Econ 2110, fall 2016, Part IVa Foundations of Asymptotic Statistics

Maximilian Kasy

Department of Economics, Harvard University

Motivating question

- ► The world is complicated

 things don't follow simple parameters.
- things don't follow simple parametric models
- Can we still say something general about the behavior of statistical procedures?
- Idea of asymptotics: in large samples we can
- We approximate behavior of procedures by some limit

Takeaways for this part of class

- How we get our formulas for standard deviations in many settings.
- ▶ When and why we can expect asymptotic normality for many estimators (and what that means).
- When we might expect problems to arise for asymptotic approximations.

Textbook

van der Vaart, A. (2000). Asymptotic statistics. Cambridge University Press.

- Part IVa: sections 2.1 and 2.2.
- Part IVb: sections 3.1, 5.1, 5.2, 5.3, and 5.5.

Roadmap

- IVa
 - Types of convergence
 - Laws of large numbers (LLN) and central limit theorems (CLT)
- ► IVb
 - The delta method
 - M- and Z-Estimators
 - Special M-Estimators
 - Ordinary least squares (OLS)
 - Maximum likelihood estimation (MLE)
 - Confidence sets

Part IVa

Types of convergence

Laws of large numbers (LLN) and central limit theorems (CLT)

Types of convergence

- Recall convergence of non-stochastic sequences:
- $> x_n \rightarrow x$
- if and only if:

$$\forall \varepsilon > 0 \; \exists N \; \forall n > N \; ||x_n - x|| < \varepsilon.$$

For sequences of random variables, there is more than one notion of convergence.

4 types of convergence

- 1. almost sure convergence
- 2. convergence in probability
- convergence in mean, convergence in mean squared
- 4. convergence in distribution

Almost sure convergence

- $\rightarrow X_n \rightarrow^{a.s.} X$
- if and only if

$$P(\{\omega: X_n(\omega) \to X(\omega)\}) = 1$$

We will not use almost sure convergence much

Convergence in probability

- $X_n \rightarrow^p X$
- ▶ if and only if

$$P(||X_n - X|| < \varepsilon) \to 1 \quad \forall \varepsilon > 0.$$

- convergence almost surely implies convergence in probability
- the reverse is not true

Convergence in mean and in mean squared

- $\rightarrow X_n \rightarrow^m X$
- if and only if

$$E[\|X_n-X\|]\to 0.$$

- \rightarrow $X_n \rightarrow^{m.s.} X$
- ▶ if and only if

$$E[||X_n - X||^2] \to 0.$$

can define similar notion for rth mean.

Practice problem

Show that convergence in mean squared implies convergence in mean.

Hint: use Jensen's inequality!

Practice problem

Show that convergence in mean implies convergence in probability.

Hint: use Markov's inequality!

Sketch of solutions:

1. Jensen's inequality for $h(x) = x^2$:

$$E[||X_n - X||]^2 \le E[||X_n - X||^2]$$

2. Markov's inequality:

$$P(||X_n - X|| > \varepsilon) \le \frac{E[||X_n - X||]}{\varepsilon}$$

- Easiest way to show convergence in probability: show convergence in mean squared
- Let X_n , X be random variables,

$$v_n = Var(X_n - X)$$

 $b_n = E[X_n] - E[X]$

Then

$$E[|X_n - X|^2] = v_n + b_n^2.$$

Convergence in probability therefore follows if

$$v_n \rightarrow 0$$
 and $b_n \rightarrow 0$.

Practice problem

Show that the "variance / bias decomposition" holds.

Convergence in distribution

- $X_n \rightarrow^d X$
- if and only if for all continuity points of F_X

$$F_{X_n}(x) \to F_X(x)$$
.

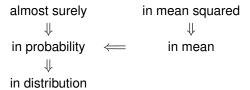
- convergence in probability implies convergence in distribution
- the reverse is not true
- except when X is non-random

Practice problem

1. Let
$$F_{X_n}(x) = \mathbf{1}(x \ge 1/n)$$
, $F_X(x) = \mathbf{1}(x \ge 0)$
Does $X_n \to^d X$?

2. Let
$$Y \sim N(0,1)$$
,
 $Y_n = (-1)^n \cdot Y$
Does $Y_n \rightarrow^d Y$?
How about $Y_n \rightarrow^p Y$?

Relationship between convergence concepts



Theorem (Slutsky's theorem)

- ► Let c be a constant,
- suppose $X_n \rightarrow^d X$ and $Y_n \rightarrow^p c$
- then
 - 1. $X_n + Y_n \rightarrow^d X + c$
 - 2. $X_n Y_n \rightarrow^d X_c$
 - 3. $X_n/Y_n \rightarrow^d X/c$, provided $c \neq 0$.
- ▶ In particular, if $X_n \rightarrow^d X$ and $Y_n \rightarrow^p 0$, then $X_n Y_n \rightarrow^p 0$.

Theorem (Continuous Mapping Theorem (CMT))

- ▶ Let *g* be a continuous function
- ▶ If $X_n \to^d X$, then $g(X_n) \to^d g(X)$.
- ▶ If $X_n \to^p X$, then $g(X_n) \to^p g(X)$.

Example:

Suppose $X_n \to^d \mathcal{N}(0,1)$. Then $X_n^2 \to^d \chi_1^2$.

O_p and O_p Notation

- Let a_n and b_n be two sequences of real numbers. Recall:
- $a_n = o(b_n)$ means that: $a_n/b_n \rightarrow 0$, and
- ▶ $a_n = O(b_n)$ means that: there exists a number Msuch that $|a_n/b_n| < M$ for all n.

- ightharpoonup similar notation if $a_n = X_n$ is a sequence of random variables:
- $X_n = o_p(b_n)$ means that: $X_n/b_n \rightarrow^p 0$.
- ▶ $X_n = O_p(b_n)$ means that: for all $\varepsilon > 0$ there exists a number M such that $P(|X_n/b_n| < M) > 1 - \varepsilon$ for all n.

Example

- ▶ Let $X_n \sim^{iid} \mathcal{N}(0,n)$.
- ▶ Then $X_n = O_p(n^{1/2})$
 - since $X_n/n^{1/2} \sim^{iid} \mathcal{N}(0,1)$,
 - and for any $\varepsilon > 0$ one can choose M
 - such that $P(|\mathcal{N}(0,1)| < M) > 1 \varepsilon$.
- ▶ Also, $X_n = o_p(n)$,
 - since $X_n/n \sim \mathcal{N}(0, n^{-1})$,
 - and for any $\varepsilon > 0$

$$P(|\mathcal{N}(0,n^{-1})|>\varepsilon)=P(|\mathcal{N}(0,1)|>n^{1/2}\varepsilon)\to 0,$$

• so that $X_n/n \rightarrow^p 0$.

Lemma

If
$$X_n \rightarrow^d X$$
, then $X_n = O_p(1)$

Proof:

- ▶ Since *X* is a random variable, there exists M > 0 such that
 - 1. F_X is continuous at -M and M, and

2.
$$P(|X| > M) = F_X(-M) + (1 - F(M)) < \varepsilon/2$$
.

- Since $X_n \to^d X$, for all large enough n, $|F_{X_n}(-M) F_X(-M)| < \varepsilon/4$ and $|F_{X_n}(M) F_X(M)| < \varepsilon/4$.
- ▶ Hence for all *n* large enough, $P(|X_n| > M) < \varepsilon$.

Laws of large numbers (LLNs) and central limit theorems (CLTs)

 Two basic building blocks from which we build our asymptotic theory

► LLNs:

- sample averages converge in probability to expectations
- "weak I I N"
- actually, they even converge almost surely (strong LLN)

CLTs:

- sample averages,
- with normalized expectation and variance,
- converge in distribution to standard normals

Theorem (A Weak Law of Large Numbers)

- ▶ Let $X_1, X_2,...$ be a sequence of random variables with
 - 1. $E[X_i] = \mu_i$,
 - 2. $Var[X_i] = \sigma_i^2$, and
 - 3. $Cov(X_i, X_j) = 0$ for $i \neq j$.
- ▶ Let
 - 1. $\overline{X}_n = n^{-1} \sum_{i=1}^n X_i$,
 - 2. $\overline{\mu}_n = n^{-1} \sum_{i=1}^n \mu_i$, and
 - 3. $\overline{\sigma}_n^2 = n^{-1} \sum_{i=1}^n \sigma_i^2$, where $\overline{\sigma}_n^2 / n \to 0$.
- ► Then $\overline{X}_n \overline{\mu}_n \rightarrow^p 0$.

Laws of large numbers (LLN) and central limit theorems (CLT)

- Special case:
 - If X_i are iid., Var(X_i) < ∞</p>
 - ▶ Then $\overline{X}_n \rightarrow^p E[X]$

Practice problem

Verify that the special case satisfies the assumptions of the theorem.

Practice problem

Prove the theorem.

Hint: Use Markov's inequality

Proof:

1.
$$E[\overline{X}_n - \overline{\mu}_n] = 0$$

2.

$$\operatorname{Var}(\overline{X}_n - \overline{\mu}_n) = \operatorname{Var}(\overline{X}_n) = \frac{1}{n^2} \sum_{ij} \operatorname{Cov}(X_1, X_j)$$
$$= \frac{1}{n^2} \sum_{i} \sigma_i^2 = \overline{\sigma}_n^2 / n \to 0.$$

- 3. This implies $\overline{X}_n \overline{\mu}_n \rightarrow^{ms} 0$.
- 4. And thus $\overline{X}_n \overline{\mu}_n \rightarrow^p 0$.

Theorem (A Central Limit Theorem)

- Let X_1, X_2, \dots be a sequence of iid random variables with
 - 1. $E[X_i] = \mu$,
 - 2. $Var(X_i) = \sigma^2$,
 - 3. and $0 < \sigma^2 < \infty$.
- $\blacktriangleright \text{ Let } \overline{X}_n = n^{-1} \sum_{i=1}^n X_i.$
- ▶ Then

$$\frac{\sqrt{n}}{\sigma}(\overline{X}_n-\mu)\to^d \mathcal{N}(0,1).$$

Some remarks

- Taking limits is just a thought experiment
- It's a way to get an approximation for what's happening in a given, finite sample
- Advantage: things get simpler eg.: no matter what distribution X_i has, X̄ is approximately normal
- Disadvantage: Sometimes the approximation is bad
- There is always more than one way to take a limit