Econ 2148, fall 2017 Instrumental variables II, continuous treatment

Maximilian Kasy

Department of Economics, Harvard University

Recall instrumental variables part I

- Origins of instrumental variables: Systems of linear structural equations Strong restriction: Constant causal effects.
- Modern perspective: Potential outcomes, allow for heterogeneity of causal effects
- Binary case:

1. Keep IV estimand, reinterpret it in more general setting: Local Average Treatment Effect (LATE)
2. Keep object of interest average treatment effect (ATE):

Partial identification (Bounds)

Agenda instrumental variables part II

- Continuous treatment case:

1. Restricting heterogeneity in the structural equation: Nonparametric IV (conditional moment equalities)
2. Restricting heterogeneity in the first stage:

Control functions
3. Linear IV:

Continuous version of LATE

Takeaways for this part of class

- We can write linear IV in three numerically equivalent ways:

1. As ratio $\operatorname{Cov}(Z, Y) / \operatorname{Cov}(Z, X)$.
2. As regression of Y on first stage predicted values \hat{X}.
3. As regression of Y on X controlling for the first stage residual V.

- The literature on IV identification with continuous treatment generalizes these ideas to non-linear settings.

Takeaways continued

1. Moment restrictions:

- Assume one-dimensional additive heterogeneity in structural equation of interest
- \Rightarrow nonparametric regression of Y on non-parametric prediction \widehat{X}.

2. Control functions:

- Assume one-dimensional heterogeneity in first stage relationship.
- $\Rightarrow X$ is independent of structural heterogeneity conditional on $V=F_{X \mid Z}(X \mid Z)$.

3. Continuous LATE:

- No restrictions on heterogeneity.
- Interpret linear IV coefficient as weighted average derivative.

Alternative ways of writing the linear IV estimand

- Linear triangular system:

$$
\begin{gathered}
Y=\beta_{0}+\beta_{1} X+U \\
X=\gamma_{0}+\gamma_{1} Z+V
\end{gathered}
$$

- Exogeneity (randomization) conditions:

$$
\operatorname{Cov}(Z, U)=0, \quad \operatorname{Cov}(Z, V)=0
$$

- Relevance condition:

$$
\operatorname{Cov}(Z, X)=\gamma_{1} \operatorname{Var}(Z) \neq 0
$$

- Under these conditions,

$$
\beta_{1}=\frac{\operatorname{Cov}(Z, Y)}{\operatorname{Cov}(Z, X)} .
$$

Moment conditions

- Write $\operatorname{Cov}(Z, U)=0$ as

$$
\operatorname{Cov}\left(Z, Y-\beta_{0}-\beta_{1} X\right)=0
$$

- Let \widehat{X} be the predicted value from a first stage regression,

$$
\widehat{x}=\gamma_{0}+\gamma_{1} z
$$

- Multiply $\operatorname{Cov}(Z, U)$ by γ_{1},

$$
\operatorname{Cov}\left(\widehat{X}, Y-\beta_{0}-\beta_{1} X\right)=0
$$

and note $\operatorname{Cov}(\widehat{X}, X)=\operatorname{Var}(\widehat{X})$, to get

$$
\beta_{1}=\frac{\operatorname{Cov}(\widehat{X}, Y)}{\operatorname{Var}(\widehat{X})}
$$

- \Rightarrow two-stage least squares!

Conditional moment equalities

- Under the stronger mean independence restriction $E[U \mid Z] \equiv 0$,

$$
\begin{aligned}
0 & =E\left[\left(Y-\beta_{0}-\beta_{1} X\right) \mid Z=z\right] \\
& =E[Y \mid Z=z]-\beta_{0}-\beta_{1} E[X \mid Z=z]
\end{aligned}
$$

for all z.

- "Conditional moment equality"
- Suggest 2 stage estimator:

1. Regress both Y and X (non-parametrically or linearly) on Z.
2. Then regress $E[Y \mid Z=z]$ or Y (linearly) on $E[X \mid Z=z]$.

- \Rightarrow two-stage least squares!

Control function perspective

- V is the residual of a first stage regression of X on Z.
- Consider a regression of Y on X and V,

$$
Y=\delta_{0}+\delta_{1} X+\delta_{2} V+W
$$

- Partial regression formula:
- δ_{1} is the coefficient of a regression of \tilde{Y} on \tilde{X} (or of Y on \tilde{X}),
- where \tilde{Y}, \tilde{X} are the residuals of regressions on V.
- By construction:

$$
\begin{aligned}
& \tilde{X}=\gamma_{0}+\gamma_{1} Z=\widehat{X} \\
& \tilde{Y}=\beta_{0}+\beta_{1} \tilde{X}+\tilde{U}
\end{aligned}
$$

- $\operatorname{Cov}(Z, U)=\operatorname{Cov}(Z, V)=0$ implies $\operatorname{Cov}(\tilde{X}, \tilde{U})=0$, and thus

$$
\delta_{1}=\beta_{1} .
$$

Recap

- Three numerically equivalent estimands:

1. The slope

$$
\operatorname{Cov}(Z, Y) / \operatorname{Cov}(Z, X)
$$

2. The two-stage least squares slope from the regression

$$
Y=\beta_{0}+\beta_{1} \widehat{X}+\tilde{U}
$$

where $\tilde{U}=\left(\beta_{1} V+U\right)$, and \widehat{X} is the first stage predicted value $\widehat{X}=\gamma_{0}+\gamma_{1} z$.
3. The slope of the regression with control

$$
Y=\delta_{0}+\delta_{1} X+\delta_{2} V+W
$$

where the control function V is given by the first stage residual, $V=X-\gamma_{0}-\gamma_{1} Z$.

Roadmap

- Nonparametric IV estimators generalize these approaches in different ways, dropping the linearity assumptions:

1. If heterogeneity in the structural equation is one-dimensional: conditional moment equalities
2. If heterogeneity in the first stage is one-dimensional: control functions
3. Without heterogeneity restrictions:
continuous versions of the LATE result for the linear IV estimand

- Objects of interest:
- Average structural function (ASF) $\bar{g}(x)=E[g(x, U)]$.
- Quantile structural function (QSF) $g_{\tau}(x)$ defined by $P\left(g(x, U)<g_{\tau}(x)\right)=\tau$.
- Weighted averages of marginal causal effect, $\int E\left[\omega_{x} \cdot g^{\prime}(x, U)\right] d x$ for weights ω_{x}.

Approach I:

Conditional moment restrictions (nonparametric IV)

- Consider the following generalization of the linear model:

$$
\begin{aligned}
& Y=g(X)+U \\
& X=h(Z, V) \\
& Z \perp(U, V)
\end{aligned}
$$

- Here the ASF \bar{g} equals g.

Practice problem

- Under these assumptions, write out the conditional expectation $E[Y \mid Z=z]$ as an integral with respect to $d P(X \mid Z=z)$.
- Consider the special case where both X and Z have finite support of size n_{X} and n_{z}, and rewrite the integral as a matrix multiplication.

Solution

- Using additivity of structural equation, and independence,

$$
\begin{aligned}
k(z)=E[Y \mid Z=z] & =E[g(X) \mid Z=z]+E[U \mid Z=z] \\
& =E[g(X) \mid Z=z] \\
& =\int g(x) d P(X=x \mid Z=z)
\end{aligned}
$$

- In the finite support case, let
- $\boldsymbol{k}=\left(k\left(z_{1}\right), \ldots, k\left(z_{n_{z}}\right)\right), \boldsymbol{g}=\left(g\left(x_{1}\right), \ldots, g\left(x_{n_{x}}\right)\right)$,
- and let P be the $n_{z} \times n_{x}$ matrix with entries $P(X=x \mid Z=z)$.
- Then the integral equation can be written as

$$
\boldsymbol{k}=P \cdot \boldsymbol{g}
$$

Completeness

- The function $k(z)=E[Y \mid Z=z]$ and the conditional distribution $P_{X \mid Z}$ are identified.
- In the finite-support case, the equation $\boldsymbol{k}=P \cdot \boldsymbol{g}$ implies that \boldsymbol{g} is identified if the matrix P has full column rank n_{x}.
- The analogue of the full rank condition for the continuous case (integral equation) is called "completeness."
- Completeness requires that variation in Z induces enough variation in X, like the "instrument relevance" condition in the linear case.
- Completeness is a feature of the observable distribution $P_{X \mid Z}$, in contrast to the conditions of exogeneity / exclusion, or restrictions on heterogeneity.

III posed inverse problem

- Even if completeness holds, estimation in the continuous case is complicated by the "ill posed inverse" problem.
- Consider the discrete case. The vector \boldsymbol{g} is identified from

$$
\boldsymbol{g}=\left(P^{\prime} P\right)^{-1} P^{\prime} \boldsymbol{k}
$$

- Suppose that $P^{\prime} P$ has eigenvalues close to zero. Then \boldsymbol{g} is very sensitive to minor changes in $P^{\prime} \boldsymbol{k}$.
- Continuous analog: notation

$$
\begin{aligned}
\tilde{k}(z) & =E[Y \mid Z=z] f_{Z}(z) \\
(\boldsymbol{P} g)(z) & =\int g(x) f_{X, Z}(x, z) d x \\
\left(\boldsymbol{P}^{\prime} k\right)(x) & =\int k(z) f_{X, Z}(x, z) d z \\
\boldsymbol{T} & =\boldsymbol{P}^{\prime} \circ \boldsymbol{P}
\end{aligned}
$$

- Thus the moment conditions can be rewritten as $\tilde{k}=\boldsymbol{P} g$ or $\boldsymbol{P}^{\prime} \tilde{k}=\boldsymbol{T} g$,
- Therefore

$$
g=\boldsymbol{T}^{-1} \boldsymbol{P}^{\prime} \tilde{k},
$$

if the inverse of \boldsymbol{T} exists - which is equivalent to completeness.

- \boldsymbol{T} is a linear, self-adjoint (\approx symmetric) positive definite operator on L^{2}.
- Functional analysis:

If $\iint f_{X, Z}(x, z)^{2} f x d z \leq \infty$, then 0 is the unique accumulation point of the eigenvalues of \boldsymbol{T},

- and the eigenvectors form an orthonormal basis of L^{2}.
- Implication: g is not a continuous function of $\boldsymbol{P}^{\prime} \tilde{k}$ in L^{2}.
- Minor estimation errors for \tilde{k} can translate into arbitrarily large estimation errors for g.
- Takeaway: Estimation needs to use regularization, convergence rates are slow.

Estimation using series

- Implementation is surprisingly simple.
- Use series approximation $g(x) \approx \sum_{j=1}^{k} \beta_{j} \phi_{j}(x)$.
- Then we get

$$
E\left[\phi_{j^{\prime}}(Z) Y\right] \approx \sum_{j=1}^{k} \beta_{j} E\left[\phi_{j^{\prime}}(Z) \phi_{j}(X)\right]
$$

- and thus

$$
\beta \approx\left(E\left[\phi_{j^{\prime}}(Z) \phi_{j}(X)\right]\right)_{j, j^{\prime}}^{-1}\left(E\left[\phi_{j^{\prime}}(Z) Y\right]\right)_{j^{\prime}}
$$

- Sample analog: Two stage least squares, where the regressors $\phi_{j}(X)$ are instrumented by the instruments $\phi_{j^{\prime}}(Z)$.

Additive one-dimensional hetereogeneity is crucial for conditional moment equality

- Consider the following non-additive example:

$$
\begin{aligned}
Y & =X^{2} \cdot U \\
X & =Z+V \\
(U, V) & \sim N\left(0,\left(\begin{array}{cc}
1 & 0.5 \\
0.5 & 1
\end{array}\right)\right)
\end{aligned}
$$

- Average structural function:

$$
\bar{g}(x)=E\left[x^{2} \cdot U\right]=0 .
$$

- Conditional moment equality is solved by $\tilde{g}(x)=x$:

$$
\begin{aligned}
E[Y-\tilde{g}(X) \mid Z=z] & =E\left[(Z+V)^{2} U \mid Z=z\right]-z \\
& =2 z E[V U]+E\left[V^{2} U\right]-z=0 .
\end{aligned}
$$

Non-additive heterogeneity

- Consider now the slightly more general model

$$
\begin{aligned}
& Y=g(X, U) \\
& X=h(Z, V) \\
& Z \perp(U, V)
\end{aligned}
$$

- where $\operatorname{dim}(U)=1$ and g is strictly monotonic in U.
- We can assume w.l.o.g. $U \sim \operatorname{Uniform}([0,1])$.
- Here the QSF $g_{\tau}(x)$ equals $g(x, \tau)$.

Practice problem

- Under these assumptions, show that the conditional probability $P(Y \leq g(X, \tau) \mid Z=z)$ equals τ.
- Propose an estimator for $g(\cdot, \tau)$.

Solution

- Conditional probability:

$$
\begin{aligned}
P(Y \leq g(X, \tau) \mid Z=z) & =P(g(X, U) \leq g(X, \tau) \mid Z=z) \\
& =P(U \leq \tau \mid Z=z) \\
& =P(U \leq \tau)=\tau
\end{aligned}
$$

- This implies

$$
g(\cdot, \tau) \in \underset{g(\cdot)}{\operatorname{argmin}} E\left[(E[\mathbf{1}(Y \leq g(X)) \mid Z]-\tau)^{2}\right] .
$$

- This suggests a series minimum distance estimator:

$$
\widehat{g}(\cdot)=\underset{g: g(x)=\sum \beta_{j} \phi_{j}(x)}{\operatorname{argmin}} \sum_{i}\left(\widehat{E}\left[\mathbf{1}(Y \leq g(X)) \mid Z=Z_{i}\right]-\tau\right)^{2},
$$

with \widehat{E} given in turn by series regression.

One-dimensional hetereogeneity is crucial for conditional quantile restriction

- Consider the following example where heterogeneity U is multidimensional:

$$
\begin{aligned}
Y & =U_{1} X+U_{2} \\
X & =Z+V \\
\left(U_{1}, U_{2}, V\right) & \sim N(0, \Sigma)
\end{aligned}
$$

- Without proof: In this case, for generic Σ,

$$
P\left(Y \leq g_{\tau}(X) \mid Z=z\right) \neq \tau
$$

where g_{τ} is the quantile structural function.

Approach II: Control functions

- Consider now the alternative model

$$
\begin{aligned}
& Y=g(X, U) \\
& X=h(Z, V) \\
& Z \perp(U, V)
\end{aligned}
$$

- where $\operatorname{dim}(V)=1$ and h is strictly monotonic in V.
- We can assume w.l.o.g. $V \sim \operatorname{Uniform}([0,1])$.

Practice problem

- Write V as a function of X and Z.
- Show that

$$
X \perp U \mid V
$$

- Derive an expression for $E[Y \mid X, V]$.
- Write the average structural function (ASF) $E[g(x, U)]$ in terms of observable distributions.
- Propose an estimator for the ASF.

Solution

- V as a function of X and Z : Let $x=h(z, v)$. Then

$$
\begin{aligned}
F_{X \mid Z}(x \mid z) & =P(h(Z, V) \leq x \mid Z=z) \\
& =P(h(z, V) \leq h(z, v)) \\
& =P(V \leq v)=v,
\end{aligned}
$$

and thus $V=F_{X \mid Z}(X \mid Z)$.

- Conditional independence: Write $X \perp U \mid V$ as

$$
h(Z, V) \perp U \mid V=v
$$

which follows immediately from $Z \perp(U, V)$.

Solution continued

- Conditional expectation:

$$
\begin{aligned}
E[Y \mid X=x, V=v] & =E[g(x, U) \mid X=x, V=v] \\
& =E[g(x, U) \mid V=v]
\end{aligned}
$$

- Since $V \sim \operatorname{Uniform}([0,1])$ by assumption, the law of iterated expectations gives

$$
E[g(x, U)]=E[E[g(x, U) \mid V]]=\int_{0}^{1} E[Y \mid X=x, V=v] d v .
$$

Possible estimator

- Estimate $F_{X \mid Z}$ using kernel regression:

$$
\widehat{F}_{X \mid Z}(x \mid z)=\sum_{i} K\left(Z_{i}-z\right) \mathbf{1}\left(X_{i} \leq x\right) / \sum_{i} K\left(Z_{i}-z\right)
$$

for some kernel function K.

- Impute V_{i} :

$$
\widehat{V}_{i}=\widehat{F}_{X \mid Z}\left(X_{i} \mid Z_{i}\right)
$$

- Flexibly regress Y_{i} on X_{i} and \widehat{V}_{i}.
- Integrate predicted values for x, v over uniform distribution for v.

One-dimensional hetereogeneity in the first stage is crucial for control function

- Consider the following example where heterogeneity V is multidimensional:

$$
\begin{aligned}
Y & =X+U \\
X & =V_{1} Z+V_{2} \\
\left(U, V_{1}, V_{2}\right) & \sim N(\mu, \Sigma)
\end{aligned}
$$

- Average structural function:

$$
g(x)=E[x+U]=x
$$

- Control function $\tilde{V}=F_{X \mid Z}(X \mid Z)$.
- Conditional independence $U \perp X \mid \tilde{V}$ is violated, since $U \perp Z \mid \tilde{V}$ does not hold:

$$
E[U \mid Z, \tilde{V}]=\mu_{U}+\Phi^{-1}(\tilde{V}) \frac{\Sigma_{V_{2}, U}+Z \Sigma_{V_{q}, U}}{\sqrt{\Sigma_{V_{2}, V_{2}}+2 Z \Sigma_{V_{1}, V_{2}}+Z^{2} \Sigma_{V_{1}, V_{1}}}}
$$

Approach III: Continuous LATE

- Consider the model without restrictions on heterogeneity:

$$
\begin{aligned}
& Y=g(X, U) \\
& X=h(Z, V) \\
& Z \perp(U, V)
\end{aligned}
$$

- Assume first that $X \in \mathbb{R}, Z \in\{0,1\}$.
- Potential outcome notation:

$$
X^{z}=h(z, V)
$$

- Assume $X^{0} \leq X^{1}$ (for non-negative weights).

LATE for binary instrument

- Linear IV slope: As in part I of class,

$$
\beta:=\frac{\operatorname{Cov}(Z, Y)}{\operatorname{Cov}(Z, X)}=\frac{E[Y \mid Z=1]-E[Y \mid Z=0]}{E[X \mid Z=1]-E[X \mid Z=0]} .
$$

- Denominator:

$$
E[X \mid Z=1]-E[X \mid Z=0]=E\left[X^{1}-X^{0}\right]
$$

- Numerator:

$$
\begin{aligned}
E[Y \mid Z=1]-E[Y \mid Z=0] & =E\left[g\left(X^{1}, U\right)-g\left(X^{0}, U\right)\right] \\
& =E\left[\int_{X^{0}}^{x^{1}} g^{\prime}(x, U) d x\right] \\
& =\int_{-\infty}^{\infty} E\left[g^{\prime}(x, U) \mathbf{1}\left(X^{0} \leq x \leq X^{1}\right)\right] d x
\end{aligned}
$$

- Taking rations yields:

$$
\beta=\int_{-\infty}^{\infty} E\left[g^{\prime}(x, U) \cdot \omega\right] d x
$$

where

$$
\omega=\frac{\mathbf{1}\left(X^{0} \leq x \leq X^{1}\right)}{\int_{-\infty}^{\infty} E\left[\mathbf{1}\left(X^{0} \leq x \leq X^{1}\right) d x\right.} .
$$

- \Rightarrow Linear IV gives a weighted average of the slopes (marginal causal effects) $g^{\prime}(x, U)$.

General instrument

- Now drop restriction that $Z \in\{0,1\}$, but assume that $X \geq 0$.
- Then

$$
\begin{aligned}
Y & =g(h(Z, V), U) \\
& =g(0, U)+\int_{0}^{\infty} g^{\prime}(x, U) \mathbf{1}(x \leq h(Z, V)) d x
\end{aligned}
$$

- Thus

$$
\begin{aligned}
\operatorname{Cov}(Z, Y) & =E\left[(Z-E[Z]) \cdot \int_{0}^{\infty} g^{\prime}(x, U) \mathbf{1}(x \leq h(Z, V)) d x\right] \\
& =\int_{0}^{\infty} E\left[g^{\prime}(x, U) \cdot \bar{\varpi}\right] d x
\end{aligned}
$$

where

$$
\bar{\omega}(x)=E[\mathbf{1}(x \leq h(Z, V)) \cdot(Z-E[Z]) \mid V] .
$$

- If h is increasing in Z, then $\Phi \geq 0$.
- Taking ratios as before yields

$$
\beta=\frac{\operatorname{Cov}(Z, Y)}{\operatorname{Cov}(Z, X)}=\int_{0}^{\infty} E\left[g^{\prime}(x, U) \cdot \omega\right] d x
$$

where

$$
\omega=\frac{\varpi(x)}{\int_{0}^{\infty} E[\varpi(x)] d x} .
$$

- As before, linear IV is a weighted average of marginal causal effects $g^{\prime}(x, U)$.

References

- Nonparametric IV:

Newey, W. K. and Powell, J. L. (2003). Instrumental
Variable Estimation of Nonparametric Models.
Econometrica, 71(5):1565-1578.
Horowitz, J. L. (2011). Applied Nonparametric Instrumental Variables Estimation. Econometrica, 79(2):347-394.

Chernozhukov, V., Imbens, G. W., and Newey, W. K. (2007).
Instrumental variable estimation of nonseparable models. Journal of Econometrics, 139(1):4-14.

Hahn, J. and Ridder, G. (2011). Conditional moment restrictions and triangular simultaneous equations. The Review of Economics and Statistics, 93(2):683-689.

- Control functions:

Imbens, G. W. and Newey, W. (2009). Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity. Econometrica, 77:1481-1512.

Kasy, M. (2011). Identification in triangular systems using control functions. Econometric Theory, 27(03):663-671.

- Continuous LATE:

Angrist, J. D., Graddy, K., and Imbens, G. W. (2000). The interpretation of instrumental variables estimators in simultaneous equations models with an application to the demand for fish. The Review of Economic Studies, 67(3):499-527.

