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Asymptotics

Example

I Suppose we estimate the average effect of class size on student
exam grades, using the project STAR data.

I What is the variance of our estimator?

I Can we form a confidence set for the size of the effect?

I Can we reject the null hypothesis of a zero average effect?

I Also if exam scores are not normally distributed?
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Asymptotics

Example

I Suppose we estimate the top 1% income share using data on the
number of individuals in different tax brackets,

I assuming that top incomes are Pareto distributed.

I Suppose we calculate the implied optimal top tax rate.

I Can we form a 95% confidence interval for this optimal tax rate?
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Asymptotics

Takeaways for this part of class

I How we get our formulas for standard deviations in many settings.

I When and why we can expect asymptotic normality for many
estimators (and what that means).

I When we might expect problems to arise for asymptotic
approximations.
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Asymptotics

Roadmap

I IVa
I Types of convergence
I Laws of large numbers (LLN)

and central limit theorems (CLT)
I IVb

I The delta method
I M- and Z -Estimators
I Special M-Estimators

I Ordinary least squares (OLS)
I Maximum likelihood estimation (MLE)

I Confidence sets
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Asymptotics

Part IVb

The delta method

M- and Z-Estimators
Consistency
Asymptotic normality

Special M-Estimators
Least squares
Maximum likelihood

Confidence sets

6 / 40



Asymptotics

The delta method

The delta method

I Suppose we know the asymptotic behavior of sequence Xn,

I we are interested in Yn = g(Xn), and

I g is “smooth.”

I Often a Taylor expansion of g around the probability limit of Xn

yields the answer,

I where we can ignore higher order terms in the limit.

Yn = g(β )+g′(β ) · (Xn−β )+o(‖Xn−β‖).

I This idea is called the delta method.
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Asymptotics

The delta method

Theorem (Delta method)

Assume that
rn · (Xn−β )→d X

for some sequence rn→ ∞ and some random variable X .
Let Yn = g(Xn) for a function g which is differentiable at β .
Then

rn · (Yn−g(β ))→d g′(β ) ·X .
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Asymptotics

The delta method

Proof:

I By differentiability of g,

Yn = g(β )+g′(β ) · (Xn−β )+o(‖Xn−β‖).

I Rearranging gives

rn · (Yn−g(β )) = rn ·g′(β ) · (Xn−β )+ rn ·o(‖Xn−β‖).

I The second term vanishes asymptotically,
since rn · (Xn−β ) converges in distribution.

I The continuous mapping theorem
applied to matrix multiplication by g′(β )
now yields the claim.
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Asymptotics

The delta method

Leading special case

I Let Xn be a sequence of random variables such that

√
n(Xn−b)→d N (0,σ2).

I Let g : R 7→ R be continuously differentiable at a.

I Then √
n(g(Xn)−g(b))→d N (0,(g′(b))2

σ
2).
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Asymptotics

The delta method

Attention

I There are important cases where the delta method provides poor
approximations

I Examples: near β = 0, for
1. g(X) = |X |
2. g(X) = 1/X
3. g(X) =

√
X

I Relevant for:
1. weak instruments
2. inference under partial identification / moment inequalities
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Asymptotics

The delta method

Practice problem

I Suppose Xi are iid with mean 1 and variance 2, and n = 25.

I Let Y = X
2
.

I Provide an approximation for the distribution of Y .

I Now suppose Xi has mean 0 and variance 2.

I Provide an approximation for the distribution of Y .
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Asymptotics

M- and Z-Estimators

M- and Z-Estimators

I Many interesting objects β can be written in the form

β0 = argmax
β

E[m(β ,X)]. (1)

I This defines a mapping
from the probability distribution of X
to a parameter β .

I In our decision theory notation:

β0 = β (θ)
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Asymptotics

M- and Z-Estimators

Example - Least squares

I The coefficients β0

I of the best linear predictor

Ŷ = X ·β0

I minimize the average squared prediction error,

β0 = argmin
β

E[(Y −X ·β )2].

I Thus
m(β ,X ,Y ) = (Y −X ·β )2.
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Asymptotics

M- and Z-Estimators

Example - Maximum likelihood

I Suppose Y is distributed according to the density

Y ∼ f (Y ,β0).

I Then β0 maximizes the expected log likelihood,

β0 = argmax
β

E[log(f (Y ,β ))].

I We will show this later.

I Thus
m(β ,X) = log(f (Y ,β )).
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Asymptotics

M- and Z-Estimators

M-Estimator

I Use En to denote the sample average, e.g.

En[X ] =
1
n

n

∑
i=1

Xi .

I We can define an estimator for β which solves the analogous
conditions

I replacing the population expectation by a sample average,

I that is
β̂ = argmax

β

En[m(β ,X)]. (2)

I Such an estimator is called an M-estimator (for “maximizer”).
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Asymptotics

M- and Z-Estimators

Examples continued

1. Least squares:
ordinary least squares (OLS) estimator

β̂ = argmin
β

En[(Y −X ·β )2]

2. Maximum likelihood:
maximum likelihood estimator (MLE)

β̂ = argmax
β

En[log(f (Y ,β ))]
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Asymptotics

M- and Z-Estimators

Z-Estimator

I If m is differentiable and β is an interior maximizer equation (1)
implies the first order conditions

∂

∂β
E[m(β ,X)] = E[m′(β0,X)] = 0.

I If we directly define the estimator via

En[m
′(β̂ ,Xi)] = 0, (3)

then β̂ is called a Z-estimator (for “zero”).
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Asymptotics

M- and Z-Estimators

Practice problem

Find the first order conditions for MLE and for OLS
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Asymptotics

M- and Z-Estimators

Solution:

1. Least squares:
En[ê ·X ] = 0

where
ê = Y −X · β̂

is the regression residual.

2. Maximum likelihood:

En

[
S(Y , β̂ )

]
= 0

where

S(Y ,β ) :=
∂

∂β
log(f (Y ,β ))

is called the score.
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Asymptotics

M- and Z-Estimators

Consistency

Consistency

I Basic requirement for good estimators:

I That they are close to the population estimand
with large probability
as sample sizes get large:

P(‖β̂ −β0‖< ε)→ 1 ∀ε.

I Thus:
β̂ →p

β0

I This property is called consistency.
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Asymptotics

M- and Z-Estimators

Consistency

Theorem (Consistency of M-Estimators)

M-estimators are consistent if

1.
sup

β

‖En[m(β ,X)]−E[m(β ,X)]‖→p 0

2.
sup

β : ‖β−β0‖>ε

E[m(β ,X)]< E[m(β0,X)].

I The first condition holds in many case by some “uniform law of
large numbers.”

I The second condition states that the maximum is “well
separated.”
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Asymptotics

M- and Z-Estimators

Consistency

Figure: Proof of consistency
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Asymptotics

M- and Z-Estimators

Consistency

Sketch of proof:

I By assumption (2), for every ε there is a δ , such that if

sup
β

‖En[m(β ,X)]−E[m(β ,X)]‖< δ

then ‖β̂ −β0‖< ε .

I By assumption (1),

sup
β

‖En[m(β ,X)]−E[m(β ,X)]‖< δ

happens with probability going to 1 as n→ ∞.
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Asymptotics

M- and Z-Estimators

Asymptotic normality

Asymptotic normality

I What is the (approximate) distribution of M-estimators?

I Consistency just states that they converge to a point.

I But if we “blow up” the scale appropriately?

I For instance by
√

n?

I Then we get convergence to a normal distribution!
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Asymptotics

M- and Z-Estimators

Asymptotic normality

Theorem

Under suitable differentiability conditions, M-estimators and
Z-estimators are asymptotically normal,

√
n(β̂ −β0)→d N(0,V )

for some V .
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Asymptotics

M- and Z-Estimators

Asymptotic normality

Figure: Proof of asymptotic normality
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Asymptotics

M- and Z-Estimators

Asymptotic normality

Sketch of proof:
I follows by arguments similar to our derivation of the delta method.

I if m is twice differentiable, by the intermediate value theorem

0 = En[m
′(β̂ ,X)] = En[m

′(β0,X)]+En[m
′′(β̃ ,X)] · (β̂ −β0)

for some β̃ between β̂ and β0.

I Rearranging yields

√
n(β̂ −β0) =−

(
En[m

′′(β̃ ,X)]
)−1
·
√

nEn[m
′(β0,X)].

I Consistency of β̂ and a uniform law of large numbers for m′′ imply(
En[m

′′(β̃ ,X)]
)−1
→p (E[m′′(β0,X)]

)−1
.
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Asymptotics

M- and Z-Estimators

Asymptotic normality

I The central limit theorem implies

√
nEn[m

′(β0,X)]→d N(0,Var(m′(β0,X))).

I Slutsky’s theorem then yields the asymptotic distribution of β̂ as

√
n(β̂ −β0)→d N(0,V )

where

V =
(
E[m′′(β0,X)]

)−1 ·Var(m′(β0,X)) ·
(
E[m′′(β0,X)]

)−1
. (4)
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Asymptotics

M- and Z-Estimators

Asymptotic normality

Estimators of the asymptotic variance

I Asymptotic variance: “sandwich” form

I Estimators for this variance:
sample analogs of both components

I For instance:

V̂ =
(

En[m
′′(β̂ ,X)]

)−1
·En

[
(m′(β̂ ,X))2

]
·
(

En[m
′′(β̂ ,X)]

)−1

I This is the kind of variance estimator you get when you type

, robust

after some estimation commands in Stata.
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Asymptotics

Special M-Estimators

Least squares

Least squares

I Recall OLS:
β̂ = argmin

β

En[(Y −X ·β )2]

I First order condition:
En[e ·X ] = 0

where
e := Y −X · β̂

I In our general notation:

m(Y ,X ,β ) = e2 = (Y −X ·β )2

m′(Y ,X ,β ) =−2e ·X
m′′(Y ,X ,β ) = 2 ·XX t
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Asymptotics

Special M-Estimators

Least squares

I Apply the asymptotic results for general M-estimators

I β̂ is consistent for β0, the “best linear predictor,”

β0 = argmin
β

E[(Y −X ·β )2].

I β̂ is asymptotically normal

√
n ·
(

β̂ −β0

)
→d N(0,V )
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Asymptotics

Special M-Estimators

Least squares

I Asymptotic variance

V =
(
E[m′′(β0,X)]

)−1 ·Var(m′(β0,X)) ·
(
E[m′′(β0,X)]

)−1

= E[XX t ]−1 ·E[e2XX t ] ·E[XX t ]−1

I “heteroskedasticity robust variance estimator for ordinary least
squares:”

1
n
·En[XX t ]−1 ·En[ê

2XX t ] ·En[XX t ]−1 (5)

I Factor of 1/n to get variance of β̂ rather than
√

n · β̂
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Asymptotics

Special M-Estimators

Maximum likelihood

Maximum likelihood

Lemma

I Suppose Y ∼ f (y ,β0),

I where f denotes a family of densities indexed by β .

I Then
E[log(f (Y ,β0))]≥ E[log(f (Y ,β ))]. (6)

I The inequality is strict if f (Y ,β0) 6= f (Y ,β ) with positive
probability.
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Asymptotics

Special M-Estimators

Maximum likelihood

Sketch of proof:

I Want to show:

0≥
∫

log(f (y ,β )) f (y ,β0)dy−
∫

log(f (y ,β0)) f (y ,β0)dy

=
∫

log

(
f (y ,β )
f (y ,β0)

)
f (y ,β0)dy .

I Jensen’s inequality, applied to the concave function log:∫
log

(
f (y ,β )
f (y ,β0)

)
f (y ,β0)dy

≤ log

(∫
f (y ,β )
f (y ,β0)

f (y ,β0)dy

)
= log(1) = 0.
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Asymptotics

Special M-Estimators

Maximum likelihood

Terminology for maximum likelihood

I Log likelihood:

Ln(β ) = n ·En[m(Y ,β )] = ∑
i

log(f (Yi ,β ))

I Score:

Si(β ) = m′(Yi ,β ) =
∂

∂β
log(f (Yi ,β ))

I Information:

I(β ) =−E[m′′(Y ,β )] =−E[∂S/∂β ]
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Asymptotics

Special M-Estimators

Maximum likelihood

Lemma

If Yi ∼ f (y ,β0), then

Var(S(β0)) = I(β0) =−E[∂S(β0)/∂β ].

I Proof:
Differentiate 0 = E[S] =

∫
S(y ,β0)f (y ,β0)dy with respect to β0

to get

0 =
∫

S′fdy +
∫

Sf ′dy = E[S′]+E[S2].

I But:
Parametric models are usually wrong.
So don’t trust this equality.

I If it holds, the asymptotic variance for the MLE simplifies to

V = E[S′]−1 ·E[S2] ·E[S′]−1 = I(β0)
−1.
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Asymptotics

Confidence sets

Confidence sets

I Confidence set C:
a set of βs,
which is calculated as a function of data Y

I Confidence set C for β of level α :

P(β0 ∈ C)≥ 1−α. (7)

for all distributions of Y (i.e., all θ )
and corresponding β0.

I In this expression β0 is fixed and C is random.

I Confidence set Cn for β of asymptotic level α :

lim
n→∞

P(β ∈ Cn)≥ 1−α. (8)
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Asymptotics

Confidence sets

Confidence sets for M-estimators
I can use asymptotic normality to get asymptotic confidence sets
I Suppose

√
n(β̂ −β0)→d N(0,V )

V̂ →p V

I Define
β̃ :=

√
n · V̂−1/2 · (β̂ −β0).

I Slutsky’s theorem⇒
β̃ →d N(0, I),

and therefore
‖β̃‖2→d

χ
2
k ,

where k = dim(β ).
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Asymptotics

Confidence sets

I Let χ2
k ,1−α

be the 1−α quantile of the χ2
k distribution.

I Define

Cn =
{

β : ‖
√

n ·V−1/2 · (β̂ −β )‖2 ≤ χ
2
k ,1−α

}
. (9)

I We get
P(β0 ∈ Cn)→ 1−α.

I Cn is a confidence set for β of asymptotic level α .

I Cn is an ellipsoid.
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