Xi)−E[(Yi ,Xi)])

= θ̄ + (Σ11,Σ12) ·
(

Σ11 + σ2
i Σ12

Σ12 Σ22

)−1

· ((Yi ,Xi)− (θ̄ , X̄))
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Statistical Decision Theory

Value added models

Practice problem

Suppose you observe i.i.d. draws of (Yi ,Xi ,σi). What is your estimate
of (θ̄ , X̄) and of Σ?
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Statistical Decision Theory

Value added models

Solution

I As shown before,

E[(Yi ,Xi)] = (θ̄ , X̄),

Var(Yi ,Xi)|σi =

(
Σ11 + σ2

i Σ12

Σ12 Σ22

)
.

I Replacing the expectation by the sample mean, we immediately
get estimators of (θ̄ , X̄). Similarly,

Σ̂ = 1
n−1 ∑

i

(
(Yi − Ȳ )2−σ2

i (Yi − Ȳ )(Xi − X̄)
(Yi − Ȳ )(Xi − X̄) (Xi − X̄)2

)
.
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