Econ 2148, fall 2017
 Instrumental variables I, origins and binary treatment case

Maximilian Kasy

Department of Economics, Harvard University

Agenda instrumental variables part I

- Origins of instrumental variables: Systems of linear structural equations
- Strong restriction: Constant causal effects.
- Modern perspective: Potential outcomes, allow for heterogeneity of causal effects
- Binary case:

1. Keep IV estimand, reinterpret it in more general setting:

Local Average Treatment Effect (LATE)
2. Keep object of interest average treatment effect (ATE):

Partial identification (Bounds)

Agenda instrumental variables part II

- Continuous treatment case:

1. Restricting heterogeneity in the structural equation: Nonparametric IV (conditional moment equalities)
2. Restricting heterogeneity in the first stage:

Control functions
3. Linear IV:

Continuous version of LATE

Takeaways for this part of class

- Instrumental variables methods were invented jointly with the idea of economic equilibrium.
- Classic assumptions impose strong restrictions on heterogeneity: same causal effect for every unit.
- Modern formulations based on potential outcomes relax this assumption.
- With effect heterogeneity, average treatment effects are not point-identified any more.
- Two solutions:

1. Re-interpret the classic IV-coefficient in more general setting.
2. Derive bounds on the average treatment effect.

Origins of IV: systems of structural equations

- econometrics pioneered by "Cowles commission" starting in the 1930s
- they were interested in demand (elasticities) for agricultural goods
- introduced systems of simultaneous equations
- outcomes as equilibria of some structural relationships
- goal: recover the slopes of structural relationships
- from observations of equilibrium outcomes and exogenous shifters

System of structural equations

$$
Y=A \cdot Y+B \cdot Z+\varepsilon
$$

- Y : k-dimensional vector of equilibrium outcomes
- Z: I-dimensional vector of exogenous variables
- A: unknown $k \times k$ matrix of coefficients of interest
- B: unknown $k \times I$ matrix
- ε : further unobserved factors affecting outcomes

Example: supply and demand

$$
\begin{aligned}
& Y=(P, Q) \\
& P=A_{12} \cdot Q+B_{1} \cdot Z+\varepsilon_{1} \text { demand } \\
& Q=A_{21} \cdot P+B_{2} \cdot Z+\varepsilon_{2} \text { supply }
\end{aligned}
$$

- demand function: relates prices to quantity supplied and shifters Z and ε_{1} of demand
- supply function relates quantities supplied to prices and shifters Z and ε_{2} of supply.
- does not really matter which of the equations puts prices on the "left hand side.'
- price and quantity in market equilibrium: solution of this system of equations.

Reduced form

- solve equation $Y=A \cdot Y+B \cdot Z+\varepsilon$ for Y as a function of Z and ε
- bring $A \cdot Y$ to the left hand side, pre-multiply by $(I-A)^{-1} \Rightarrow$

$$
\begin{aligned}
& Y=C \cdot Z+\eta \text { "reduced form" } \\
& C:=(I-A)^{-1} \cdot B \text { reduced form coefficients } \\
& \eta:=(I-A)^{-1} \cdot \varepsilon
\end{aligned}
$$

- suppose $E[\varepsilon \mid Z]=0$ (ie., Z is randomly assigned)
- then we can identify C from

$$
E[Y \mid Z]=C \cdot Z
$$

Exclusion restrictions

- suppose we know C
- what we want is A, possibly B
- problem: $k \times /$ coefficients in $C=(I-A)^{-1} \cdot B$ $k \times(k+l)$ coefficients in A and B
- \Rightarrow further assumptions needed
- exclusion restrictions: assume that some of the coefficients in B or A are $=0$.
- Example: rainfall affects grain supply but not grain demand

Supply and demand continued

- suppose Z is (i) random, $E[\varepsilon \mid Z]=0$
- and (ii) "excluded" from the demand equation

$$
\Rightarrow B_{11}=0
$$

- by construction, $\operatorname{diag}(A)=0$
- therefore

$$
\operatorname{Cov}(Z, P)=\operatorname{Cov}\left(Z, A_{12} \cdot Q+B_{1} \cdot Z+\varepsilon_{1}\right)=A_{12} \cdot \operatorname{Cov}(Z, Q),
$$

- \Rightarrow the slope of demand is identified by

$$
A_{12}=\frac{\operatorname{Cov}(Z, P)}{\operatorname{Cov}(Z, Q)}
$$

- Z is an instrumental variable

Remarks

- historically, applied researchers have not been very careful about choosing Z for which
(i) randomization and (ii) exclusion restriction are well justified.
- since the 1980s, more emphasis on credibility of identifying assumptions
- some additional problematic restrictions we imposed:

1. linearity
2. constant (non-random) slopes
3. heterogeneity ε is k dimensional and enters additively

- \Rightarrow causal effects assumed to be the same for everyone
- next section: framework which does not impose this

Modern perspective: Treatment effects and potential outcomes

- coming from biostatistics / medical trials
- potential outcome framework: answer to "what if" questions
- two "treatments:" $D=0$ or $D=1$
- eg. placebo vs. actual treatment in a medical trial
- Y_{i} person i's outcome eg. survival after 2 years
- potential outcome Y_{i}^{0} : what if person i would have gotten treatment 0
- potential outcome Y_{i}^{1} : what if person i would have gotten treatment 1
- question to you: is this even meaningful?
- causal effect / treatment effect for person i : $Y_{i}^{1}-Y_{i}^{0}$.
- average causal effect / average treatment effect:

$$
A T E=E\left[Y^{1}-Y^{0}\right]
$$

- expectation averages over the population of interest

The fundamental problem of causal inference

- we never observe both Y^{0} and Y^{1} at the same time
- one of the potential outcomes is always missing from the data
- treatment D determines which of the two we observe
- formally:

$$
Y=D \cdot Y^{1}+(1-D) \cdot Y^{0}
$$

Selection problem

- distribution of Y^{1} among those with $D=1$ need not be the same as the distribution of Y^{1} among everyone.
- in particular

$$
\begin{aligned}
& E[Y \mid D=1]=E\left[Y^{1} \mid D=1\right] \neq E\left[Y^{1}\right] \\
& E[Y \mid D=0]=E\left[Y^{0} \mid D=0\right] \neq E\left[Y^{0}\right] \\
& E[Y \mid D=1]-E[Y \mid D=0] \neq E\left[Y^{1}-Y^{0}\right]=A T E .
\end{aligned}
$$

Randomization

- no selection $\Leftrightarrow D$ is random

$$
\left(Y^{0}, Y^{1}\right) \perp D
$$

- in this case,

$$
\begin{aligned}
& E[Y \mid D=1]=E\left[Y^{1} \mid D=1\right]=E\left[Y^{1}\right] \\
& E[Y \mid D=0]=E\left[Y^{0} \mid D=0\right]=E\left[Y^{0}\right] \\
& E[Y \mid D=1]-E[Y \mid D=0]=E\left[Y^{1}-Y^{0}\right]=A T E .
\end{aligned}
$$

- can ensure this by actually randomly assigning D
- independence \Rightarrow comparing treatment and control actually compares "apples with apples"
- this gives empirical content to the "metaphysical" notion of potential outcomes!

Instrumental variables

- recall: simultaneous equations models with exclusion restrictions
- \Rightarrow instrumental variables

$$
\beta=\frac{\operatorname{Cov}(Z, Y)}{\operatorname{Cov}(Z, D)}
$$

- we will now give a new interpretation to β
- using the potential outcomes framework, allowing for heterogeneity of treatment effects
- "Local Average Treatment Effect" (LATE)

6 assumptions

1. $Z \in\{0,1\}, D \in\{0,1\}$
2. $Y=D \cdot Y^{1}+(1-D) \cdot Y^{0}$
3. $D=Z \cdot D^{1}+(1-Z) \cdot D^{0}$
4. $D^{1} \geq D^{0}$
5. $Z \perp\left(Y^{0}, Y^{1}, D^{0}, D^{1}\right)$
6. $\operatorname{Cov}(Z, D) \neq 0$

Discussion of assumptions

Generalization of randomized experiment

- D is "partially randomized"
- instrument Z is randomized
- D depends on Z, but is not fully determined by it

1. Binary treatment and instrument: both D and Z can only take two values results generalize, but things get messier without this
2. Potential outcome equation for $Y: Y=D \cdot Y^{1}+(1-D) \cdot Y^{0}$

- exclusion restriction: Z does not show up in the equation determining the outcome.
- "stable unit treatment values assumption" (SUTVA): outcomes are not affected by the treatment received by other units. excludes general equilibrium effects or externalities.

3. Potential outcome equation for $D: D=Z \cdot D^{1}+(1-Z) \cdot D^{0}$ SUTVA; treatment is not affected by the instrument values of other units
4. No defiers: $D^{1} \geq D^{0}$

- four possible combinations for the potential treatments (D^{0}, D^{1}) in the binary setting
- $D^{1}=0, D^{0}=1$, is excluded
- \Leftrightarrow monotonicity

Table: No defiers

	D^{0}	D^{1}
Never takers (NT)	0	0
Compliers (C)	0	1
Always takers (AT)	1	1
Defiers	1	0

5. Randomization: $Z \perp\left(Y^{0}, Y^{1}, D^{0}, D^{1}\right)$

- Z is (as if) randomized.
- in applications, have to justify both exclusion and randomization
- no reverse causality, common cause!

6. Instrument relevance: $\operatorname{Cov}(Z, D) \neq 0$

- guarantees that the IV estimand is well defined
- there are at least some compliers
- testable
- near-violation: weak instruments

Graphical illustration

Illustration explained

- 3 groups, never takers, compliers, and always takers
- by randomization of Z :
each group represented equally given $Z=0 / Z=1$
- depending on group: observe different treatment values and potential outcomes.
- will now take the IV estimand

$$
\frac{\operatorname{Cov}(Z, Y)}{\operatorname{Cov}(Z, D)}
$$

- interpret it in terms of potential outcomes: average causal effects for the subgroup of compliers
- idea of proof: take the "top part" of figure 28 , and subtract the "bottom part."

Preliminary result:

If Z is binary, then

$$
\frac{\operatorname{Cov}(Z, Y)}{\operatorname{Cov}(Z, D)}=\frac{E[Y \mid Z=1]-E[Y \mid Z=0]}{E[D \mid Z=1]-E[D \mid Z=0]} .
$$

Practice problem

Prove this.

Proof

- Consider the covariance in the numerator:

$$
\begin{gathered}
\quad \operatorname{Cov}(Z, Y)=E[Y Z]-E[Y] \cdot E[Z] \\
=E[Y \mid Z=1] \cdot E[Z]-(E[Y \mid Z=1] \cdot E[Z]+E[Y \mid Z=0] \cdot E[1-Z]) \cdot E[Z] \\
=(E[Y \mid Z=1]-E[Y \mid Z=0]) \cdot E[Z] \cdot E[1-Z] .
\end{gathered}
$$

- Similarly for the denominator:

$$
\operatorname{Cov}(Z, D)=(E[D \mid Z=1]-E[D \mid Z=0]) \cdot E[Z] \cdot E[1-Z] .
$$

- The $E[Z] \cdot E[1-Z]$ terms cancel when taking a ratio

The "LATE" result

$$
\frac{E[Y \mid Z=1]-E[Y \mid Z=0]}{E[D \mid Z=1]-E[D \mid Z=0]}=E\left[Y^{1}-Y^{0} \mid D^{1}>D^{0}\right]
$$

Practice problem

Prove this.
Hint: decompose $E[Y \mid Z=1]-E[Y \mid Z=0]$ in 3 parts corresponding to our illustration

Proof

- "top part" of figure:

$$
\begin{aligned}
E[Y \mid Z=1]= & E[Y \mid Z=1, N T] \cdot P(N T \mid Z=1) \\
& +E[Y \mid Z=1, C] \cdot P(C \mid Z=1) \\
& +E[Y \mid Z=1, A T] \cdot P(A T \mid Z=1) \\
= & E\left[Y^{0} \mid N T\right] \cdot P(N T)+E\left[Y^{1} \mid C\right] \cdot P(C)+E\left[Y^{1} \mid A T\right] \cdot P(A T) .
\end{aligned}
$$

- first equation relies on the no defiers assumption
- second equation uses the exclusion restriction and randomization assumptions.
- Similarly

$$
\begin{aligned}
& E[Y \mid Z=0]=E\left[Y^{0} \mid N T\right] \cdot P(N T)+ \\
& E\left[Y^{0} \mid C\right] \cdot P(C)+E\left[Y^{1} \mid A T\right] \cdot P(A T) .
\end{aligned}
$$

proof continued:

- Taking the difference, only the complier terms remain, the others drop out:

$$
E[Y \mid Z=1]-E[Y \mid Z=0]=\left(E\left[Y^{1} \mid C\right]-E\left[Y^{0} \mid C\right]\right) \cdot P(C)
$$

- denominator:

$$
\begin{aligned}
E[D \mid Z=1]-E[D \mid Z= & 0]=E\left[D^{1}\right]-E\left[D^{0}\right] \\
& =(P(C)+P(A T))-P(A T)=P(C)
\end{aligned}
$$

- taking the ratio, the claim follows.

Recap

LATE result:

- take the same statistical object economists estimate a lot
- which used to be interpreted as average treatment effect
- new interpretation in a more general framework
- allowing for heterogeneity of treatment effects
- \Rightarrow treatment effect for a subgroup

Practice problem

Is the LATE, $E\left[Y^{1}-Y^{0} \mid D^{1}>D^{0}\right]$, a structural object?

An alternative approach: Bounds

- keep the old structural object of interest: average treatment effect
- but analyze its identification in the more general framework with heterogeneous treatment effects
- in general: we can learn something, not everything
- \Rightarrow bounds / "partial identification"

Same assumptions as before

1. $Z \in\{0,1\}, D \in\{0,1\}$
2. $Y=D \cdot Y^{1}+(1-D) \cdot Y^{0}$
3. $D=Z \cdot D^{1}+(1-Z) \cdot D^{0}$
4. $D^{1} \geq D^{0}$
5. $Z \perp\left(Y^{0}, Y^{1}, D^{0}, D^{1}\right)$
6. $\operatorname{Cov}(Z, D) \neq 0$
additionally:
7. Y is bounded, $Y \in[0,1]$

Decomposing ATE in known and unknown components

- decompose $E\left[Y^{1}\right]$:

$$
E\left[Y^{1}\right]=E\left[Y^{1} \mid N T\right] \cdot P(N T)+E\left[Y^{1} \mid C \vee A T\right] \cdot P(C \vee A T) .
$$

- terms that are identified:

$$
\begin{aligned}
E\left[Y^{1} \mid C \vee A T\right] & =E[Y \mid Z=1, D=1] \\
P(C \vee A T) & =E[D \mid Z=1] \\
P(N T) & =E[1-D \mid Z=1]
\end{aligned}
$$

and thus

$$
E\left[Y^{1} \mid C \vee A T\right] \cdot P(C \vee A T)=E[Y D \mid Z=1] .
$$

- Data tell us nothing about $E\left[Y^{1} \mid N T\right]$. Y^{1} is never observed for never takers.
- but we know, since Y is bounded, that

$$
E\left[Y^{1} \mid N T\right] \in[0,1]
$$

- Combining these pieces, get upper and lower bounds on $E\left[Y^{1}\right]$:

$$
\begin{aligned}
& E\left[Y^{1}\right] \in[E[Y D \mid Z=1], \\
& E[Y D \mid Z=1]+E[1-D \mid Z=1]] .
\end{aligned}
$$

- For Y^{0}, similarly

$$
\begin{aligned}
E\left[Y^{0}\right] \in[E[Y(1-D) \mid Z & =0], \\
E[Y(1-D) \mid Z & =0]+E[D \mid Z=0]] .
\end{aligned}
$$

- Data are uninformative about $E\left[Y^{0} \mid A T\right]$.

Practice problem

Show this.

Combining to get bounds on ATE

- lower bound for $E\left[Y^{1}\right]$, upper bound for $E\left[Y^{0}\right] \Rightarrow$ lower bound on $E\left[Y^{1}-Y^{0}\right]$

$$
E\left[Y^{1}-Y^{0}\right] \geq E[Y D \mid Z=1]-E[Y(1-D) \mid Z=0]-E[D \mid Z=0]
$$

- upper bound for $E\left[Y^{1}\right]$, lower bound for $E\left[Y^{0}\right]$
\Rightarrow upper bound on $E\left[Y^{1}-Y^{0}\right]$

$$
E\left[Y^{1}-Y^{0}\right] \leq E[Y D \mid Z=1]-E[Y(1-D) \mid Z=0]+E[1-D \mid Z=1]
$$

Between randomized experiments and nothing

- bounds on ATE:

$$
\left.\left.\left.\begin{array}{rl}
E\left[Y^{1}-Y^{0}\right] \in[E[Y D \mid Z & =1]-E[Y(1-D) \mid Z
\end{array}\right)=0\right]-E[D \mid Z=0], ~ 子[Y D \mid Z=1]-E[Y(1-D) \mid Z=0]+E[1-D \mid Z=1]\right] .
$$

- length of this interval:

$$
E[1-D \mid Z=1]+E[D \mid Z=0]=P(N T)+P(A T)=1-P(C)
$$

- Share of compliers $\rightarrow 1$
- interval ("identified set") shrinks to a point
- In the limit, $D=Z$
- thus $\left(Y^{1}, Y^{0}\right) \perp D$ - randomized experiment
- Share of compliers $\rightarrow 0$
- length of the interval goes to 1
- In the limit the identified set is the same as without instrument

References

- Local average treatment effect:

Angrist, J., Imbens, G., and Rubin, D. (1996).
Identification of causal effects using instrumental variables. Journal of the American Statistical Association, 91(434):444-455.

- Bounds on the average treatment effect:

Manski, C. (2003). Partial identification of probability distributions. Springer Verlag, chapter 2 and 7.

