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Instrumental variables

Agenda instrumental variables part I

I Origins of instrumental variables: Systems of linear structural
equations

I Strong restriction: Constant causal effects.

I Modern perspective: Potential outcomes, allow for heterogeneity
of causal effects

I Binary case:
1. Keep IV estimand, reinterpret it in more general setting:

Local Average Treatment Effect (LATE)
2. Keep object of interest average treatment effect (ATE):

Partial identification (Bounds)
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Instrumental variables

Agenda instrumental variables part II

I Continuous treatment case:
1. Restricting heterogeneity in the structural equation:

Nonparametric IV (conditional moment equalities)
2. Restricting heterogeneity in the first stage:

Control functions
3. Linear IV:

Continuous version of LATE
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Instrumental variables

Takeaways for this part of class

I Instrumental variables methods were invented jointly with the
idea of economic equilibrium.

I Classic assumptions impose strong restrictions on heterogeneity:
same causal effect for every unit.

I Modern formulations based on potential outcomes relax this
assumption.

I With effect heterogeneity, average treatment effects are not
point-identified any more.

I Two solutions:
1. Re-interpret the classic IV-coefficient in more general setting.
2. Derive bounds on the average treatment effect.
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Instrumental variables

Origins of IV: systems of structural equations

Origins of IV: systems of structural equations

I econometrics pioneered by “Cowles commission” starting in the
1930s

I they were interested in demand (elasticities) for agricultural goods
I introduced systems of simultaneous equations

I outcomes as equilibria of some structural relationships
I goal: recover the slopes of structural relationships
I from observations of equilibrium outcomes and exogenous shifters
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Instrumental variables

Origins of IV: systems of structural equations

System of structural equations

Y = A ·Y +B ·Z + ε,

I Y : k -dimensional vector of equilibrium outcomes

I Z : l-dimensional vector of exogenous variables

I A: unknown k× k matrix of coefficients of interest

I B: unknown k× l matrix

I ε : further unobserved factors affecting outcomes
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Instrumental variables

Origins of IV: systems of structural equations

Example: supply and demand

Y = (P,Q)

P = A12 ·Q+B1 ·Z + ε1 demand

Q = A21 ·P +B2 ·Z + ε2 supply

I demand function: relates prices to quantity supplied
and shifters Z and ε1 of demand

I supply function relates quantities supplied to prices
and shifters Z and ε2 of supply.

I does not really matter which of the equations puts prices on the
“left hand side.’

I price and quantity in market equilibrium: solution of this system of
equations.
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Instrumental variables

Origins of IV: systems of structural equations

Reduced form

I solve equation Y = A ·Y +B ·Z + ε

for Y as a function of Z and ε

I bring A ·Y to the left hand side,
pre-multiply by (I−A)−1 ⇒

Y = C ·Z +η “reduced form”

C := (I−A)−1 ·B reduced form coefficients

η := (I−A)−1 · ε

I suppose E[ε|Z ] = 0 (ie., Z is randomly assigned)

I then we can identify C from

E[Y |Z ] = C ·Z .
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Instrumental variables

Origins of IV: systems of structural equations

Exclusion restrictions

I suppose we know C

I what we want is A, possibly B

I problem: k× l coefficients in C = (I−A)−1 ·B
k× (k + l) coefficients in A and B

I ⇒ further assumptions needed

I exclusion restrictions: assume that some of the coefficients in B
or A are = 0.

I Example: rainfall affects grain supply but not grain demand
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Instrumental variables

Origins of IV: systems of structural equations

Supply and demand continued

I suppose Z is (i) random, E[ε|Z ] = 0

I and (ii) “excluded” from the demand equation
⇒ B11 = 0

I by construction, diag(A) = 0

I therefore

Cov(Z ,P) = Cov(Z ,A12 ·Q+B1 ·Z + ε1) = A12 ·Cov(Z ,Q),

I ⇒ the slope of demand is identified by

A12 =
Cov(Z ,P)
Cov(Z ,Q)

.

I Z is an instrumental variable
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Instrumental variables

Origins of IV: systems of structural equations

Remarks

I historically, applied researchers have not been very careful about
choosing Z for which
(i) randomization and (ii) exclusion restriction are well justified.

I since the 1980s, more emphasis on credibility of identifying
assumptions

I some additional problematic restrictions we imposed:
1. linearity
2. constant (non-random) slopes
3. heterogeneity ε is k dimensional and enters additively

I ⇒ causal effects assumed to be the same for everyone

I next section: framework which does not impose this
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Instrumental variables

Treatment effects

Modern perspective:
Treatment effects and potential outcomes

I coming from biostatistics / medical trials

I potential outcome framework: answer to “what if” questions

I two “treatments:” D = 0 or D = 1

I eg. placebo vs. actual treatment in a medical trial

I Yi person i ’s outcome
eg. survival after 2 years

I potential outcome Y 0
i :

what if person i would have gotten treatment 0

I potential outcome Y 1
i :

what if person i would have gotten treatment 1

I question to you: is this even meaningful?

12 / 40



Instrumental variables

Treatment effects

I causal effect / treatment effect for person i :
Y 1

i −Y 0
i .

I average causal effect / average treatment effect:

ATE = E[Y 1−Y 0],

I expectation averages over the population of interest
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Instrumental variables

Treatment effects

The fundamental problem of causal inference

I we never observe both Y 0 and Y 1 at the same time
I one of the potential outcomes is always missing from the data

I treatment D determines which of the two we observe

I formally:
Y = D ·Y 1 +(1−D) ·Y 0.
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Instrumental variables

Treatment effects

Selection problem

I distribution of Y 1 among those with D = 1
need not be the same as the distribution of Y 1 among everyone.

I in particular

E[Y |D = 1] = E[Y 1|D = 1] 6= E[Y 1]

E[Y |D = 0] = E[Y 0|D = 0] 6= E[Y 0]

E[Y |D = 1]−E[Y |D = 0] 6= E[Y 1−Y 0] = ATE .

15 / 40



Instrumental variables

Treatment effects

Randomization
I no selection⇔ D is random

(Y 0,Y 1)⊥ D.

I in this case,

E[Y |D = 1] = E[Y 1|D = 1] = E[Y 1]

E[Y |D = 0] = E[Y 0|D = 0] = E[Y 0]

E[Y |D = 1]−E[Y |D = 0] = E[Y 1−Y 0] = ATE .

I can ensure this by actually randomly assigning D
I independence⇒ comparing treatment and control actually

compares “apples with apples”
I this gives empirical content to the “metaphysical” notion of

potential outcomes!
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Instrumental variables

LATE

Instrumental variables

I recall: simultaneous equations models with exclusion restrictions

I ⇒ instrumental variables

β =
Cov(Z ,Y )

Cov(Z ,D)
.

I we will now give a new interpretation to β

I using the potential outcomes framework, allowing for
heterogeneity of treatment effects

I “Local Average Treatment Effect” (LATE)
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Instrumental variables

LATE

6 assumptions

1. Z ∈ {0,1}, D ∈ {0,1}
2. Y = D ·Y 1 +(1−D) ·Y 0

3. D = Z ·D1 +(1−Z ) ·D0

4. D1 ≥ D0

5. Z ⊥ (Y 0,Y 1,D0,D1)

6. Cov(Z ,D) 6= 0
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Instrumental variables

LATE

Discussion of assumptions
Generalization of randomized experiment

I D is “partially randomized”

I instrument Z is randomized

I D depends on Z , but is not fully determined by it

1. Binary treatment and instrument:
both D and Z can only take two values
results generalize, but things get messier without this

2. Potential outcome equation for Y : Y = D ·Y 1 +(1−D) ·Y 0

I exclusion restriction: Z does not show up in the equation
determining the outcome.

I “stable unit treatment values assumption” (SUTVA): outcomes are
not affected by the treatment received by other units.
excludes general equilibrium effects or externalities.
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Instrumental variables

LATE

3. Potential outcome equation for D: D = Z ·D1 +(1−Z ) ·D0

SUTVA; treatment is not affected by the instrument values of
other units

4. No defiers: D1 ≥ D0

I four possible combinations for the potential treatments (D0,D1) in
the binary setting

I D1 = 0,D0 = 1, is excluded
I ⇔ monotonicity
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Instrumental variables

LATE

Table: No defiers

D0 D1

Never takers (NT) 0 0
Compliers (C) 0 1
Always takers (AT) 1 1
Defiers 1 0
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Instrumental variables

LATE

5. Randomization: Z ⊥ (Y 0,Y 1,D0,D1)

I Z is (as if) randomized.
I in applications, have to justify both exclusion and randomization
I no reverse causality, common cause!

6. Instrument relevance: Cov(Z ,D) 6= 0

I guarantees that the IV estimand is well defined
I there are at least some compliers
I testable
I near-violation: weak instruments
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Instrumental variables

LATE

Graphical illustration

Z=1

Z=0

Never takers Compliers Always takers

D=0 D=1
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Instrumental variables

LATE

Illustration explained
I 3 groups, never takers, compliers, and always takers
I by randomization of Z :

each group represented equally given Z = 0 / Z = 1
I depending on group:

observe different treatment values and potential outcomes.
I will now take the IV estimand

Cov(Z ,Y )

Cov(Z ,D)

I interpret it in terms of potential outcomes:
average causal effects for the subgroup of compliers

I idea of proof:
take the “top part” of figure 28, and subtract the “bottom part.”
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Instrumental variables

LATE

Preliminary result:

If Z is binary, then

Cov(Z ,Y )

Cov(Z ,D)
=

E[Y |Z = 1]−E[Y |Z = 0]
E[D|Z = 1]−E[D|Z = 0]

.

Practice problem

Prove this.
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Instrumental variables

LATE

Proof

I Consider the covariance in the numerator:

Cov(Z ,Y ) = E[YZ ]−E[Y ] ·E[Z ]
=E[Y |Z = 1]·E[Z ]−(E[Y |Z = 1]·E[Z ]+E[Y |Z = 0] ·E[1−Z ])·E[Z ]

= (E[Y |Z = 1]−E[Y |Z = 0]) ·E[Z ] ·E[1−Z ].

I Similarly for the denominator:

Cov(Z ,D) = (E[D|Z = 1]−E[D|Z = 0]) ·E[Z ] ·E[1−Z ].

I The E[Z ] ·E[1−Z ] terms cancel when taking a ratio
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Instrumental variables

LATE

The “LATE” result

E[Y |Z = 1]−E[Y |Z = 0]
E[D|Z = 1]−E[D|Z = 0]

= E[Y 1−Y 0|D1 > D0]

Practice problem

Prove this.

Hint: decompose E[Y |Z = 1]−E[Y |Z = 0] in 3 parts
corresponding to our illustration
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Instrumental variables

LATE

Z=1

Z=0

Never takers Compliers Always takers

D=0 D=1
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Instrumental variables

LATE

Proof
I “top part” of figure:

E[Y |Z = 1] = E[Y |Z = 1,NT ] ·P(NT |Z = 1)

+E[Y |Z = 1,C] ·P(C|Z = 1)

+E[Y |Z = 1,AT ] ·P(AT |Z = 1)

= E[Y 0|NT ] ·P(NT )+E[Y 1|C] ·P(C)+E[Y 1|AT ] ·P(AT ).

I first equation relies on the no defiers assumption
I second equation uses the exclusion restriction and randomization

assumptions.
I Similarly

E[Y |Z = 0] = E[Y 0|NT ] ·P(NT )+

E[Y 0|C] ·P(C)+E[Y 1|AT ] ·P(AT ).

29 / 40



Instrumental variables

LATE

proof continued:

I Taking the difference, only the complier terms remain, the others
drop out:

E[Y |Z = 1]−E[Y |Z = 0] =
(
E[Y 1|C]−E[Y 0|C]

)
·P(C).

I denominator:

E[D|Z = 1]−E[D|Z = 0] = E[D1]−E[D0]

= (P(C)+P(AT ))−P(AT ) = P(C).

I taking the ratio, the claim follows. �
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Instrumental variables

LATE

Recap

LATE result:

I take the same statistical object economists estimate a lot

I which used to be interpreted as average treatment effect

I new interpretation in a more general framework

I allowing for heterogeneity of treatment effects

I ⇒ treatment effect for a subgroup

Practice problem

Is the LATE, E[Y 1−Y 0|D1 > D0], a structural object?
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Instrumental variables

Bounds

An alternative approach: Bounds

I keep the old structural object of interest: average treatment
effect

I but analyze its identification in the more general framework with
heterogeneous treatment effects

I in general: we can learn something, not everything

I ⇒ bounds / “partial identification”
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Instrumental variables

Bounds

Same assumptions as before

1. Z ∈ {0,1}, D ∈ {0,1}
2. Y = D ·Y 1 +(1−D) ·Y 0

3. D = Z ·D1 +(1−Z ) ·D0

4. D1 ≥ D0

5. Z ⊥ (Y 0,Y 1,D0,D1)

6. Cov(Z ,D) 6= 0

additionally:

7. Y is bounded, Y ∈ [0,1]
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Instrumental variables

Bounds

Decomposing ATE in known and unknown components

I decompose E[Y 1]:

E[Y 1] = E[Y 1|NT ] ·P(NT )+E[Y 1|C∨AT ] ·P(C∨AT ).

I terms that are identified:

E[Y 1|C∨AT ] = E[Y |Z = 1,D = 1]

P(C∨AT ) = E[D|Z = 1]

P(NT ) = E[1−D|Z = 1]

and thus

E[Y 1|C∨AT ] ·P(C∨AT ) = E[YD|Z = 1].
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Instrumental variables

Bounds

I Data tell us nothing about E[Y 1|NT ].
Y 1 is never observed for never takers.

I but we know, since Y is bounded, that

E[Y 1|NT ] ∈ [0,1]

I Combining these pieces, get upper and lower bounds on E[Y 1]:

E[Y 1] ∈ [E[YD|Z = 1],

E[YD|Z = 1]+E[1−D|Z = 1]].

35 / 40



Instrumental variables

Bounds

I For Y 0, similarly

E[Y 0] ∈ [E[Y (1−D)|Z = 0],

E[Y (1−D)|Z = 0]+E[D|Z = 0]].

I Data are uninformative about E[Y 0|AT ].

Practice problem

Show this.
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Instrumental variables

Bounds

Combining to get bounds on ATE

I lower bound for E[Y 1], upper bound for E[Y 0]⇒ lower bound on
E[Y 1−Y 0]

E[Y 1−Y 0]≥ E[YD|Z = 1]−E[Y (1−D)|Z = 0]−E[D|Z = 0]

I upper bound for E[Y 1], lower bound for E[Y 0]
⇒ upper bound on E[Y 1−Y 0]

E[Y 1−Y 0]≤E[YD|Z = 1]−E[Y (1−D)|Z = 0]+E[1−D|Z = 1]
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Instrumental variables

Bounds

Between randomized experiments and nothing

I bounds on ATE:

E[Y 1−Y 0] ∈ [E[YD|Z = 1]−E[Y (1−D)|Z = 0]−E[D|Z = 0],

E[YD|Z = 1]−E[Y (1−D)|Z = 0]+E[1−D|Z = 1]].

I length of this interval:

E[1−D|Z = 1]+E[D|Z = 0] = P(NT )+P(AT ) = 1−P(C)
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Bounds

I Share of compliers→ 1
I interval (“identified set”) shrinks to a point
I In the limit, D = Z
I thus (Y 1,Y 0)⊥ D – randomized experiment

I Share of compliers→ 0
I length of the interval goes to 1
I In the limit the identified set is the same as without instrument
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