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Shrinkage

Agenda

» Setup: the Normal means model
X~ N(6,l)

and the canonical estimation problem with loss ||5 -0

v

The James-Stein (JS) shrinkage estimator.
Three ways to arrive at the JS estimator (almost):

1. Reverse regression of §; on X;.
2. Empirical Bayes: random effects model for 6;.
3. Shrinkage factor minimizing Stein’s Unbiased Risk Estimate.

v

v

Proof that JS uniformly dominates X as estimator of 6.

v

The Normal means model as asymptotic approximation.
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Takeaways for this part of class

» Shrinkage estimators trade off variance and bias.

» In multi-dimensional problems, we can estimate the optimal
degree of shrinkage.
» Three intuitions that lead to the JS-estimator:
1. Predict 6; given X; = reverse regression.
2. Estimate distribution of the 6; = empirical Bayes.
3. Find shrinkage factor that minimizes estimated risk.
» Some calculus allows us to derive the risk of JS-shrinkage
= better than MLE, no matter what the true 0 is.

» The Normal means model is more general than it seems: large
sample approximation to any parametric estimation problem.
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LThe Normal means model

The Normal means model
Setup

» 9 cRF

» &£~ N(0, k)

» X=0+¢e~ N(0,l)
Estimator: 6 = §(X)
» Loss: squared error

v

L(6,0) =Y (6, - 6:)°

i

v

Risk: mean squared error
R(6,6) = Eq [ G 9)] ZEg [(9, 6) } .
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LThe Normal means model

Two estimators

» Canonical estimator: maximum likelihood,

" —x

» Risk function L
R(6,0)=) Eg[e] =k.
i

» James-Stein shrinkage estimator

6 = (1—@)%

X2

» Celebrated result: uniform risk dominance; for all 6

R(6°°,6) < R(E™,0) = k.
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LRegression perspective

First motivation of JS: Regression perspective

v

We will discuss three ways to motivate the JS-estimator
(up to degrees of freedom correction).

v

Consider estimators of the form
6:=c-X

or N
9,': a+b-X.

v

How to choose c or (a,b)?
Two particular possibilities:

1. Maximum likelihood: ¢ =1

P (k—2)/k
2. James-Stein: ¢ = (1 — T/)

v
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[ Regression perspective

Practice problem (Infeasible estimator)

» Suppose you knew Xi,..., Xk as well as 6y, ..., 6,
» but are constrained to use an estimator of the form §, =c-X.

1. Find the value of ¢ that minimizes loss.

2. For estimators of the form §, = a+ b- X, find the values of a and
b that minimize loss.
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[ Regression perspective

Solution

v

First problem:
¢ =argmin ) (c- Xi— 6;)
c i

v

Least squares problem!

v

First order condition:

0=Y(c"-X—6)-X.
i

v

Solution
® ZX/G,’

¢t = .
YiX?

8/47



Shrinkage

L Regression perspective

Solution continued

» Second problem:

(a",b") =argmin Y (a+b- X — 6;)?

a,b i
» Least squares problem again!
» First order conditions:
0=Y(a"+b"-X—6)
i
0=Y(a"+b"-X,—6) X.
i

» Solution

_EX-X)(6-8) _ sxo

= =27 a+b-X=806
Yi(X — X)? sk

l)*
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L Regression perspective

Regression and reverse regression

» Recall X; = 6;+¢;, E[&]6;] =0, Var(g;) = 1.
» Regression of X on O: Slope

s S
L;’ =14 Lze ~ 1.
Sp Sp
» For optimal shrinkage, we want to predict 6 given X, not the other
way around!

> Reverse regression of 6 on X: Slope

2 2
SXG . Se+359 . 39

2° T 2109 2T 211
s% Sp+2Sc9+5; Sg+

» Interpretation: “signal to (signal plus noise) ratio” < 1.
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[ Regression perspective

[llustration
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[ Regression perspective

Expectations

Practice problem

1. Calculate the expectations of

I I

and _ .,
%=1L(X-XP=X-X
i

2. Calculate the expected numerator and denominator of ¢* and b*.
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[ Regression perspective

Solution
» EIX]=6
> E[X2] =62+1
> E[2]=02— 0" +1 =82 +1
» ¢* = (X0)/(X?), and E[X6] = 62. Thus
. e
T4

v

b* = sxg/s%, and E[sxg] = s3. Thus

2
Sp

b* ~ .
s3+1
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[ Regression perspective

Feasible analog estimators

Practice problem

Propose feasible estimators of ¢* and b*.
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[ Regression perspective

A solution
» Recall: B
> C* Pl i((gg_

» 0e~0,e2~1.
» Since X; = 6, + ¢;,

X0 =X2—Xe=X2—0g— €2~ X2 1

» Thus:

X2—0e—€? X2—1 A
xx T ox X

*

Cc =
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[ Regression perspective

Solution continued

> Similarly:

— Sx8
2

> b*

Sx

> Spe ~ 0,82~ 1.
» Since X; = 0;+ ¢,

» Thus:

2 2 2 .2
Sxe = Sx — Sxe = Sx — Sge — Sz ~ Sy — 1

2 2 2

«  Sx—See—Sz _Sx—1 T .2

b = O e X 41— —=b
Sk Sx Sx
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L Regression perspective

James-Stein shrinkage

>
>

>

We have almost derived the James-Stein shrinkage estimator.

Only difference: degree of freedom correction

Optimal corrections:
k—2)/k
s _,_(k=2)/
X2

Y

and
(k—3)/k'

b =1—
sk

Note: if 6 = 0, then ¥, X? ~ x2.

» Then, by properties of inverse x? distributions

1 1
Ele—p|=—o,
el

so that E [¢S] =1.
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L Regression perspective

Positive part JS-shrinkage

» The estimated shrinkage factors can be negative.
» oS <oiff
Y XP<k—2.
i

» Better estimator: restrict to ¢ > 0.
» “Positive part James-Stein estimator:”

5JS+ = max <0,1 — 7(1( _2)/k> -X.
X2

» Dominates James-Stein.

» We will focus on the JS-estimator for analytical tractability.
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LParametric empirical Bayes

Second motivation of JS: Parametric empirical Bayes

Setup

As before: 8 ¢ R¥

X|6 ~ N(6,Ik)

Loss L(8,6) = ¥,(6;— 6,)

Now add an additional conceptual layer:

Think of 6; as i.i.d. draws from some distribution.
“Random effects vs. fixed effects”

Let's consider 6; ~™ N(0,12),

where 72 is unknown.
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|—Parametric empirical Bayes

Practice problem

Derive the marginal distribution of X given 72.

v

Find the maximum likelihood estimator of 2.

v

v

Find the conditional expectation of 6 given X and 72.

v

Plug in the maximum likelihod estimator of 72 to get the empirical
Bayes estimator of 6.
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LParametric empirical Bayes

Solution
» Marginal distribution:

X~ N(0,(z?41)- k)

» Maximum likelihood estimator of 72:

2 — argmax —12 log(7? +1) + X/
t2 2 i

(124+1)
=X2 1
» Conditional expectation of 6; given X;, 72:
g CovonX) \ =
ovar(X) T P+

e

» Plugging in 'E\Z:
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LParametric empirical Bayes

General parametric empirical Bayes
Setup

» Data X,

parameters 6,

hyper-parameters n
» Likelihood

X[0,n ~ fx
» Family of priors
9|ﬂ ~ f9|n

» Limiting cases:

» 0 = n: Frequentist setup.
» 1 has only one possible value: Bayesian setup.
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LParametric empirical Bayes

Empirical Bayes estimation
» Marginal likelihood

fxn(xlm) = [ B (x16)fopy (61m)d.

Has simple form when family of priors is conjugate.
» Estimator for hyper-parameter 1: marginal MLE

n = argmax fyj, (x|n).
n
» Estimator for parameter 0: pseudo-posterior expectation

6 =E[0|X =x,n=1].
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LStein’s Unbiased Risk Estimate

Third motivation of JS: Stein’s Unbiased Risk Estimate

» Stein’s lemma (simplified version):
» Suppose X ~ N(6, I).
» Suppose g(-) : R¥ — R is differentiable and E[|g’(X)|] < oo
» Then
E[(X—6)-9(X)] = E[Vg(X)].
> Note:

> 0 shows up in the expression on the LHS, but not on the RHS
» Unbiased estimator of the RHS: Vg(X)
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|—Stein's Unbiased Risk Estimate

Practice problem

Prove this.
Hints:

1. Show that the standard Normal density ¢(-) satisfies

¢'(x) = —x-9(x).

2. Consider each component i separately and use integration by
parts.
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LStein’s Unbiased Risk Estimate

Solution

» Recall that @(x) = (27) 7% - exp(—x2/2).
Differentiation immediately yields the first claim.

» Consider the component i = 1; the others follow similarly. Then

Elox, 9(X)] =
k

=/ I 9(X1,- - Xk) o(x1 —61)- [T o(xi —61)axi ...
Ixo,...xk I Xxq i—2
k

-/ 9xtreex) (=000 —01)- T 0 —6)axi ...
X2,... Xk 7 X4 ,:2

k

:/);,,..x /x g(x1,-.- 5 Xk) {(x1— 61)o(x1 _91)'H(P(Xi—9i)dx1...

i=2
=E[(X1 — 61)-g(X)].
» Collecting the components i =1,..., k yields

E[(X—6)-9(X)] = E[Vg(X)]-

adxk

dx Kk

ax Kk
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I—Stein's Unbiased Risk Estimate

Stein’s representation of risk

> Consider a general estimator for 6 of the form
0 = 6(X) = X+ g(X), for differentiable g.
» Recall that the risk function is defined as

R(6,6) =Y E[(6;— 6)7].
i
» We will show that this risk function can be rewritten as

R(6.0) = k+ Y (Elgi(X)’] +2E[95gi(X)]) -

Practice problem

> Interpret this expression.

» Propose an unbiased estimator of risk, based on this expression.
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LStein’s Unbiased Risk Estimate

Answer

» The expression of risk has 3 components:
1. ks the risk of the canonical estimator 8 = X, corresponding to
g=0. R
2. Y E[gi(X)?] =¥, E[(6; — X;)?] is the sample sum of squared
errors.
3. Y, E[dxgi(X)] can be thought of as a penalty for overfitting.
» We thus can think of this expression as giving a “penalized least
squares” objective.
» The sample analog expression gives “Stein’s Unbiased Risk
Estimate” (SURE)

R=k+Y (5,-—)0)2+2-Z<9X,g,-(x)-

i
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|—Stein's Unbiased Risk Estimate

» We will use Stein’s representation of risk in 2 ways:

1. To derive feasible optimal shrinkage parameter using its sample
analog (SURE).
2. To prove uniform dominance of JS using population version.

Practice problem

Prove Stein’s representation of risk.
Hints:

» Add and subtract X; in the expression defining R(@, 0).

» Use Stein’s lemma.
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LStein’s Unbiased Risk Estimate

Solution

R(6) =Y E[(6— Xi+Xi— 6)]

=Y E[(Xi—6)° +(B—X)? +2(6—X) (X — 6)]
~Y +E[gi(X)?]  +2E[gi(X)- (Xi— )]
=Y +E[gi(X)?] +2E[0,,gi(X)],

where Stein’s lemma was used in the last step.
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|—Stein's Unbiased Risk Estimate

Using SURE to pick the tuning parameter

» First use of SURE: To pick tuning parameters, as an alternative to
cross-validation or marginal likelihood maximization.

» Simple example: Linear shrinkage estimation

§=C-X.

Practice problem

» Calculate Stein’s unbiased risk estimate for 0.

» Find the coefficient ¢ minimizing estimated risk.
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LStein’s Unbiased Risk Estimate

Solution
> When@chX,
theng(X)=60—-X=(c—1)-X,
and dy,gi(X) =c—1.

» Estimated risk:

R=k+(1-c)*- Y. X*+k-(c—1).
i

» First order condition for minimizing R:

k=(1—-c")- Y X
i
» Thus 1
cf=1——.
X2

» Once again: Almost the JS estimator, up to degrees of freedom

correction!
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|—Stein's Unbiased Risk Estimate

Celebrated result: Dominance of the JS-estimator

» We next use the population version of SURE to prove uniform
dominance of the JS-estimator relative to maximum likelihood.

» Recall that the James-Stein estimator was defined as

8% = (1 —w> X,

X2
. . . . ~ML
» Claim: The JS-estimator has uniformly lower risk than 6 = X.

Practice problem

Prove this, using Stein’s representation of risk.
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LStein’s Unbiased Risk Estimate

Solution

~ML
» Therisk of 6 s equal to k.
» For JS, we have

~JS k—2

g,(X):GI —)(,: _W)(I’ and

S

k—2 2X?

0(x) - (%)
X X
» Summing over components gives
(k—2)
gi(X)?= ~—/, and

k —2)?
Y a0 = -2

5
i Z/'Xj
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LStein’s Unbiased Risk Estimate

Solution continued

» Plugging into Stein’s expression for risk then gives

R(6°,0) =k + E Y ai(X)?+2) dxai(X)

(k—2)? 2(k—2)2
TXE X XE

:k—E[M_zf}

—k+E

_n)\2
» The term (;)2 is always positive (for k > 3), and thus so is its
expectation. Uniform dominance immediately follows.

» Pretty cool, no?
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L Local asymptotic Normality

The Normal means model as asymptotic approximation

» The Normal means model might seem quite special.

» But asymptotically, any sufficiently smooth parametric model is
equivalent.

» Formally: The likelihood ratio process of ni.i.d. draws Y; from the
distribution

n
Bo+h//m’
converges to the likelihood ratio process of one draw X from

N (h, 1501)
» Here his alocal parameter for the model around 6y, and /g, is
the Fisher information matrix.
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L Local asymptotic Normality

» Suppose that Py has a density fg relative to some measure.
» Recall the following definitions:

> Log-likelihood: £¢(Y) = logfy(Y)

> Score: £g(Y) = dglogfy(Y)

» Hessian lg(Y) = dZlogfy(Y)

» Information matrix: Iy = Varg(£g(Y)) = —Eg[le(Y)]

» Likelihood ratio process:

H TNGSO)
foo (Vi)

where Yi,..., Yy areiid. Pg 4/ /7 distributed.
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LLocaI asymptotic Normality

Practice problem (Taylor expansion)

» Using this notation, provide a second order Taylor expansion for
the log-likelihood £g,+4(Y") with respect to h.

» Provide a corresponding Taylor expansion for the log-likelihood of
ni.id. draws Y; from the distribution Py 1,/ /7.

» Assuming that the remainder is negligible, describe the limiting
behavior (as n — o) of the log-likelihood ratio process

H fog+n/yalYi)
foo (Y1)
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L Local asymptotic Normality

Solution

» Expansion for £g,14(Y):
Cogn(Y) = Loy(Y) +H Loy (Y)+ % - h-Loy(Y) - h+ remainder.
» Expansion for the log-likelihood ratio of ni.i.d. draws:
IogH 90+f:/(§ = Zﬁgo )+ o= h - 2690 )+ h+ remainder.
» Asymptotic behavior (by CLT, LLN):
A, = \FZE"O —9 N(0, 1g,),

g p_1
5‘2590 , — 2’90.
i
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L Local asymptotic Normality

Suppose the remainder is negligible.
Then the previous slide suggests

fog tr/ 5 (YD) _A py 1,/
IogH Aty = D= gH b,

where
A~ N(0,1g,).

Theorem 7.2 in van der Vaart (2000), chapter 7 states sufficient
conditions for this to hold.

We show next that this is the same likelihood ratio process as for

the model
N(htg')-
0
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|—Local asymptotic Normality

Practice problem

» Suppose X ~ N (h, Ig;)
» Write out the log likelihood ratio
‘Plgo‘ (X—h)
Pt (X)
0

log
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LLocaI asymptotic Normality

Solution

» The Normal density is given by

1
0,1 (x) = exp (— X Ig,X)

& (2m)¥| det(1g,")]

» Taking ratios and logs yields

(PI(;O1 (X—h)

0 —H g -x—LH Iy -h
9, (X) e

log

» This is exactly the same process we obtained before, with Ig, - X
taking the role of A.
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L Local asymptotic Normality

Why care

> Suppose that Y; ~"@ Py, . and Ty(Ys,..., Yn) is an arbitrary

statistic that satisfies
To—% Lon

for some limiting distribution Lg 4 and all h.

» Then Ly p is the distribution of some (possibly randomized)
statistic T(X)!

» This is a (non-obvious) consequence of the convergence of the
likelihood ratio process.

» cf. Theorem 7.10 in van der Vaart (2000).
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LLocaI asymptotic Normality

Maximum likelihood and shrinkage

» This result applies in particular to T = estimators of 6.

» Suppose that M is the maximum likelihood estimator.

» Then M- —9 X, and any shrinkage estimator based on M-
converges in distribution to a corresponding shrinkage estimator

in the limit experiment.
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