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Asymptotics

Example

v

Suppose we estimate the average effect of class size on student
exam grades, using the project STAR data.

v

What is the variance of our estimator?
Can we form a confidence set for the size of the effect?

v

v

Can we reject the null hypothesis of a zero average effect?

v

Also if exam scores are not normally distributed?
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Asymptotics

Example

v

Suppose we estimate the top 1% income share using data on the
number of individuals in different tax brackets,

v

assuming that top incomes are Pareto distributed.

v

Suppose we calculate the implied optimal top tax rate.

v

Can we form a 95% confidence interval for this optimal tax rate?
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Asymptotics

Takeaways for this part of class

» How we get our formulas for standard deviations in many settings.

» When and why we can expect asymptotic normality for many
estimators (and what that means).

» When we might expect problems to arise for asymptotic
approximations.
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Roadmap

> [Va
» Types of convergence
» Laws of large numbers (LLN)
and central limit theorems (CLT)
» Vb

» The delta method
» M- and Z-Estimators
» Special M-Estimators

> Ordinary least squares (OLS)
» Maximum likelihood estimation (MLE)

» Confidence sets
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Part IVb

The delta method

M- and Z-Estimators
Consistency
Asymptotic normality

Special M-Estimators
Least squares

Maximum likelihood

Confidence sets
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Asymptotics
LThe delta method

The delta method

» Suppose we know the asymptotic behavior of sequence X,
» we are interested in Y, = g(X,), and
> gis “smooth.”

» Often a Taylor expansion of g around the probability limit of X,
yields the answer,

» where we can ignore higher order terms in the limit.

Yn=9(B)+9g'(B)-(Xn—B)+o(l X, — BII)-

» This idea is called the delta method.
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Asymptotics
LThe delta method

Theorem (Delta method)

Assume that
rn'(Xn_ﬁ) =9 X
for some sequence r, — o0 and some random variable X.

Let Y, = g(X,) for a function g which is differentiable at f3.
Then

- (Ya—9(B)) =9 d'(B)- X.
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Asymptotics
LThe delta method

Proof:

» By differentiability of g,

Yn=9(B)+9g'(B)-(Xn—B)+o(l X, — BII)-

» Rearranging gives
rn-(Ya—9(B)) = ra-g'(B)- (Xa—B) + - o[ X — BII)-

» The second term vanishes asymptotically,
since r, - (X, — B) converges in distribution.
» The continuous mapping theorem
applied to matrix multiplication by g'()
now yields the claim.
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Asymptotics
LThe delta method

Leading special case

» Let X, be a sequence of random variables such that
Vn(X,—b) =2 4 (0,062).

> Let g: R — R be continuously differentiable at a.

» Then
Vn(g(Xs) — g(b)) =9 4 (0,(d (b))?6?).
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Asymptotics
LThe delta method

Attention

» There are important cases where the delta method provides poor
approximations

» Examples: near 8 =0, for

1. g(X) =X|
2. g(X)=1/x
3. g(X) = VX

» Relevant for:
1. weak instruments
2. inference under partial identification / moment inequalities
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|—The delta method

Practice problem

Suppose X; are iid with mean 1 and variance 2, and n = 25.
Let Y = X".
Provide an approximation for the distribution of Y.

v

v

v

v

Now suppose X; has mean 0 and variance 2.

v

Provide an approximation for the distribution of Y.
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Asymptotics
LM- and Z-Estimators

M- and Z-Estimators

» Many interesting objects 8 can be written in the form
Bo= argr[?ax E[m(B, X)]. (1)
» This defines a mapping

from the probability distribution of X
to a parameter f3.

» In our decision theory notation:

Bo=B(6)
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Asymptotics
LM- and Z-Estimators

Example - Least squares

v

The coefficients By

v

of the best linear predictor

?=X‘ﬁo

v

minimize the average squared prediction error,

Bo = argmin E[(Y — X - B)?].
B

» Thus
m(ﬁv)(? Y) = (Y_X'ﬁ)z'
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Asymptotics
LM- and Z-Estimators

Example - Maximum likelihood

» Suppose Y is distributed according to the density

Y ~ 1(Y, Bo)-

» Then Py maximizes the expected log likelihood,

Bo= argr;ax Ellog(f(Y,B))]-

» We will show this later.
» Thus
m(B,X) =log(f(Y,B))-
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L M- and Z-Estimators

M-Estimator

» Use E, to denote the sample average, e.g.

1 n
E.[X] = - Y X
i=1

v

We can define an estimator for 8 which solves the analogous
conditions

v

replacing the population expectation by a sample average,
that is

v

-~

B = argr;lax En[m(B, X)]. 2)

v

Such an estimator is called an M-estimator (for “maximizer”).
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LM- and Z-Estimators

Examples continued

1. Least squares:
ordinary least squares (OLS) estimator

E: argmin Ep[(Y — X-B)?]
B

2. Maximum likelihood:
maximum likelihood estimator (MLE)

~

B= argr[;"lax Enllog(f(Y,B))]
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Asymptotics
LM- and Z-Estimators

Z-Estimator

» If mis differentiable and f is an interior maximizer equation (1)
implies the first order conditions

d , B
%E[m(ﬁ,x)] = E[m'(Bo, X)] = 0.
» If we directly define the estimator via
Eq[m/ (B, X)] =0, 3)

then E is called a Z-estimator (for “zero”).
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[ M- and Z-Estimators

Practice problem

Find the first order conditions for MLE and for OLS
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LM- and Z-Estimators

Solution:

1. Least squares:

where

is the regression residual.

. Maximum likelihood:

where
S(Y.B) =

is called the score.

E3 log(f(Y B))
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LM- and Z-Estimators
L Consistency

Consistency

v

Basic requirement for good estimators:

v

That they are close to the population estimand
with large probability
as sample sizes get large:

P(IB —Boll <€) =1 Ve.

v

Thus: R
B —F Bo

This property is called consistency.

v
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L M- and Z-Estimators

L Consistency

Theorem (Consistency of M-Estimators)

M-estimators are consistent if

1.
szpllEn[m(B,X)]—E[m(B,X)]H —P0

sup  E[m(B,X)] < E[m(Bo, X)]-
B: IB—foll >¢

» The first condition holds in many case by some “uniform law of
large numbers.”

» The second condition states that the maximum is “well
separated.”
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|—M- and Z-Estimators

L Consistency

Figure: Proof of consistency

o o
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LM- and Z-Estimators
L Consistency

Sketch of proof:

» By assumption (2), for every &€ there is a , such that if

Sgpl\En[m(B,X)] —E[m(B, X)]ll <&

then || — fol| <.
» By assumption (1),

s;pl\En[m(B,X)] —E[m(B, )]l < &

happens with probability going to 1 as n — oo.
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LM- and Z-Estimators
L Asymptotic normality

Asymptotic normality

v

What is the (approximate) distribution of M-estimators?

v

Consistency just states that they converge to a point.

v

But if we “blow up” the scale appropriately?
For instance by /n?

Then we get convergence to a normal distribution!

v

v
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L M- and Z-Estimators
L Asymptotic normality

Theorem

Under suitable differentiability conditions, M-estimators and
Z-estimators are asymptotically normal,

V/n(B — Bo) =7 N(0, V)

for some V.
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LM- and Z-Estimators

L Asymptotic normality

Figure: Proof of asymptotic normality

E[m'(B.X)]

A
B B,

. [E [m(B,X)]
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-~
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L M- and Z-Estimators
L Asymptotic normality

Sketch of proof:
» follows by arguments similar to our derivation of the delta method.
» if mis twice differentiable, by the intermediate value theorem

0 = Eq[m' (B, X)] = Ea[m (Bo, X)] + En[m" (B, X)] - (B — Bo)

for some B between B and fo.
» Rearranging yields

VB~ Bo) =~ (Edlm"(B.X0) - V/Exl (Bo, X))
» Consistency of E and a uniform law of large numbers for m” imply
(Bl (B.X)]) " —* (Elm'(Bo. X)) .
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LM- and Z-Estimators

L Asymptotic normality

» The central limit theorem implies
VREA[m (Bo, X)] = N(0, Var(m'(Bo, X))).
» Slutsky’s theorem then yields the asymptotic distribution of B as
V(B — Bo) = N(0, V)

where

1

V= (Elm" (Bo. X)) Var( (o, X)) - (E[m"(Bo. X)) " (4
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LM- and Z-Estimators
L Asymptotic normality

Estimators of the asymptotic variance

» Asymptotic variance: “sandwich” form

» Estimators for this variance:
sample analogs of both components

» For instance:

V= (&l (B.0N) B[ (B X)F] - (Bl (B.X)])

» This is the kind of variance estimator you get when you type
, robust

after some estimation commands in Stata.
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LSpeciaI M-Estimators

L Least squares

Least squares

» Recall OLS: N

B = argmin E,[(Y — X-B)3]
B

» First order condition:
En[e . X] =0

where R
e=Y-X-B

> In our general notation:

m(vavﬁ) = 32: (Y_Xﬁ)z
m(Y,X,B)=—2e-X
m'(Y,X,B)=2-XX!
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LSpeciaI M-Estimators

L Least squares

» Apply the asymptotic results for general M-estimators
» [ is consistent for By, the “best linear predictor,”

Bo = argmin E[(Y — X -B)?].
B

> E is asymptotically normal

V- (B=PBo) = N(0,V)
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LSpecial M-Estimators

L Least squares

» Asymptotic variance

V = (Elm"(Bo,X)]) " - Var(m (o, X)) - (E[m" (B0, X)]) "
= E[xX'] " E[e®XX"] - E[Xx"] "

» “heteroskedasticity robust variance estimator for ordinary least
squares:”

15 Ea[ XX - B[ XX EnXX'] ©)

» Factor of 1/nto get variance of E rather than ﬁﬁ
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LSpecial M-Estimators

L Maximum likelihood

Maximum likelihood

Lemma

» Suppose Y ~ f(y, o),
» where f denotes a family of densities indexed by f3.

> Then
Eflog(f(Y,Bo))] = E[log((Y, B))]. (6)
» The inequality is strict if (Y, By) # f(Y,B) with positive
probability.
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LSpecial M-Estimators
L Maximunm likelihood

Sketch of proof:

» Want to show:

0> [1og(f(y,B)) (v Bo)ly — [ Iog (F(y. Bo)) (v Bo)ely

=i (7 ) 0l

» Jensen’s inequality, applied to the concave function log:

Sl

(
f(y,B)
=log(1) = 0.
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LSpeciaI M-Estimators
L Maximum likelihood

Terminology for maximum likelihood

» Log likelihood:
Ln(B) = - Ed[m(Y,B)] = } log((Yi, B))

» Score:

Si(B) = (Ynﬁ)——ﬁlog(f(Yi,B))

» Information:

I(B) = —E[m"(Y,B)] = —E[9S/dp]
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LSpecial M-Estimators
L Maximunm likelihood

Lemma

If Y; ~ f(y, o), then

Var(S(Bo)) = I(Bo) = —E[9S(Bo)/IB]-

> Proof:
Differentiate 0 = E[S] = [ S(y, Bo)f(y, Bo)dy with respect to By
to get
0= / S'fdy + / Sf'dy = E[S'] + E[S?].
> But:

Parametric models are usually wrong.
So don’t trust this equality.
» If it holds, the asymptotic variance for the MLE simplifies to

v=E[s] " E[S]-EIST T = 1(Bo) .
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L Confidence sets

Confidence sets

» Confidence set C:
a set of f3s,
which is calculated as a function of data Y

» Confidence set C for  of level a:
P(BocC)>1—a. (7)

for all distributions of Y (i.e., all 8)
and corresponding fo.

» In this expression f3 is fixed and C is random.
» Confidence set C, for B of asymptotic level a:

lim P(B € C,) >1—a. 8)

n—o0
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LConfidence sets

Confidence sets for M-estimators

» can use asymptotic normality to get asymptotic confidence sets
» Suppose

V(B — Bo) = N(0, V)

VPy

» Define B R N
B:=+n-V'2(B—Po).

» Slutsky’s theorem = B
B —7 N(0. 1),
and therefore B
IBIIP — x&,
where k = dim(f).
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LConfidence sets

> Let x£,  bethe 1 — a quantile of the x distribution.
» Define
Co={B: VAV 2-(B=B)P<tE1a}. O
» We get
P(Bo € Cn) > 1—a.
» C,is a confidence set for B of asymptotic level c.

v

C, is an ellipsoid.
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