# Econ 2110, fall 2016, Part IVb Asymptotic Theory: $\delta$ -method and M-estimation

Maximilian Kasy

Department of Economics, Harvard University

# Example

- Suppose we estimate the average effect of class size on student exam grades, using the project STAR data.
- What is the variance of our estimator?
- Can we form a confidence set for the size of the effect?
- Can we reject the null hypothesis of a zero average effect?
- Also if exam scores are not normally distributed?

# Example

- Suppose we estimate the top 1% income share using data on the number of individuals in different tax brackets,
- assuming that top incomes are Pareto distributed.
- Suppose we calculate the implied optimal top tax rate.
- Can we form a 95% confidence interval for this optimal tax rate?

# Takeaways for this part of class

- How we get our formulas for standard deviations in many settings.
- ▶ When and why we can expect asymptotic normality for many estimators (and what that means).
- When we might expect problems to arise for asymptotic approximations.

# Roadmap

- IVa
  - Types of convergence
  - Laws of large numbers (LLN) and central limit theorems (CLT)
- ► IVb
  - The delta method
  - M- and Z-Estimators
  - Special M-Estimators
    - Ordinary least squares (OLS)
    - Maximum likelihood estimation (MLE)
  - Confidence sets

## Part IVb

#### The delta method

M- and Z-Estimators
Consistency
Asymptotic normality

# Special M-Estimators Least squares

. Maximum likelihood

Confidence sets

## The delta method

- ▶ Suppose we know the asymptotic behavior of sequence  $X_n$ ,
- we are interested in  $Y_n = g(X_n)$ , and
- g is "smooth."
- Often a Taylor expansion of g around the probability limit of X<sub>n</sub> yields the answer,
- where we can ignore higher order terms in the limit.

$$Y_n = g(\beta) + g'(\beta) \cdot (X_n - \beta) + o(||X_n - \beta||).$$

This idea is called the delta method.

## Theorem (Delta method)

Assume that

$$r_n \cdot (X_n - \beta) \rightarrow^d X$$

for some sequence  $r_n \to \infty$  and some random variable X. Let  $Y_n = g(X_n)$  for a function g which is differentiable at  $\beta$ .

Then

$$r_n \cdot (Y_n - g(\beta)) \rightarrow^d g'(\beta) \cdot X.$$

#### **Proof:**

By differentiability of g,

$$Y_n = g(\beta) + g'(\beta) \cdot (X_n - \beta) + o(||X_n - \beta||).$$

Rearranging gives

$$r_n \cdot (Y_n - g(\beta)) = r_n \cdot g'(\beta) \cdot (X_n - \beta) + r_n \cdot o(\|X_n - \beta\|).$$

- ► The second term vanishes asymptotically, since  $r_n \cdot (X_n \beta)$  converges in distribution.
- The continuous mapping theorem applied to matrix multiplication by  $g'(\beta)$  now yields the claim.

# Leading special case

Let  $X_n$  be a sequence of random variables such that

$$\sqrt{n}(X_n-b)\to^d \mathcal{N}(0,\sigma^2).$$

- ▶ Let  $g : \mathbb{R} \to \mathbb{R}$  be continuously differentiable at a.
- Then

$$\sqrt{n}(g(X_n)-g(b))\rightarrow^d \mathcal{N}(0,(g'(b))^2\sigma^2).$$

## **Attention**

- There are important cases where the delta method provides poor approximations
- **Examples:** near  $\beta = 0$ , for
  - 1. g(X) = |X|
  - 2. g(X) = 1/X
  - 3.  $g(X) = \sqrt{X}$
- Relevant for:
  - 1. weak instruments
  - 2. inference under partial identification / moment inequalities

## Practice problem

- ▶ Suppose  $X_i$  are iid with mean 1 and variance 2, and n = 25.
- ▶ Let  $Y = \overline{X}^2$ .
- Provide an approximation for the distribution of Y.
- Now suppose  $X_i$  has mean 0 and variance 2.
- Provide an approximation for the distribution of Y.

## M- and Z-Estimators

 $\blacktriangleright$  Many interesting objects  $\beta$  can be written in the form

$$\beta_0 = \underset{\beta}{\operatorname{argmax}} E[m(\beta, X)].$$
 (1)

- This defines a mapping from the probability distribution of X to a parameter β.
- In our decision theory notation:

$$\beta_0 = \beta(\theta)$$

# Example - Least squares

- The coefficients β<sub>0</sub>
- of the best linear predictor

$$\widehat{Y} = X \cdot \beta_0$$

minimize the average squared prediction error,

$$\beta_0 = \underset{\beta}{\operatorname{argmin}} E[(Y - X \cdot \beta)^2].$$

Thus

$$m(\beta, X, Y) = (Y - X \cdot \beta)^2$$
.

# Example - Maximum likelihood

Suppose Y is distributed according to the density

$$Y \sim f(Y, \beta_0)$$
.

▶ Then  $\beta_0$  maximizes the expected log likelihood,

$$\beta_0 = \underset{\beta}{\operatorname{argmax}} E[\log(f(Y,\beta))].$$

- We will show this later.
- ► Thus

$$m(\beta, X) = \log(f(Y, \beta)).$$

## M-Estimator

▶ Use  $E_n$  to denote the sample average, e.g.

$$E_n[X] = \frac{1}{n} \sum_{i=1}^n X_i.$$

- We can define an **estimator** for  $\beta$  which solves the **analogous** conditions
- replacing the population expectation by a sample average,
- that is

$$\widehat{\beta} = \underset{\beta}{\operatorname{argmax}} E_n[m(\beta, X)].$$
 (2)

Such an estimator is called an M-estimator (for "maximizer").

# Examples continued

## 1. Least squares:

ordinary least squares (OLS) estimator

$$\widehat{\beta} = \underset{\beta}{\operatorname{argmin}} E_n[(Y - X \cdot \beta)^2]$$

#### 2. Maximum likelihood:

maximum likelihood estimator (MLE)

$$\widehat{\beta} = \underset{\beta}{\operatorname{argmax}} E_n[\log(f(Y,\beta))]$$

## **Z-Estimator**

▶ If m is differentiable and  $\beta$  is an interior maximizer equation (1) implies the first order conditions

$$\frac{\partial}{\partial \beta} E[m(\beta, X)] = E[m'(\beta_0, X)] = 0.$$

If we directly define the estimator via

$$E_n[m'(\widehat{\beta}, X_i)] = 0, \tag{3}$$

then  $\widehat{\beta}$  is called a Z-estimator (for "zero").

Asymptotics

M- and Z-Estimators

# Practice problem

Find the first order conditions for MLE and for OLS

#### Solution:

#### 1. Least squares:

$$E_n[\widehat{e}\cdot X]=0$$

where

$$\widehat{\mathbf{e}} = \mathbf{Y} - \mathbf{X} \cdot \widehat{\boldsymbol{\beta}}$$

is the regression residual.

#### 2. Maximum likelihood:

$$E_n\left[S(Y,\widehat{\beta})\right]=0$$

where

$$S(Y,\beta) := \frac{\partial}{\partial \beta} \log(f(Y,\beta))$$

is called the score.

# Consistency

- Basic requirement for good estimators:
- That they are close to the population estimand with large probability as sample sizes get large:

$$P(\|\widehat{\beta} - \beta_0\| < \varepsilon) \to 1 \quad \forall \varepsilon.$$

► Thus:

$$\widehat{\beta} \rightarrow^{p} \beta_{0}$$

This property is called consistency.

## Theorem (Consistency of M-Estimators)

#### M-estimators are consistent if

1.

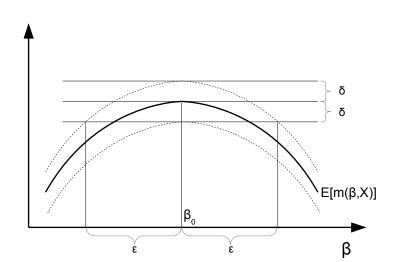
$$\sup_{\beta} \|E_n[m(\beta,X)] - E[m(\beta,X)]\| \to^{\rho} 0$$

2.

$$\sup_{\beta: \|\beta - \beta_0\| > \varepsilon} E[m(\beta, X)] < E[m(\beta_0, X)].$$

- The first condition holds in many case by some "uniform law of large numbers."
- The second condition states that the maximum is "well separated."

Figure: Proof of consistency



## Sketch of proof:

**>** By assumption (2), for every  $\varepsilon$  there is a  $\delta$ , such that if

$$\sup_{\beta}\|E_n[m(\beta,X)]-E[m(\beta,X)]\|<\delta$$

then 
$$\|\widehat{\beta} - \beta_0\| < \varepsilon$$
.

By assumption (1),

$$\sup_{\beta} \|E_n[m(\beta,X)] - E[m(\beta,X)]\| < \delta$$

happens with probability going to 1 as  $n \to \infty$ .

# Asymptotic normality

- What is the (approximate) distribution of M-estimators?
- Consistency just states that they converge to a point.
- But if we "blow up" the scale appropriately?
- For instance by  $\sqrt{n}$ ?
- Then we get convergence to a normal distribution!

Asymptotic normality

#### Theorem

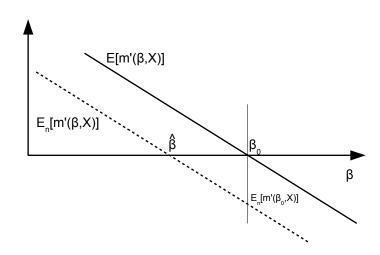
Under suitable differentiability conditions, M-estimators and Z-estimators are asymptotically normal,

$$\sqrt{n}(\widehat{\beta}-\beta_0) \rightarrow^d N(0,V)$$

for some *V*.

Asymptotic normality

Figure: Proof of asymptotic normality



## Sketch of proof:

- follows by arguments similar to our derivation of the delta method.
- ▶ if *m* is twice differentiable, by the intermediate value theorem

$$0 = E_n[m'(\widehat{\beta},X)] = E_n[m'(\beta_0,X)] + E_n[m''(\widetilde{\beta},X)] \cdot (\widehat{\beta} - \beta_0)$$

for some  $\tilde{\beta}$  between  $\hat{\beta}$  and  $\beta_0$ .

Rearranging yields

$$\sqrt{n}(\widehat{\beta}-\beta_0) = -\left(\mathsf{E}_n[m''(\widetilde{\beta},X)]\right)^{-1} \cdot \sqrt{n}\mathsf{E}_n[m'(\beta_0,X)].$$

► Consistency of  $\widehat{\beta}$  and a uniform law of large numbers for m'' imply

$$\left(E_n[m''(\tilde{\beta},X)]\right)^{-1} \to^p \left(E[m''(\beta_0,X)]\right)^{-1}.$$

The central limit theorem implies

$$\sqrt{n}E_n[m'(\beta_0,X)] \rightarrow^d N(0,\operatorname{Var}(m'(\beta_0,X))).$$

Slutsky's theorem then yields the asymptotic distribution of \( \hat{\theta} \) as

$$\sqrt{n}(\widehat{\beta}-\beta_0) \rightarrow^d N(0,V)$$

where

$$V = (E[m''(\beta_0, X)])^{-1} \cdot Var(m'(\beta_0, X)) \cdot (E[m''(\beta_0, X)])^{-1}.$$
 (4)

# Estimators of the asymptotic variance

- Asymptotic variance: "sandwich" form
- Estimators for this variance: sample analogs of both components
- For instance:

$$\widehat{V} = \left( E_n[m''(\widehat{\beta}, X)] \right)^{-1} \cdot E_n \left[ (m'(\widehat{\beta}, X))^2 \right] \cdot \left( E_n[m''(\widehat{\beta}, X)] \right)^{-1}$$

- This is the kind of variance estimator you get when you type
  - , robust

after some estimation commands in Stata.

# Least squares

Recall OLS:

$$\widehat{\beta} = \underset{\beta}{\operatorname{argmin}} E_n[(Y - X \cdot \beta)^2]$$

First order condition:

$$E_n[e \cdot X] = 0$$

where

$$e := Y - X \cdot \widehat{\beta}$$

In our general notation:

$$m(Y,X,\beta) = e^2 = (Y - X \cdot \beta)^2$$
  

$$m'(Y,X,\beta) = -2e \cdot X$$
  

$$m''(Y,X,\beta) = 2 \cdot XX^t$$

- Apply the asymptotic results for general M-estimators
- $\triangleright$   $\widehat{\beta}$  is consistent for  $\beta_0$ , the "best linear predictor,"

$$\beta_0 = \underset{\beta}{\operatorname{argmin}} E[(Y - X \cdot \beta)^2].$$

 $\triangleright \widehat{\beta}$  is asymptotically normal

$$\sqrt{n}\cdot\left(\widehat{\beta}-\beta_0\right)\to^d N(0,V)$$

Asymptotic variance

$$V = (E[m''(\beta_0, X)])^{-1} \cdot Var(m'(\beta_0, X)) \cdot (E[m''(\beta_0, X)])^{-1}$$
  
=  $E[XX^t]^{-1} \cdot E[e^2XX^t] \cdot E[XX^t]^{-1}$ 

"heteroskedasticity robust variance estimator for ordinary least squares:"

$$\frac{1}{n} \cdot E_n[XX^t]^{-1} \cdot E_n[\widehat{e}^2 XX^t] \cdot E_n[XX^t]^{-1}$$
 (5)

► Factor of 1/n to get variance of  $\widehat{\beta}$  rather than  $\sqrt{n} \cdot \widehat{\beta}$ 

# Maximum likelihood

### Lemma

- ▶ Suppose  $Y \sim f(y, \beta_0)$ ,
- where f denotes a family of densities indexed by  $\beta$ .
- Then

$$E[\log(f(Y,\beta_0))] \ge E[\log(f(Y,\beta))]. \tag{6}$$

► The inequality is strict if  $f(Y, \beta_0) \neq f(Y, \beta)$  with positive probability.

## Sketch of proof:

Want to show:

$$0 \ge \int \log(f(y,\beta)) f(y,\beta_0) dy - \int \log(f(y,\beta_0)) f(y,\beta_0) dy$$
  
= 
$$\int \log\left(\frac{f(y,\beta)}{f(y,\beta_0)}\right) f(y,\beta_0) dy.$$

Jensen's inequality, applied to the concave function log:

$$\int \log \left(\frac{f(y,\beta)}{f(y,\beta_0)}\right) f(y,\beta_0) dy$$

$$\leq \log \left(\int \frac{f(y,\beta)}{f(y,\beta_0)} f(y,\beta_0) dy\right)$$

$$= \log(1) = 0.$$

# Terminology for maximum likelihood

Log likelihood:

$$L_n(\beta) = n \cdot E_n[m(Y,\beta)] = \sum_i \log(f(Y_i,\beta))$$

Score:

$$S_i(\beta) = m'(Y_i, \beta) = \frac{\partial}{\partial \beta} \log(f(Y_i, \beta))$$

Information:

$$I(\beta) = -E[m''(Y,\beta)] = -E[\partial S/\partial \beta]$$

#### Lemma

If  $Y_i \sim f(y, \beta_0)$ , then

$$Var(S(\beta_0)) = I(\beta_0) = -E[\partial S(\beta_0)/\partial \beta].$$

#### Proof:

Differentiate  $0 = E[S] = \int S(y, \beta_0) f(y, \beta_0) dy$  with respect to  $\beta_0$  to get

$$0 = \int S' f dy + \int S f' dy = E[S'] + E[S^2].$$

But:

Parametric models are usually wrong.

So don't trust this equality.

If it holds, the asymptotic variance for the MLE simplifies to

$$V = E[S']^{-1} \cdot E[S^2] \cdot E[S']^{-1} = I(\beta_0)^{-1}.$$

## Confidence sets

- Confidence set C:
   a set of βs,
   which is calculated as a function of data Y
- ▶ Confidence set *C* for  $\beta$  of level  $\alpha$ :

$$P(\beta_0 \in C) \ge 1 - \alpha. \tag{7}$$

for all distributions of Y (i.e., all  $\theta$ ) and corresponding  $\beta_0$ .

- ▶ In this expression  $\beta_0$  is fixed and C is random.
- ▶ Confidence set  $C_n$  for  $\beta$  of **asymptotic level**  $\alpha$ :

$$\lim_{n\to\infty} P(\beta\in C_n) \ge 1-\alpha. \tag{8}$$

# Confidence sets for M-estimators

- can use asymptotic normality to get asymptotic confidence sets
- Suppose

$$\sqrt{n}(\widehat{\beta} - \beta_0) \to^d N(0, V)$$

$$\widehat{V} \to^p V$$

Define

$$\widetilde{\beta} := \sqrt{n} \cdot \widehat{V}^{-1/2} \cdot (\widehat{\beta} - \beta_0).$$

▶ Slutsky's theorem ⇒

$$\tilde{\beta} \rightarrow^{d} N(0, I),$$

and therefore

$$\|\tilde{\beta}\|^2 \to^d \chi_k^2$$
,

where  $k = \dim(\beta)$ .

- ▶ Let  $\chi_{k,1-\alpha}^2$  be the 1  $\alpha$  quantile of the  $\chi_k^2$  distribution.
- Define

$$C_n = \left\{ \beta : \| \sqrt{n} \cdot V^{-1/2} \cdot (\widehat{\beta} - \beta) \|^2 \le \chi_{k, 1 - \alpha}^2 \right\}. \tag{9}$$

We get

$$P(\beta_0 \in C_n) \rightarrow 1 - \alpha$$
.

- $C_n$  is a confidence set for  $\beta$  of asymptotic level  $\alpha$ .
- $ightharpoonup C_n$  is an ellipsoid.