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Chapter 1

Preface

These are lecture notes for a course on “Empirical research on economic inequal-
ity.” The purpose of this class is twofold. First, to teach you about economic
inequality, some of its causes, and how it is affected by policy. Second, to teach
you econometric methods that have been used in the literature on economic
inequality, which will help prepare you to conduct your own research on this or
related topics, perhaps in an undergrad thesis.

These lecture notes are intended to accompany the reading of the original
articles assigned for this class and listed in section 1.3, rather than serving as
a stand-alone textbook. The purpose of these notes is to give you a compact
overview of formal definitions and derivations and the econometric methods
used, but often left implicit, in the papers discussed. The chapters of these
lecture notes can be read in any order.

In this class, we will focus on mechanisms affecting income inequality, such as
racial discrimination, (de)unionization, minimum wages, shifts in labor demand
due to changes in technology and trade, shifts in labor supply due to migration,
intergenerational transmission of economic status, and taxation. We will briefly
talk about the historical evolution of income and wealth inequality, as well as
about international inequality; mostly, however, we will focus on mechanisms
affecting the distribution of incomes in the United States.

I would also like to emphasize what topics we will not cover in this class –
particularly as these are arguably important topics:

• We will not talk about inequality along non-economic dimensions, such as
health, education, political participation, or recognition. All of these are
important, but I am not in a position to say much about them.

• We will mostly talk about inequality within the United States, rather than
within other countries or across countries. Inequality within other coun-
tries matters too, of course, but the economics literature which we will
discuss is focused on the United States. International inequality matters
hugely – the citizenship you are assigned at birth is the single most impor-
tant determinant of your life chances. International inequality is even more
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1.1. Why research economic inequality? 5

complicated than domestic inequality and involves many additional con-
siderations, so we will mostly focus on the “simpler questions” of within-
country inequality.

• We will not talk about indices of economic inequality and their axiomatic
justifications, which were central to an older literature on economic in-
equality, nor about issues of measurement.

1.1 Why research economic inequality?

A class on economic inequality raises the question: why should we care about
inequality, and why should we do research on it? There are a number of distinct
justifications which might be given.

First, the normative relevance of distributional questions follows from the
fact that, in general, economists evaluate societal outcomes and the policies that
affect them based on the welfare of individuals, however defined. Formally,
if vi is a measure of the welfare of individual i, social welfare evaluations are a
function of all the vi, F (v1, . . . , vn). From this it follows that any such normative
evaluation of the status quo has to start by evaluating who is doing how well.
That is, how large is the welfare vi of different individuals? Correspondingly,
any normative evaluation of policy changes has to start by evaluating who wins
and who loses, and by how much. That is, how much does the welfare vi of
different individuals increase or decrease? Such evaluations are the task of the
kind of research considered in this class.

Any statement on whether a policy change is desirable must then take a
stance on how to trade off the welfare of different individuals – e.g., how much
do you care about an additional dollar for a rich person versus an additional
dollar for a poor person?

Second, there is a long-standing line of ethical reasoning which suggests that
we should put the bulk of normative weight on those who are worst off and aim
for an equalization of welfare, which amounts to picking functions F (v1, . . . , vn)
of a particular form. Such prescriptions of normative symmetry or ethical
equality go back as far as the biblical “golden rule;” similar prescriptions seem
to appear in almost any religion. A contemporary philosophical version of such
a reasoning can be found in John Rawls’s “Theory of justice” (Rawls, 1973).
Rawls argues that we should evaluate societies by imagining that we are behind
a “veil of ignorance,” which prevents us from knowing who we actually are. In
such a setting of uncertainty regarding who we are, we should try to make the
worst-off person as well off as possible, ensuring a minimum standard of living
for ourselves should we happen to be among the worst-off. There has been much
subsequent debate on this argument; a good reference is Sen (1995).

Third, we might be worried about the consequences of inequality, which
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we might consider important in their own right. Various literatures in sociology,
political science, and economics are concerned with these consequences; possible
consequences that have been discussed are:

• Political consequences: An increasing concentration of income and wealth,
and the rising influence of campaign donations and lobbying, might under-
mine democratic institutions predicated on the principle of “one person,
one vote.”

• Social consequences: Increasing inequality might further social segregation
(residential, educational, etc.), thus reducing knowledge of how others live
and undermining social cohesion and solidarity.

• Economic consequences: Rising inequality might destabilize the economy.
The increase in mortgage lending as a substitute for income growth of
the bottom half of the distribution, for example, was at the origin of the
financial crisis starting in 2008.

Whether rising inequality has these and other effects is a hard empirical ques-
tion which we will not discuss in this class.

Fourth and finally, by studying economic inequality we learn (i) how much
it has changed over time and across countries, and (ii) how much it is affected
by policy decisions and other social factors. Recognizing these two facts puts
into question explanations of inequality that are a-historical and a-
social. These include biological explanations (such as biological racism, sexism,
or justifications of inequality based on genetic differences in IQ) or explanations
that reduce inequality to a matter of individual responsibility.

1.2 Acknowledgments

I thank Susanne Kimm and Ellora Derenoncourt for many helpful discussions
and suggestions.
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1.3 Readings

We will discuss the following articles in class. For each of these articles, the
present lecture notes provide some technical and methodological background
and summary.

1. Topic: The long run evolution of inequality as measured by top income
shares
Method: Pareto distribution, maximum likelihood, (interval) censored data

Atkinson, A. B., Piketty, T., and Saez, E. (2011). Top incomes in the long
run of history. Journal of Economic Literature, 49(1):3–71.

2. Topic: The long run evolution of gender inequality
Method: Cohort analysis

Goldin, C. (2006). The quiet revolution that transformed women’s em-
ployment, education, and family. American Economic Review, 96(2):1–21.

3. Topic: Racial discrimination
Method: Potential outcomes, treatment effects, randomized experiments

Bertrand, M. and Mullainathan, S. (2004). Are Emily and Greg More Em-
ployable Than Lakisha and Jamal? A Field Experiment on Labor Market
Discrimination. American Economic Review, 94(4):991–1013.

4. Topic: The effect of de-unionization on inequality
Method: Distributional decompositions, reweighting

Fortin, N. M. and Lemieux, T. (1997). Institutional changes and rising
wage inequality: Is there a linkage? The Journal of Economic Perspectives,
11(2):pp. 75–96.

Firpo, S., Fortin, N., and Lemieux, T. (2011). Decomposition methods in
economics. Handbook of Labor Economics, 4:1–102.

5. Topic: Labor demand and labor supply, technical change, immigration
Method: Estimation of demand systems

Card, D. (2009). Immigration and inequality. The American Economic
Review, 99(2):1–21.

Boustan, L. P. (2009). Competition in the promised land: Black migration
and racial wage convergence in the north, 1940–1970. The Journal of
Economic History, 69(03):755–782.

Autor, D. H., Katz, L. F., and Kearney, M. S. (2008). Trends in US
wage inequality: Revising the revisionists. The Review of Economics and
Statistics, 90(2):300–323.

6. Topic: Intergenerational mobility
Method: Measurement error
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Chetty, R., Hendren, N., Kline, P., and Saez, E. (2014). Where is the land
of opportunity? The geography of intergenerational mobility in the United
States. Quarterly Journal of Economics, 129(4):1553–1623.

Black, S. and Devereux, P. (2011). Recent developments in intergenera-
tional mobility. Handbook of Labor Economics, 4:1487–1541.

7. Topic: The welfare impact of changing prices and wages
Method: Equivalent variation, conditional causal effects

Deaton, A. (1989). Rice prices and income distribution in Thailand: a
non-parametric analysis. The Economic Journal, pages 1–37.

Kasy, M. (2014). Who wins, who loses? tools for distributional policy
evaluation. working paper.

8. Topic: Redistributive taxation
Method: Computing optimal income tax schedules

Saez, E. (2001). Using elasticities to derive optimal income tax rates. The
Review of Economic Studies, 68(1):205–229.

9. Topic: International inequality
Method: Matching

Clemens, M. A., Montenegro, C. E., and Pritchett, L. (2009). The place
premium: wage differences for identical workers across the US border.

Milanovic, B. (2015). Global Inequality of Opportunity: How Much of Our
Income Is Determined by Where We Live? The Review of Economics and
Statistics, 2(97):452–460

10. Topic: Policy options

Atkinson, A. (2014). After Piketty? The British Journal of Sociology,
65(4):619–638.

This class will involve some programming exercises, to be found at the end
of each chapter in these lecture notes. We will be programming in Matlab. You
do not need to know Matlab before this class, but it might help to look at some
of the many available online resources before we get started, for instance:

1. http://www.mathworks.com/academia/student_center/tutorials/launchpad.

html

2. http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

6-094-introduction-to-matlab-january-iap-2010/lecture-notes/

If you are a student at Harvard, you can download Matlab for free from
http://downloads.fas.harvard.edu/download. If you do not have access to
Matlab, you can also use Octave which is open-source and which uses the
exact same syntax as Matlab. Octave is available at https://www.gnu.org/

software/octave/.

http://www.mathworks.com/academia/student_center/tutorials/launchpad.html
http://www.mathworks.com/academia/student_center/tutorials/launchpad.html
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-094-introduction-to-matlab-january-iap-2010/lecture-notes/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-094-introduction-to-matlab-january-iap-2010/lecture-notes/
http://downloads.fas.harvard.edu/download
https://www.gnu.org/software/octave/
https://www.gnu.org/software/octave/
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Recommended books

1. Normative theories of distributive justice:

• Rawls, J. (1973). A theory of justice. Harvard University Press,
Cambridge

• Sen, A. (1995). Inequality reexamined. Oxford University Press, Ox-
ford

• Roemer, J. E. (1998). Theories of distributive justice. Harvard Uni-
versity Press, Cambridge

2. Economists on the history of inequality:

• The long run evolution of wealth-inequality and its causes:
Piketty, T. (2014). Capital in the 21st Century. Harvard University
Press, Cambridge

• Education, technology, and inequality:
Goldin, C. D. and Katz, L. F. (2009). The race between education
and technology. Harvard University Press

• Global inequality of health and incomes:
Deaton, A. (2013). The great escape: Health, wealth, and the origins
of inequality. Princeton University Press, Princeton

• Historical origins - the slave system
Fogel, R. W. (1994). Without consent or contract: the rise and fall
of American slavery. WW Norton & Company

• Policy alternatives:
Atkinson, A. B. (2015). Inequality: What Can be Done?. Harvard
University Press

3. Perspectives outside economics:

• The sociology of social classes:
Wright, E. O. (2005). Approaches to class analysis. Cambridge Uni-
versity Press, Cambridge

• Feminist perspectives:
Fraser, N. (2013). Fortunes of Feminism: From State-Managed Cap-
italism to Neoliberal Crisis. Verso Books



Chapter 2

The 1% – The Pareto
distribution and maximum
likelihood

Income inequality has been changing quite dramatically over time, in particular
at the very top of the distribution, as illustrated by figure 2.1 on the next page,
reproduced from Piketty’s “Capital in the 21st century.” How do we know this?
In particular thanks to the careful historical work by various authors, reviewed in
Atkinson et al. (2011), using tax data. In order to estimate top income shares, we
need estimates of (i) how much income the rich received, and (ii) how large the
total income generated in the economy was. In this chapter we shall be concerned
with the question of how to get the first of these. Top incomes are estimated in
this literature using historical tax data. The distribution of top incomes (and of
top wealth holdings) is well approximated by the so-called Pareto distribution.
The problem of estimating top incomes reduces to the problem of estimating
the parameter α of this distribution.

2.1 Definition of the Pareto distribution

We shall suppose incomes Y above an income level of y follow a Pareto distri-
bution. This assumption was shown to provide a good approximation in many
studies. The Pareto distribution is defined by the property that

P (Y > y|Y ≥ y) =
(
y/y
)α0

(2.1)

for y ≥ y, where α0 > 1. That is, the share of incomes above a cutoff y
declines with y−α0 . Our goal is to estimate the Pareto parameter α0, which we
can then use to calculate top income shares.

We can calculate the density of the Pareto distribution, conditional on

10



2.1. Definition of the Pareto distribution 11

Figure 2.1: Top 1% income share in the US. Reproduced from Piketty (2014).
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Y ≥ y, by taking derivatives:

f(Y ;α0) = − ∂

∂y
P (Y > y|Y ≥ y) = − ∂

∂y

(
y/y
)α0

= α0

(
y/y
)α0 · y−1. (2.2)

The Pareto distribution has the interesting feature that, for any y ≥ y,

E[Y |Y ≥ y] =
α0

α0 − 1
· y. (2.3)

Try to verify this by calculating the expectation by integration. This equation
tells us that the average income of those receiving more than y, relative
to y, equals α0/(α0 − 1) – no matter what value y we pick! The smaller the
parameter α0 is, the larger are the incomes received by the very rich, and the
larger will be our estimates of income inequality. Suppose we know the cutoff
q99 such that 99% of incomes are below this cutoff. We can then calculate the
average income of the 1% as

y1% =
α0

α0 − 1
· q99.

You can find more information on the Pareto distribution at https://en.

wikipedia.org/wiki/Pareto_distribution.

https://en.wikipedia.org/wiki/Pareto_distribution
https://en.wikipedia.org/wiki/Pareto_distribution
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2.2 Maximum likelihood

Suppose you have i.i.d. observations y1, . . . , yn of incomes above y from historical
tax data. We want to estimate the parameter α using this data. One general
method to construct estimators is to find the parameter which gives us the
highest “probability” for finding the observations that we have; this idea is called
maximum likelihood estimation (MLE). Formally, the maximum likelihood
estimator is defined as

α̂MLE = argmax
α

n∏
i=1

f(yi;α) = argmax
α

n∑
i=1

log(f(yi;α)). (2.4)

This is the value of α which maximizes the density of our observations. Note
that between the second and third term we applied logs to everything – this is
OK, since the logarithm is monotonically increasing and this therefore does not
change the maximization problem.

The first order condition for the maximization problem defining the MLE
(in log terms) is given by

∂

∂α

n∑
i=1

log(f(yi;α)) = 0.

We shall now plug in the expression for the density of the Pareto distribution
which we derived before. The log likelihood of observation i, that is the log of
its density given α, is equal to

log(f(yi;α)) = log(α
(
y/yi

)α · y−1i ) = log(α) + α log
(
y/yi

)
− log(yi).

We get

0 =
∂

∂α

n∑
i=1

log(α
(
y/yi

)α · y−1)

=

n∑
i=1

(
1

α
+ log

(
y/yi

))
Solving for α yields

α̂MLE =
n∑

i log
(
yi/y

) . (2.5)

2.3 Censored data

Unfortunately we usually don’t observe the actual incomes that rich people
received in the available tax data. All that is available from historical records is
the number of tax filers that fall into several tax brackets of the form [yl, yu].
Fortunately we can still estimate the Pareto parameter from such data – which
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makes the Pareto distribution a very useful model. The conditional probability
that Y falls in the interval [yl, yu] can be calculated as

P (Y ∈ [yl, yu]|Y ≥ y) = P (Y > yl|Y ≥ y)− P (Y > yu|Y ≥ y)

=
(
y/yl

)α0 −
(
y/yu

)α0
. (2.6)

For simplicity, suppose that we just observe two tax brackets, that is, we
only have aggregate tax data which tell you the number N1 of taxpayers falling
in the bracket [y, yl), and the number N2 of tax payers falling in the bracket
[yl,∞) What is the distribution of N2 conditional on N1 +N2 = n?

We can write N2 as a sum of independent Bernoulli random variables,1

N2 =

n∑
i=1

1(Yi > yl),

where the probability that any of these variables equals 1 is given by

p(α0) = P (Y > yl|Y > y) =
(
y/yl

)α0
.

It follows that N2 is binomially distributed conditional on N1 + N2 = n,
that is

N2 ∼ Ber (n, p(α0)) , (2.7)

and

P (N2 = n2|N1 +N2 = n;α) =

(
n

n2

)
· p(α0)n2(1− p(α0))n−n2 .

You can find more information on the Binomial distribution at https://en.

wikipedia.org/wiki/Binomial_distribution.

2.4 Maximum likelihood with censored data

As before, we want to construct an estimator of α0, but using only the interval
censored data. As before, we can construct such an estimator using maximum
likelihood, that is

α̂MLE = argmax
α

P (N2 = n2|N1 +N2 = n;α)

is the value which maximizes the probability of observing a number N2 of ob-
servations in the upper tax bracket.

1Bernoulli random variables are random variables that only take on the values 0 and 1.

https://en.wikipedia.org/wiki/Binomial_distribution
https://en.wikipedia.org/wiki/Binomial_distribution
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The first order condition for the MLE is given by

0 =
∂

∂α
log f(N2|N1 +N2;α)

=
∂

∂α
log

(
n

N2

)
+N2 log p+N1 log(1− p)

=

(
N2

p
− N1

1− p

)
· ∂
∂α

p

=

(
N2(
y/yl

)α − N1

1−
(
y/yl

)α
)
· ∂
∂α

p.

Since ∂
∂αp 6= 0, the first term has to vanish, and after doing some algebra we

see that α̂MLE is the solution to the equation(
y/yl

)α̂MLE

=
N2

n
,

so that

α̂MLE =
log(N2/n)

log
(
y/yl

) . (2.8)

The larger the share of our observations is that falls in the upper tax bracket,
the larger is our estimate of α.

2.5 Piketty’s r − g and the Pareto parameter

So far, we have discussed how to estimate α and how to use this estimate to
calculate top income shares. But why do the top tails of income and wealth follow
a Pareto distribution, and what determines the parameter α? One possible story
is given by the formal argument underlying Piketty’s book (though hidden very
deeply in the references), which relates the rate of return r on capital, relative
to economic growth g, to the long run inequality of wealth.

I will give a heuristic proof of this argument; this is complicated and optional
material. Suppose that the wealth Y of a family i follows the process

Yi,1 = wi +Ri · Yi,0 (2.9)

over time, where Yi,1 denotes the wealth of children, Yi,0 the wealth of parents,
wi reflects savings from earnings, and Ri is the rate of savings from capital
income, corresponding to Piketty’s r − g. Suppose further that

(wi, Ri) ⊥ Yi,0,

that is random shocks to earnings, rates of return, or savings are independent
from past wealth. This is a strong assumption, which, however, could be relaxed.

A so-called stationary distribution for Yi is one where the distribution
of Yi,1 is the same as that for Yi,0 – inequality among children is the same
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as inequality among parents. Under fairly general conditions, this process will
converge to a stationary distribution with Pareto tail as long as E[R] < 1
(otherwise inequality would explode over time), so that we can assume that the
distribution of Y0 is already approximately Pareto in the tail of the distribution,
that is for large values of wealth,

P (Y0 > y|Y0 ≥ y) ≈
(
y/y
)α0

.

What Pareto parameter yields a stationary tail? In the tail, wi (savings from
earnings) is negligibly small relative to Ri · Yi,0 (savings from capital income),
so that stationarity requires

P (Y0 > y) = P (Y1 > y) = P (w +R · Y0 > y)

≈ P (Y0 > y/R) = E[P (Y0 > y/R|R)]

for large y, where in the second line we just dropped w from the exact equality.
In the last expression we first condition on R, and then average out over the
distribution of R. Plugging the Pareto distribution for Y0 into these expressions
we get (

y/y
)α0

= E
[(
y/(y/R)

)α0
]
.

Dividing by
(
y/y
)α0

shows that this is equivalent to

E [Rα0 ] = 1. (2.10)

We have derived the equation mapping the distribution of R to the Pareto pa-
rameter α0.

The intuition behind our argument and this equation is as follows: rich
families move up the wealth distribution if their Ri > 1, they move down if
their Ri < 1. Stationarity requires that upward- and downward movements
cancel each other – as many families move down as up in any given range of the
tail. If it’s more likely to move down than up (Ri is mostly small), then there
have to be fewer people that are very rich rather than just rich (large α, little
inequality), for these movements to cancel. If it’s equally likely to move up as
down (Ri is centered close to 1), there have to be almost as many very rich
people as rich people (small α, lots of inequality).

2.6 Matlab exercises

Write code that performs the following:

1. Generate n independent draws from the Pareto distribution with param-
eters y and α

Hint: You can take Yi = y ·U−1/αi for U uniformly [0, 1] distributed. Why?
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2. Save these data to a .csv file, and exchange your file with a classmate.

3. Use your classmate’s data to estimate α, using the formula in equation
(2.5).

4. Now generate new data using the same procedure as before, and just tell
your classmate the value y, as well as the number of observation below /
above the cutoff 2 · y. Ask her/him to provide an estimate of α based on
these numbers, using equation (2.8).

5. Now we are going to verify the argument of section 2.5 by simulations.
Generate data following the process in equation (2.9), that is

Yt+1 = wt +Rt · Yt,

where wt and Rt are independent draws from uniform distributions with
boundary values that you pick. Generate 10.000 observations, and only
keep the last 2.000. Save them, and give them to a classmate.

6. Sort the data you got from your classmate, and only keep the top 200.
Use these observations to estimate the Pareto parameter as in step 2.

7. Repeat the last two steps, but for a different distribution of Rt. Does the
estimated Pareto parameter change in the way that you would expect?

Matlab commands which you might find useful:

rand

csvwrite, csvread

sort



Chapter 3

Gender Inequality –
Elasticities of Labor Supply

The relative economic position of women and men is still quite unequal, yet has
undergone great changes over the course of the last century. Economic inequality
between women and men has many dimensions, including the following. There is,
first, inequality of pay for the same occupation, maybe due to discrimination.2

There are, second, differences in the distribution of men and women across
occupations, maybe due to social norms and aspirations and due to the workings
of the educational system. And there are unequal intra-household divisions of
labor. Traditional divisions of roles would often require women to be primarily
in charge of unpaid reproductive labor – housekeeping, taking care of children,
the elderly, and the sick, etc. – while men would be in charge of paid work in
the labor market.

While this description of a traditional model might be correct in some “typi-
cal” sense, there are great differences across social classes and over time, shaped
by market forces, social provisions by the state, changing social norms, and other
factors. These differences and this historical evolution are the subject of Goldin
(2006). Claudia Goldin focuses on the changing prevalence of women’s partici-
pation in the labor market, and the changing career trajectories of women. She
structures her historical description in terms of two key elasticities of women’s
labor supply, the income elasticity and the substitution elasticity.

3.1 Elasticities of labor supply

Economists like to express causal effects and other relationships in terms of
elasticities. Elasticities are unit-less magnitudes. Suppose L is a function of Y .
Elasticities answer questions such as “By what percentage does L increase

2We will discuss discrimination in the next chapter.
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(or decrease) if Y increases by 1%?” The elasticity ε is formally defined as

ε =
∂ logL

∂ log Y
=
∂L

∂Y
· Y
L
.

Let L be the labor supply of a woman, that is the amount of hours or weeks
of paid labor. Let w be the hourly wage that she receives or would receive in
the market, and let Y be household income, which includes partners’ earnings
and unearned income (from capital ownership and other sources).

Wages w have greatly increased over time, and vary across social classes /
levels of education. These changes of wages are an important explanatory factor
for changing patterns of women’s participation in wage labor. We can think of
the effect of a change in wages on labor supply as being composed of two parts.

The first part is due to an effect of incomes. As households get richer, they
are able to afford more. To the extent that it is considered desirable that (mar-
ried) women do not work for wages, as per traditional role models (as prevalent
early in the 20th century in the United States), an increase in incomes might
lead to a decrease in women’s labor force participation, both across social classes
and over time. Richer households can afford women’s staying home more eas-
ily. The second part is due to an effect of relative prices. When wages are
higher, then the return to paid work relative to unpaid work is higher, creating
an incentive to switch from the latter to the former. An increase in wages would
suggest higher labor force participation for women, leading to increased labor
force participation over time, going in the opposite direction of the income effect.

This decomposition into two parts can be made formal using two elasticities.
The first is the income elasticity. It measures the percentage change of labor
supply for a 1% change of (household) income,

ε =
∂ logL

∂ log Y
.

Total household income Y depends not only on own-earnings, but also on part-
ners’ earnings. If we assume that household decisions are made jointly then
both these sources of income affect women’s labor supply decisions in the same
manner. If that is the case then we can learn about ε by looking at the effect
of partners’ earnings on L, since partner’s earnings do not themselves affect the
incentives (relative prices) of women’s labor supply.

The second effect is measured by the substitution elasticity ηs. We can
only measure ηs indirectly. ηs is the effect of women’s wages on their labor
supply, after we subtracted the income effect. Put differently, increasing women’s
wages w has a total effect η, which is the sum of substitution and income effect:

η =
∂ logL

∂ logw
=
∂ logL

∂ log Y

∂ log Y

∂ logw
+ ηs (3.1)

To calculate the effect α of wages on household income,

α =
∂ log Y

∂ logw
, (3.2)
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we just need to do some accounting, which we can do once we know household
income and women’s earnings. A 1% increase in w leads to a 1% increase of
earnings wL, and we get

α =
wL

Y
.

We can finally define ηs by
ηs = η − α · ε. (3.3)

3.2 Decomposing changes

Goldin (2006) uses this decomposition to make sense of changing patterns in
women’s labor force participation since the late 19th century. For any given year,
we can attempt to learn about ε, the income elasticity, by comparing households
with different partners’ earnings, but similar wages for women. Formally, we
might regress logL on log Y , controlling for logw:

logLi = β0 + ε · log Yi + β1 · logwi + Ui. (3.4)

Variation in Yi given wi comes from partners’ earnings. We can learn about
η, the total elasticity of labor force participation with respect to wages, by
regressing logL on logW ,

logLi = γ0 + η · logwi + Vi. (3.5)

There are issues in estimating these elasticities due to possible endogeneity, that
is due to correlation between (Yi, wi) and (Ui, Vi). We will ignore these for now,
and assume that we got correct estimates of ε and η. We can finally learn about
α by simply calculating how much women would earn when working full-time.

Plugging in the decomposition of η into equation (3.5), we get

logLi = γ0 + (ηs + α · ε) · logwi + Vi. (3.6)

This equation allows us to interpret changes of labor supply over time and dif-
ferences across social classes. First, labor supply might increase over time as
γ0 increases. This is an outward shift of women’s labor supply, which implies
that women would work more for any given wage level. Second, labor supply
might shift over time as wages wi increase. This effect might go either way,
depending on the sign of η = ηs + αε. If negative income effects, ε < 0, domi-
nate, then η < 0, and increasing wages lead to a reduction of labor supply. If
substitution effects, ηs > 0, dominate, then η > 0 and increasing wages lead
to an increase of labor supply. Third, Labor supply might shift because of a
change of these elasticities. According to Goldin (2006), the total elasticity η
used to be negative but increased to become positive at some point in history,
as income elasticities increased (became less negative) and substitution elastici-
ties increased (became more positive). Possible explanations for these changing
elasticities include changes in the workplace, as new technologies and occupa-
tions became available (office work as opposed to factory work), changes in the
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legal environment (married women used to be barred from many occupations),
changes in household technology (laundromats), public provision of care (public
kindergartens; at least in European welfare states), and changes in social norms.

The net effect of these changes was an increase of labor force participation
of working-age women from below 20% in the US around 1900 (and in fact
close to zero for married white women) to almost 80% today. This increase was
initially driven by an outward shift in labor supply (increase in γ), followed
by increases in η and subsequently a positive effect of increasing wages. More
recent important changes since the 1980s are not quite captured by labor force
participation. In tandem with women overtaking men in educational attainment,
the nature of women’s occupations, in particular for well-off women, has changed
from being merely a source of supplementary income with little advancement
over time to involving long-term careers.

3.3 Some critical remarks

Celebratory descriptions of this changing role of women in the labor market
encounter some criticism in particular in feminist discussions, see for instance
Fraser (2013). We shall briefly mention two.

First, descriptions such as the one of the “quiet revolution” of women’s ca-
reers since the 1980s in Goldin (2006) focus on college-educated women. Addi-
tional emphasis is put on those with professional and advanced degrees (lawyers,
doctors, managers, academics...). These descriptions neglect the quite different
historical changes for women at the low end of the wage distribution (in ser-
vice and care occupations, in particular) in recent decades, facing stagnating
low wages in a time of eroding social provisions. In addition to the focus on
priviledged women among all women, the consideration of labor supply differ-
ences by gender alone also neglects important heterogeneity. If one cares about
inequality in general, then a focus on inequality solely along the dimension of
gender might obscure other inequalities.

Second, the massive increase of women’s participation in paid labor is the
flip-side of an increased marketization of all spheres of life, including social
spheres such as care of children and the elderly traditionally outside the reach of
markets. Fraser (2013) argues that we should aim for a third alternative beyond
(i) a traditional division of roles with women in charge of unpaid care-work and
dependent on men’s wage incomes, but also beyond (ii) a complete marketization
of all spheres of life with its consequences for inequality, uncertainty, and erosion
of social bonds. Such a third alternative would involve an equal role of men and
women in care work organized in ways outside the anonymous market.



Chapter 4

Discrimination –
Experiments

Economic chances are very unequally distributed along dimensions such as race
and gender. Why is this so? There are many channels through which such in-
equalities might be created. These include early childhood influences, different
neighborhoods of growing up, different access to and quality of primary, middle,
and high school education, the creation of aspirations, different access to and
treatment in higher education, different chances of being hired when applying
for a job, different wages conditional on being hired, different chances of being
promoted or fired in a given job, differential treatment by customers or clients,
etc.

The channel of hiring might in turn be decomposed into several components.
What is the chance of being invited to an interview, and what is the chance of
being hired given an interview? How does the chance of being invited to an
interview depend on the neighborhood of residence, the high school attended,
or the (perceived) race and gender of an applicant? It is this very last question
that the paper by Bertrand and Mullainathan (2004), which we discuss next,
addresses. How does the chance of being invited to an interview depend on
perceived race, for otherwise identical CVs? You should keep in mind that this
is only one of many channels through which discrimination might affect labor
market outcomes.

This paper gives us occasion to review potential outcomes, causality, and ran-
domized experiments in the way they are conceptualized by empirical economists
today. This framework is useful for making precise (i) what we mean by race
“causing” lower/higher chances of being offered an interview, and (ii) how we
can learn about this causal effect.
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4.1 Potential outcomes and causal effects

Consider a treatment D, which can take one of two values, D = 0 or D = 1.3

In our application, D would be the implied race of the name on a given CV.
Denote by Yi the outcome of interest for CV i. In our application, this would
be whether a CV received a call to be invited for a job interview. In order to talk
about causality, we use the notion of potential outcomes. Potential outcomes
provide the answer to “what if” questions:

• Potential outcome Y 0
i :

Would CV i have received a callback if the race implied by the name on
it were 0?

• Potential outcome Y 1
i :

Would CV i have received a callback if the race implied by the name on
it were 1?

Observed outcomes are determined by the equation

Y = D · Y 1 + (1−D) · Y 0. (4.1)

It is not obvious at this point that potential outcomes are an empirically mean-
ingful idea. As we will see in section 4.2 below they are meaningful once we
introduce the notion of a controlled experiment.

With the notion of potential outcomes at hand, we can define the causal effect
or treatment effect for CV i as Y 1

i − Y 0
i . Correspondingly, we can define the

average causal effect or average treatment effect,

ATE = E[Y 1 − Y 0], (4.2)

which averages the causal effect over the population of interest.

Given this formalism, we can also state the fundamental problem of
causal inference:

We never observe both Y 0 and Y 1 at the same time!

One of the potential outcomes is always missing from the data. Which treatment
D was assigned determines which of the two potential outcomes we observe (re-
call that Y = D · Y 1 + (1−D) · Y 0).

Closely related is the selection problem: Simply comparing the average
outcomes of those who got D = 1 and those who got D = 0 in general tells us
nothing about causal effects. The reason is that the distribution of Y 1 among

3The language used to talk about causality by applied economists these days has its roots
in biostatistics and medical trials, where D = 0/1 corresponds to placebo/actual treatment,
hence the terminology of “treatments” and “treatment effects.”
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those withD = 1 need not be the same as the distribution of Y 1 among everyone,
similarly for Y 0. It might, for instance, be the case that the CVs with “black”
names have higher educational qualifications on average than those with “white”
names, so that their chances of receiving a callback are higher no matter what
the name on the CV is. Making the same point formally, we get that in general

E[Y |D = 1] = E[Y 1|D = 1] 6= E[Y 1]

E[Y |D = 0] = E[Y 0|D = 0] 6= E[Y 0]

E[Y |D = 1]− E[Y |D = 0] 6= E[Y 1 − Y 0] = ATE. (4.3)

4.2 (Randomized) controlled experiments

The selection problem arises because potential outcomes and treatment are not
statistically independent. There is one way to ensure that they actually are:
by assigning treatment in a controlled way in an experiment, possibly using
randomization. This guarantees that there is no selection, i.e.

(Y 0, Y 1) ⊥ D.

In this case, the selection problem is solved and

E[Y |D = 1] = E[Y 1|D = 1] = E[Y 1]

E[Y |D = 0] = E[Y 0|D = 0] = E[Y 0]

E[Y |D = 1]− E[Y |D = 0] = E[Y 1 − Y 0] = ATE. (4.4)

The statistical independence ensures that, when comparing averages for the
treatment and control group, we actually compare “apples with apples.” Note
how this idea of controlled experiments gives empirical content to the “meta-
physical” notion of potential outcomes!

In Bertrand and Mullainathan (2004), for instance, statistically “white” or
“black” names were randomly assigned to given resumes which were sent out
as job applications. This allows one to estimate the causal effect of race on
the likelihood of getting invited to a job interview by simply comparing means.
They actually used a design that was slightly more complicated than simple
randomization: for each job-opening they submitted two (or four) randomly
chosen CVs, and out of those one (or two) were randomly assigned a “black” /
“white” name.

4.3 Estimation and t-tests

So far we have talked about expectations, that is population averages, for the
treatment and control groups. We can easily construct estimators by replacing
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expectations with sample averages in equation (4.4). Consider a randomized
trial with N individuals. Suppose that the estimand of interest is ATE:

ATE = E[Y1 − Y0] = E[Y |D = 1]− E[Y |D = 0].

Replacing the conditional expectation E[Y |D = 1] by its sample analog, the
conditional mean Y 1, and similarly for E[Y |D = 0], we construct an estimator:

α̂ = Y 1 − Y 0,

where

Y 1 =

∑
Yi ·Di∑
Di

=
1

N1

∑
Di=1

Yi

Y 0 =

∑
Yi · (1−Di)∑

(1−Di)
=

1

N0

∑
Di=0

Yi (4.5)

with N1 =
∑
iDi and N0 = N −N1. As you can easily show, α̂ is an unbiased

estimator of the ATE,
E[α̂] = ATE.

We not only want to get a point-estimate of the average treatment effect, we
also want to calculate a range of likely values, to assess whether our estimates
are just the result of chance or reflect some true causal effects. This can be done
using the t-statistic, which is defined as

t =
α̂− αATE

σ̂α
, (4.6)

where

σ̂α =

√
σ̂2
1

N1
+
σ̂2
0

N0

and

σ̂2
1 =

1

N1 − 1

∑
Di=1

(Yi − Y 1)2.

σ̂2
0 is analogously defined. The t-statistic is approximately standard normal dis-

tributed (for samples of a reasonable size),

t ∼approx N(0, 1).

We get a range of plausible values – a 95% confidence interval – by calculating
the interval

CI = [α̂− 1.96 · σ̂α, α̂+ 1.96 · σ̂α] . (4.7)

As an exercise, try to show that

P (α ∈ CI) ≈ 0.95.

Note that in this expression α is fixed, while CI is random!
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4.4 Matlab exercises

Write code which performs the following:

1. Generate n pairs of potential outcomes Y 1
i , Y

0
i which are just independent

draws from the standard normal distribution. What is the ATE for this
data generating process?

2. Generate D = 1(Y 1
i > Y 0

i ), and the corresponding Y based on equation
(6.4). Calculate Y 1 − Y 0

3. Repeat 2, but with D = 1(Y 1
i ≤ Y 0

i ).

4. Repeat 2, but with D independent Bernoulli 0.5 draws.

5. Using the data from 4, calculate a 0.95 confidence interval for the ATE.

Matlab commands which you might find useful:

randn
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Unions – Distributional
decompositions

Suppose we are interested in the effect of declining unionization on the dis-
tribution of wages. One might be tempted to simply compare the distribution
of wages of union- and non-union members in order to learn about this effect.
This is problematic, however, since these two groups might be quite different
in terms of their distribution of age, education, gender, ethnicity, sector of the
economy, state of residence, etc. A better approach would thus compare people
who look similar along all these dimensions and differ only in terms of their
union membership. This is the basic idea behind distributional decompositions,
as pioneered by DiNardo et al. (1996), underlying the discussion in Fortin and
Lemieux (1997), and reviewed in Firpo et al. (2011). Distributional decomposi-
tions provide the answer to hypothetical questions such as the following: what
if (i) the distribution of demographic covariates (age, gender,...) had stayed the
same, (ii) the distribution of wages given demographics and union membership
status had stayed the same, but (iii) we consider actual historical changes of
union membership for different demographic groups – how, in this hypothetical
scenario, would the distribution of wages have changed? Intuitively, such distri-
butional decompositions provide an answer to the question: To what extent is
de-unionization responsible for the rise in inequality?

5.1 Setup

Suppose we observe repeated cross-sections with i.i.d. draws from the time
t distributions P t of the variables (Y,D,X). Here X denotes covariates such
as age, education, and location. As in chapter 4, D is a binary “treatment”
variable such as union membership. The variable Y denotes an outcome such
as real income.

We are interested in isolating the effect of historical changes in the prevalence
of union membership D on the distribution P (Y ) of incomes Y , and in the effect

26
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of these historical changes on statistics of the income distribution, ν(P (Y )).
Possible choices for the statistics ν include the mean, the variance, the share
below the poverty line, quantiles or the Gini coefficient.

Let P 1(Y,D,X) in particular denote the joint distribution of (Y,D,X) in
period 1 (the year at the end of the historical period which we are considering),
and P 0(Y,D,X) the corresponding distribution in period 0 (the year at the
beginning of the historical period). Our goal is to identify the counterfactual
distribution P ∗ of Y in which the effect of changing D is “undone,” while
holding constant the current (period 1) distribution of covariates X as well as
the distribution of income Y given X and D. The change from P ∗ to P 1 will
be interpreted as the causal effect of changing D on the income distribution.
Formally, define P ∗ as

P ∗(Y ≤ y) :=

∫
X,D

P 1(Y ≤ y|X,D)P 0(D|X)P 1(X)dDdX. (5.1)

This expression asks us to consider the following scenario: take the share P 1(X)
in the population of period 1 of 40 year old women with a high school degree
living in the Midwest as given, and similarly for all other demographic groups.
For each of these groups, however, suppose that their prevalence of union mem-
bership was the same as in period 0, P 0(D|X). Consider finally the distribution
of incomes for each demographic group and each union-membership status of
period 1, again, P 1(Y ≤ y|X,D). Putting all groups together (formally: inte-
grating out the distributions of X and D), we get the counterfactual income
distribution P ∗(Y ≤ y).

5.2 Reweighting

We can rewrite the distribution P ∗ as defined in equation (5.1)in a useful way as
follows. First, multiply and divide the integrand by P 1(D|X). Second, rewrite
the probability P 1(Y ≤ y|X,D) as an expectation E1[1(Y ≤ y)|X,D]. Third,
give the fraction P 0(D|X)/P 1(D|X) a new name, θ(D,X). Finally, pull θ into
the conditional expectation, and use the “law of iterated expectations” to get
an unconditional expectation. Executing these steps yields

P ∗(Y ≤ y) =

∫
X,D

P 1(Y ≤ y|X,D)
P 0(D|X)

P 1(D|X)
P 1(D|X)P 1(X)dDdX

=

∫
X,D

E1[1(Y ≤ y)|X,D]θ(D,X)P 1(D|X)P 1(X)dDdX

= E1[E1[1(Y ≤ y) · θ(D,X)|X,D]]

= E1 [1(Y ≤ y) · θ(D,X)] , (5.2)

where

θ(D,X) :=
P 0(D|X)

P 1(D|X)
. (5.3)
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In the exercises, you will be asked to do these calculations in some simple exam-
ples, to see that nothing very complicated is going on. Equation 5.2 states that
P ∗ is a reweighted version of the current distribution, P 1. Any counter-
factual distributional characteristic ν of P ∗ can be estimated based on estimates
of P ∗. Estimating P ∗ requires estimation of the ratio in equation (5.3).

Consider an individual who is a union member, D = 1, and has covariate
values X = x. Suppose for this value of X it was more likely to be a union mem-
ber in period 1 than in period 0. This implies that θ(X,D) > 1 for this person
– we should upweight that person’s income to get the counterfactual income
distribution P ∗, where union membership probabilities are assumed not to have
changed over time. Consider another individual, who is also a union member,
of a demographic group X = x for which union membership did increase over
time. For this individual, equation 5.2 tells us to downweight her income to get
the counterfactual distribution.

5.3 Causal interpretation

Our definition and discussion of counterfactual distributions was purely statis-
tical, and did not make any reference to potential outcomes or causality. The
counterfactual distribution P ∗ can however be interpreted causally under an
assumption of conditional independence. Denote Y d the potential outcome (e.g.
wage, or income) of a person with treatment status D = d; this is just the same
kind of potential outcome which we encountered in chapter 4. In chapter 4 we
showed that differences in means can be interpreted as average treatment ef-
fects if treatment is independent of potential outcomes. Something slightly more
complicated works in the present context. Assume that treatment and potential
outcomes are independent conditional on X, that is

Y d ⊥ D|X ∀ d. (5.4)

Under this assumption

P (Y |D = d,X = x) = P (Y d|X = x), (5.5)

and the conditional distribution P (Y |D = d,X = x) does not change as
the probability of treatment assignment P (D = d|X) is changed, for instance
through de-unionization. Under the conditional independence assumption,
we can therefore interpret P ∗ as the counterfactual that would actually pre-
vail if union-membership probabilities P (D = d|X) had not changed over time.

5.4 Estimation

Implementing an estimator of ν(P ∗) based on equation (5.2) involves two steps.
First, we need to estimate the weight function θ. Second, we need to calculate
ν for the distribution P 1 reweighted by the estimated θ.
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In order to estimate θ, we need to estimate the ratio between P 1(D|X) and
P 0(D|X), corresponding to the change in the prevalence of D within demo-
graphic groups defined by X. Suppose first that X takes on only finitely many
values x. Then we can directly estimate these conditional probabilities by the
corresponding population shares in our sample,

θ̂ =
P 0
n(D|X)

P 1
n(D|X)

=
P 0
n(D,X)

P 1
n(D,X)

· P
1
n(X)

P 0
n(X)

, (5.6)

where we use the subscript n to denote sample shares.
If X takes on many values, or has continuous components, we can not do this

anymore. In that case, however, we can use a logit model for the distribution of
D given X, with parameters βt changing over time:

P t(D = 1|X;βt) =
exp(X · βt)

1 + exp(X · βt)
. (5.7)

Based on estimates of the parameters βt, we can estimate the weights θ by

θ̂ =
P̂ 0(D|X)

P̂ 1(D|X)
=

exp(X · β̂0)

1 + exp(X · β̂0)
· 1 + exp(X · β̂1)

exp(X · β̂1)
. (5.8)

The parameters β can be estimated using maximum likelihood, similarly to the
estimators for the Pareto parameter that we came up with in chapter 2:

β̂t = argmax
β

nt∏
i=1

P t(Di|Xi;β) = argmax
β

nt∏
i=1

exp(Di ·Xi · β)

1 + exp(Xi · β)
, (5.9)

where the product is taken over all time t observations. Implementations of this
logit estimator are readily available in most statistical software packages.

5.5 Matlab exercises

1. Suppose X can take on 4 values, depending on an individual’s gender and
on whether he/she graduated from college. Suppose you have matrices A1

and A0 completely describing P 1(X,D) and P 0(X,D), as well as matrices
B1 and B0 describing Et[Y |X,D]. What is the dimension of these matri-
ces? Pick some numbers for these matrices At and Bt (be careful to make
sure that probabilities add up to 1).

2. Write a Matlab script that calculates θ and E∗[Y ] based on the matrices
At and Bt. Where possible, do calculations by matrix multiplication rather
than using loops.

3. Next, generate random samples from the distributions P t(Y,D,X) under
the same assumptions, that is with distributions of X and D determined
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by some matrices A and B that you picked, and for values Y drawn from
the distributions

Y |X,D ∼ N(Et[Y |X,D], 1).

Export a dataset containing draws of the variables t, Y,X,D, and give it
to a classmate.

4. Use the data you got from your classmate to estimate E∗[Y ], building on
the code you wrote for 1. Compare your estimate to the number they got
in step one based on the true matrices A and B.
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Migration, technology,
education – Estimating
labor demand

This section discusses the approach taken by the empirical literature on labor
demand. Applications which we will discuss in class include Card (2009) on the
impact of international migration, Boustan (2009) on domestic migration and
racial inequality, and Autor et al. (2008) on the impact of technical change.

6.1 Backwards-engineering wage regressions

This literature aims to explore the impact of the relative labor supply of different
groups on relative wages. Papers in this literature estimate regressions of the
form

log

(
wj
wj′

)
= controls+ β · log

(
Nj
Nj′

)
+ εj,j′ , (6.1)

where j and j′ are different “types” of labor, w denotes wages, N denotes
labor supply, the controls account for some factors other than labor supply
(including trends in technology), β is interpreted as the inverse of the elasticity
of substitution, and ε captures all other (unobserved) factors affecting relative
wages. The models invoked in this literature are justifications of this regression.

We will start with a very general model, and get increasingly specific, until
we end up with a model rationalizing such regressions. This approach allows us
to discuss the assumptions invoked along the way, as well as their implications.
We begin with a general demand function, mapping labor supply of various
groups, in conjunction with unobserved factors, into the wages of these groups.
We then consider the neoclassical theory of wage determination, which
assumes that wages correspond to marginal productivities with respect to some
aggregate production function. We finally consider a set of specific parametric
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production functions, including the “CES-production function” and some of
its variants.

6.2 General labor demand

Suppose there are j = 1, . . . , J types of labor. As for “types,” think in particular
of the level of education; however, types might also depend on age, gender and
country of origin. For each type j, denote by Nj the number of people of that
type which are employed in a given labor market. We might think of a labor
market as a city, as a state, or as a nation. Denote by

N = (N1, . . . , NJ)

the labor supply of each type in this labor market, and by

w = (w1, . . . , wJ)

the (average) wage of each type.

As N changes, whether through immigration, demographic shifts, or edu-
cation, this has consequences for wages. We can denote the counterfactual
wages that would prevail if labor supply were equal to N (holding all else
equal) by

w = w(N, ε). (6.2)

Here “all else” is captured by ε, denoting all other factors influencing wages
besides labor supply.

We would like to learn about the function w, so that we can tell to what
extent historical changes in N are responsible for changes in wage inequality.
If changes in labor supply are random, that is independent of ε, this is in
principle possible by regressing w on N . The problem is that we usually have
only a few observations, but potentially many variables (N1, . . . , NJ) on which
to regress, which makes it hard to get precise estimates. The literature therefore
imposes restrictions on the function w(N, ε), which are justified by theoretical
models.

If changes in N are not random, which is likely the case if the labor markets
considered are cities, then we additionally need to find valid instruments for
N . We will get back to this point below.

6.3 Demand based on a production function

How are wages determined? Neoclassical theory assumes that there is an ag-
gregate production function

y = f(N1, . . . , NJ), (6.3)
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which determines the amount of output y (in US$ terms) that can be achieved
for a given level of inputs of different types of labor. Implicit in this formula-
tion is that the supply of capital and demand for products have already been
“concentrated out.”4

Neoclassical theory additionally assumes that wages are determined by the
marginal productivity of different types of labor, that is by the amount
output would be increased by increasing inputs by one unit:

wj =
∂f(N1, . . . , NJ)

∂Nj
(6.4)

This theory is justified by assuming that employers are profit maximizing, and
that labor markets clear.

There are many reasons to be skeptical about this theory:

• What if effort or the qualification of applicants depend on offered wages?
Then employers would be ill-advised to pay just the marginal productivity.

• Who even knows what the marginal productivity of a given type of labor
is?

• What about social norms for remuneration, and what about collective
bargaining?

• What if employers face upward sloping labor supply, maybe because of
search frictions? Then they would depress wages below marginal produc-
tivity, acting as a “monopsony.”

• What if labor markets don’t clear, for whatever reason?

That said, as far as the function w(N, ε) is concerned, the assumption that
wages are determined by the marginal productivity of types of labor with respect
to some aggregate production function does not impose much of a restriction.
Its only implication for the behavior of the demand function is that it implies
the symmetry condition

∂wj
∂Nj′

=
∂2f

∂Nj′∂Nj
=

∂2f

∂Nj∂Nj′
=
∂wj′

∂Nj
. (6.5)

This symmetry is sufficient and necessary for the existence of a function f such
that equation (6.4) holds.

Usually it is also assumed that the aggregate production function exhibits
constant returns to scale, so that

f(αN1, . . . , αNJ) = α · f(N1, . . . , NJ) (6.6)

4Concentrating out a variable means to plug in its maximizing value given the other
variables. For instance, concentrating out K from F (N,K) gives the function f(N) :=
maxK F (N,K).
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for all α > 0. This says that if all inputs are increased by a factor α, then so is
aggregate output. Note that constant returns to scale in terms of labor inputs
implicitly requires an infinitely elastic supply of capital and other factors, as
well as an infinitely elastic demand for final products.

Constant returns to scale implies that wages only depend on relative supplies
of labor. To see this, differentiate both sides of equation (6.6) with respect to
Nj , which yields

α · ∂jf(αN1, . . . , αNJ) = α · ∂jf(N1, . . . , NJ),

where I use ∂jf to denote the partial derivative of f with respect to its jth
argument. This in turn implies

wj(αN1, . . . , αNJ , ε) = wj(N1, . . . , NJ , ε). (6.7)

6.4 The CES production function

Empirical work often assumes a specific functional form for the aggregate pro-
duction function. The most common form is the “constant elasticity of substi-
tution” production function. This production function takes the form

y = f(N1, . . . , NJ) =

 J∑
j′=1

αj′N
ρ
j′

1/ρ

, (6.8)

where the αj and ρ are unknown parameters which we might try to estimate
from data. Assuming the marginal productivity theory of wages, equation (6.4),
we get

wj =
∂f(N1, . . . , NJ)

∂Nj
=

 J∑
j′=1

αj′N
ρ
j′

1/ρ−1

· αj ·Nρ−1
j

= y1−ρ · αj ·Nρ−1
j . (6.9)

This implies that the relative wage between groups j and j′ is given by

wj
wj′

=
αj
αj′
·
(
Nj
Nj′

)ρ−1
Denote

σ =
1

ρ
− 1,

so that ρ− 1 = −1/σ. σ is called the elasticity of substitution. It describes
the slope of how relative wages depend on relative supply. This slope is constant
for the given production function, lending it the name “constant elasticity of
substitution.”
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In log terms, the relative wage can be written as

log

(
wj
wj′

)
= log

(
αj
αj′

)
− 1

σ
log

(
Nj
Nj′

)
. (6.10)

Substituting controls (including trends), as well as an unobserved residual ε, for

the term log
(
αj

αj′

)
, we get our initial regression specification.

6.5 Generalizations of the CES production func-
tion

The basic CES production function is fairly restrictive. The literature uses var-
ious generalizations, where each type of labor is considered to be an aggregate
of sub-types.

Generalization 1: Aggregate types
Assume that the J types of labor can be grouped into K aggregate types, where
type j belongs to aggregate type kj . Many papers assume that the produc-
tion function f is CES with respect to the supply Lk of these aggregate types.
Within them, different types are perfectly substitutable, but might have differ-
ent marginal productivities (different θj). Formally,

y = f(N1, . . . , NJ) =

(
K∑
k=1

αkL
ρ
k

)1/ρ

, (6.11)

Lk =
∑
j:kj=k

θjNj .

We get wages, relative wages, and their logarithm to equal

wj =
∂f(N1, . . . , NJ)

∂Nj
=

(
K∑
k=1

αkL
ρ
k

)1/ρ−1

· αkj · L
ρ−1
kj
· θj

= y1−ρ · αkj · L
ρ−1
kj
· θj

wj
wj′

=
θj
θj′
·
αkj
αkj′

·

(
Lkj
Lkj′

)ρ−1

log

(
wj
wj′

)
= log

(
αkj
αkj′

· θj
θj′

)
− 1

σ
log

(
Lkj
Lkj′

)
The relative wages of types j and j′ thus depend only on the relative supply of
aggregate types kj and kj′ .

Generalization 2: Nested CES
As in generalization 1, assume that there areK aggregate types which are substi-
tutable with elasticity σ1. Within these aggregate types, however, the sub-types
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are not perfectly substitutable, but instead have an elasticity of substitution of
σ2. Formally,

y = f(N1, . . . , NJ) =

(
K∑
k=1

αkL
ρ1
k

)1/ρ1

Lk =

 ∑
j:kj=k

θjN
ρ2
j

1/ρ2

We get wages, relative wages, and their logarithm to equal

wj =
∂f(N1, . . . , NJ)

∂Nj
= y1−ρ1 · αkj · L

ρ1−ρ2
kj

· θj ·Nρ2−1

wj
wj′

=
θj
θj′
·
αkj
αkj′

·

(
Lkj
Lkj′

)ρ1−ρ2
·
(
Nj
Nj′

)ρ2−1
log

(
wj
wj′

)
= log

(
αkj
αkj′

· θj
θj′

)
+

(
1

σ2
− 1

σ1

)
log

(
Lkj
Lkj′

)
− 1

σ2
log

(
Nj
Nj′

)
The relative wages of j and j′ thus depend on both Lkj/Lkj′ and Nj/Nj′ .

6.6 Instruments

Contrary to what we have assumed so far, variation in labor supply might not
be random relative to other factors determining wages. We should especially
worry about this when comparing wages across cities. It might for instance be
the case that workers with a college degree migrate to cities where the returns
to a college degree are highest.

To take care of this endogeneity issue, Card (2009) proposes to instrument
changes of labor supply making clever use of prior migration patterns.5 The
idea is that new migrants tend to settle in the same cities as previous migrants
from the same source countries, while the amount of new migrants at the na-
tional level is arguably not affected by city-specific economic conditions. Suppose
for instance that prior migrants from country m happened to settle mostly in
Chicago and Los Angeles. If then some political or economic crisis in country
m compels a new set of people from m to leave their home country, Chicago
and Los Angeles will likely experience an increase in their labor force which is
unrelated to local economic conditions in these two cities.

Let us make this more formal, cf. (Card, 2009, p8). Let m index different
source countries for migrants, and let Mm denote the number of new migrants

5If you need to review instrumental variables, have a look at chapter 4 of Angrist
and Pischke (2010) or my lecture slides at http://scholar.harvard.edu/files/kasy/files/

appliedemxslides.zip.

http://scholar.harvard.edu/files/kasy/files/appliedemxslides.zip
http://scholar.harvard.edu/files/kasy/files/appliedemxslides.zip
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from country m arriving in a given time period. Let λm denote the share of prior
migrants from county m living in a given city i, and δm,j the share of migrants
from country m that are of type j. If new migrants from m have the exact same
settlement patterns as prior migrants, then we should see∑

m

λmMm

new migrants arriving in a given city. Given their distribution of types, this
would imply a growth of the population of workers of type j in the given city
by a factor

Zj =
1

Nj
·
∑
m

λmMmδm,j . (6.12)

This is the instrument for changes in logNj that Card proposes. For the relative
change of Nj and Nj′ we can use the instrument

Zj,j′ =
Zj
Zj′

.

This is a valid instrument if it satisfies the condition

E[Zj,j′ · εj,j′ ] = 0.

Under this condition, we can estimate β in equation (6.1) by

β̂ =
En[Zj,j′ · log (wj/wj′)]

En[Zj,j′ · log (Nj/Nj′)]
, (6.13)

where En denotes sample averages across cities.

6.7 Matlab exercises



Chapter 7

Intergenerational mobility –
Measurement error

In this chapter we are discussing the literature on intergenerational mobility as
reviewed in Black and Devereux (2011), and the important recent contribution
of Chetty et al. (2014).

To what extent does our parents’ economic situation determine our own
economic chances? And to what extent is “equality of opportunity” a reality?
This seemingly well-posed question is conceptually quite a bit trickier than it
might seem at first. To make this point, let us consider a number of different
objects. Each of these objects might be considered a measure of intergenerational
mobility.

1. Predictability of (log) child income in a given year (or a few years) using
(log) parent income in a given year (or a few years):

E[Yc,s|Yp,t]

This conditional expectation describes the average (log) of child income
in a given year, or at a given age, among all those children whose parents
received an income of Yp,t in a given (earlier) year.

Cov(Yp,t, Yc,s)

Var(Yp,t)

This fraction gives the slope of a linear approximation to the conditional
expectation in the previous display. This approximation is called the best
linear predictor. If income is measured in log terms, this slope describes
the percentage increase in average child income for a 1% increase in parent
income. This slope is the most common measure of intergenerational mo-
bility. Another variant of this measure uses ranks in the national income
distribution, instead of levels or logs.
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2. Predictability of (log) child lifetime income using (log) parent lifetime
income:

E[Y c|Y p]

This conditional expectation describes the average (log) of child lifetime
income,6 among all those children whose parents received a lifetime income
of Y p.

Cov(Y p, Y c)

Var(Y p)

As before, this fraction gives the slope of a linear approximation to the
conditional expectation in the previous display.

Measured income varies significantly over time, because of the life cycle
of earnings, because of transitory shocks, and because of measurement
error. Arguably we might be more interested in the relationship between
the lifetime incomes of parents and children, that is, in the relationship
between long-run average incomes. Lifetime income is in general more
strongly related between parents and children than short-run income. We
will discuss why in sections 7.1 and 7.2 below. The relationship between
lifetime incomes is often considered the actual object of interest of mobility
studies. Lifetime incomes are hard to observe, however, which is why short-
term incomes are studied more often.

3. Predictability using additional variables: But why stop there? Is it
not equally relevant how other factors such as parent education, location of
residence, etc. predict child outcomes? Philosophers such as Rawls argue
that features such as these, determined at birth and out of our control, are
“morally arbitrary” – they should not determine our chances in life. More
generally, we might be interested in knowing to what extent life outcomes
are predictable at birth. The more predictive factors we consider, the bet-
ter we will be able to predict child outcomes. This motivates consideration
of objects such as the following:

E[Y c|Y p, Xp,Wp]

This conditional expectation describes the average (log) of child lifetime
income, among all those children whose parents received a lifetime income
of Y p, who had education level Xp, location of residence Wp, etc.

Var((Y p, Xp,Wp))
−1 · Cov((Y p, Xp,Wp), Y c).

As before, this vector gives the slopes of a linear approximation to the
conditional expectation shown above.

4. The causal effect of parent lifetime income:

Y c = g(Y p, ε).

6This is also called “permanent income.”
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The structural function g describes the causal effect of parent income on
child income.7 If parent income is changed, it is assumed that the function
g and the set of unobserved factors ε do not change. Not all correlations
are causal. Child and parent income might be statistically related because
education is transmitted across generations, for instance, without there
being a causal effect of parent income. The causal effect of parent income
on their children is the subject of a more recent literature, usually using
instrumental variables; we will discuss this in section 7.4. We might, for
instance, care about this causal effect if we are interested in the effect of
redistributive taxation on the next generation.

5. The causal effect of additional variables:

Y c = h(Y p, Xp,Wp, ε
′)

The structural function h describes the causal effect of parent income,
education, location of residence, etc., on child income. As before, other
factors Xp,Wp might have a causal effect, in addition to the effect of
parental income Y p. We might for instance be interested in the effect of
current educational policy on future generations.

7.1 Classical measurement error and transitory
shocks

As mentioned, much of the literature on intergenerational income mobility is
interested in objects of the form

β :=
Cov(Y p, Y c)

Var(Y p)
, (7.1)

describing the predicted percentage increase in child lifetime income for
a 1% increase in parent lifetime income. A key concern is that this slope is
different than the slope we would get from a regression on short-run parental
income. To see why, suppose that

Yp,t = Y p + εp,t

Yc,s = Y c + εc,s, (7.2)

where

Cov(Y p, εp,t) = Cov(Y p, εc,s) = 0

Cov(Y c, εc,s) = Cov(Y c, εp,t) = 0

Cov(εp,t, εc,s) = 0. (7.3)

7Structural functions are an alternative, equivalent notation for the potential outcomes
which we learned about in chapter 4.
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These equations say that, for both parents and children, income in a given
year is equal to permanent income plus a shock ε of mean 0. The shocks might
either be due to transitory fluctuations in actual income, or due to measurement
error. These shocks are assumed to be uncorrelated with permanent incomes,
and with each other. This assumption holds true for what is called “classical
measurement error.”

Suppose we estimate the slope of a regression of short run incomes,

γ :=
Cov(Yp,t, Yc,s)

Var(Yp,t)
. (7.4)

How are the parameters β and γ related to each other? Let us start by looking
at the covariance in the numerator of γ:

Cov(Yp,t, Yc,s)

= Cov(Y p, Y c) + Cov(Y p, εc,s) + Cov(εp,t, Y c) + Cov(εp,t, εc,s)

= Cov(Y p, Y c).

All except the first of the covariance terms in the second line of this display
are zero by the assumptions we imposed on the measurement errors, that is by
equation (7.3). So we get the same covariance in the numerator for both β and
γ. What about the denominator?

Var(Yp,t) = Var(Y p) + 2 · Cov(εp,t, Y p) + Var(εp,t) = Var(Y p) + Var(εp,t),

and therefore

γ =
Var(Y p)

Var(Y p) + Var(εp,t)
· β. (7.5)

The short run coefficient γ is smaller than the long run coefficient β by a factor
which depend on the relative variance of measurement error (transitory shocks),
and lifetime income. This phenomenon is known as attenuation bias.

Note that, for this type of measurement error, only the error on the parent
side matters, while the variance of εc,s does not show up in the formula for the
attenuation bias!

7.2 Non-classical measurement error and the life-
time profile of earnings

In the last section we assumed that measurement error for both parents and
children is “classical,” that is, it has mean 0 and is independent of actual lifetime
earnings. That assumption might not be correct, especially when earnings are
measured early in life (say, before age 35). This is often the case for children,
who are not old enough in the available data-sets for us to observe their income
at a later point in life.
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The reason is that the profile of earnings over a lifetime is quite different
depending on the qualifications required for a particular occupation. The annual
earnings of those with higher lifetime earnings tend to rise more steeply with
experience relative to those with lower lifetime earnings.

For illustration, consider the following model: maintain the same assumption
as in the previous section, except that

Yc,s = Y c · (1 + α · (s− s)) + εc,s. (7.6)

This equation says that the earnings of children rise over time in a way that
is positively related to lifetime earnings, by a factor which is determined by
the parameter α > 0. The earnings of children are on average equal to lifetime
earnings at age s.

Under equation (7.6), we get

Cov(Yp,t, Yc,s)

= Cov(Y p, Y c · (1 + α · (s− s))) + Cov(Y p, εc,s)

+ Cov(εp,t, Y c · (1 + α · (s− s))) + Cov(εp,t, εc,s)

= (1 + α · (s− s)) · Cov(Y p, Y c),

so that

γ = (1 + α · (s− s)) · Var(Y p)

Var(Y p) + Var(εp,t)
· β.

Suppose, for simplicity, that measurement error for parents’ income was not an
issue, i.e. Var(εp,t) = 0. In that case

γ = (1 + α · (s− s)) · β. (7.7)

If we observe children at age s, there is no problem. If we observe them at an
age s younger than s, however, there is a downward bias in γ relative to β, since
(1 + α · (s− s)) < 1 in this case.

7.3 Remedies

It is important to recognize that the reasons for the downward bias are different
between sections 7.1 and 7.2, so that the remedies in either case are different, as
well. In the case of classical measurement error, as in section 7.1, the problem
is that we over-estimate the inequality of lifetime incomes on the parent
side. Since part of the estimated inequality is simply due to measurement errors
and transitory shocks, this part of inequality is not inherited by children, and
we conclude erroneously that inequality of incomes is transmitted to a lesser
extent than it actually is. In section 7.2, the problem is related to the fact that
we under-estimate the inequality of the lifetime incomes of children. This
again implies that regressions of short-term incomes suggest that parental in-
equality of incomes is transmitted to a lesser extent than it actually is.
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There are a number of remedies for the problem of classical measure-
ment error on the parent side:

1. Use better data: When we are interested in earnings, administrative
data (for instance from the IRS, or from social security administrations
in other countries) tend to be more reliable than self-reported earnings in
surveys, that is, they have measurement error with smaller variance.

This strategy of course only takes care of measurement error, but not of
transitory shocks to actual earnings

2. Average earnings over several years: Suppose for illustration that
shocks are uncorrelated across years and have constant variance. Then

1

k

t0+k∑
t=t0

Yp,t = Y p +
1

k

t0+k∑
t=t0

εp,t,

and

Var

(
1

k

t0+k∑
t=t0

εp,t

)
=

1

k2

t0+k∑
t=t0

Var(εp,t) =
1

k
Var(εp,t0).

Averaging earnings over k years thus reduces the variance of measurement
error by a factor 1/k, and correspondingly reduces the attenuation bias
from a factor of 1/

(
1 + Var(εp,t)/Var(Y p)

)
to a factor of

1

1 + 1
k
Var(εp,t)

Var(Y p)

. (7.8)

3. Assessing the reliability of the data: Suppose we have two measure-
ments Yp,t1 and Yp,t2 of parental income with independent measurement
error. Then the correlation of these two variables is equal to

corr(Yp,t1 , Yp,t2) =
Cov(Yp,t1 , Yp,t2)√

Var(Yp,t1) ·Var(Yp,t2)
=

Var(Y p)

Var(Y p) + Var(εp,t)
.

(7.9)
But this factor is exactly the same as the one describing the attenuation
bias from β to γ.

The situation is more complicated for non-classical measurement error, for
instance of the form discussed in section 7.2. The main remedy for measurement
error of this kind is to use child income measured at a later point in life,
when the dispersion of annual earnings more closely resembles the dispersion
of lifetime earnings. Another remedy would be to “move the goalpost,” and
to focus on other outcomes that are determined earlier in life. The leading
example would be educational attainment, which is usually well determined by
the time children have reached their late 20s.
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7.4 The causal effect of parental income; instru-
ments

So far, we considered regressions of short-term incomes (the first of the objects
introduced at the beginning of this chapter), regressions of lifetime incomes (the
second of the objects), and their relationship. We shall now turn to the causal
effect of parental income (the fourth object we introduced), and how it relates
to regressions of (lifetime) income.

7.5 Matlab exercises



Chapter 8

The distributional effect of
changing prices –
Equivalent variation

So far, these lecture notes have considered (potentially) observable outcomes
– income and wealth, earnings and wages. These outcomes all measure different
things. Depending on what we are ultimately interested in, consideration of one
or the other of these outcomes might be the most relevant object to study.

Suppose now that we are ultimately interested in some notion of welfare.8

How could we possibly measure welfare? Do any of the observable outcomes
considered so far correspond to welfare? Economists like to think of welfare in
terms of realized utility. Utility, however, is not observable. It is therefore
not obvious whether “utility” provides a meaningful concept of welfare at all.

Rather than attempting to directly measure the level of utility, we might
change the question. Instead of the level we might try to measure changes in
utility, induced by a given change in prices, wages, taxes, or some other policy.
And instead of measuring changes in utility itself, we might try to measure how
these changes in utility compare to changes that would be induced by a simple
transfer of money. We have thus shifted the question in two ways:

1. Changes in utility, rather than levels of utility.

2. Transfers of money that would induce similar changes of utility, rather
than changes in utility itself.

It turns out that, when we modify the question in this way, then it has a well-
defined and surprisingly simple answer – at least if we assume that individuals

8Great discussions on various notions of welfare and how it might be measured can be
found in Sen (1995) and Roemer (1998).
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are utility maximizing. In this chapter, we will derive this answer for the case
of changing prices of consumer goods. We will show that a change dpj of the
price pj of good j has the same effect on utility of individual i as a reduction of
income by dpj · xj,i, where xj,i is the individual’s current consumption of good
j. In the next chapter, we will use the same idea to talk about redistributive
taxation.

8.1 The consumer problem

Standard economic theory assumes that individuals choose their consumption
to maximize their utility. They do so subject to the constraint that their
expenses do not exceed their income. Denote individuals by i. Assume there are
two consumption goods, good 1 and good 2, with prices p1 and p2. Individual i
has an income yi and chooses her consumption xi = (x1,i, x2,i) to maximize her
utility ui. Formally,

xi(p, yi) = argmax
x

ui(x) (8.1)

subject to the budget constraint

x1,i · p1 + x2,i · p2 ≤ yi. (8.2)

The utility vi that a household can achieve for given prices and income is equal
to the utility of the chosen consumption bundle,

vi(p, yi) = ui(xi(p, yi)). (8.3)

We can rewrite the individual’s budget constraint (assuming that it holds
with equality) to express consumption of good 1 in terms of the other variables,

x1,i = 1
p1

(yi − x2,i · p2)

We can next substitute the budget constraint, rewritten in this form, into the
optimization problem, to get an unconstrained problem:

x2,i = argmax
x2

ui

(
1
p1

(yi − x2 · p2), x2

)
.

The solution to this unconstrained problem has to satisfy the first order con-
dition

∂

∂x2

[
ui

(
1
p1

(yi − x2 · p2), x2

)]
= 0,

which we can rewrite as

∂x1
ui(xi)

p1
=
∂x2

ui(xi)

p2
. (8.4)

This first order condition is sometimes interpreted as saying that the ratio of
marginal benefits to marginal costs has to be the same for both goods.
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8.2 Changing prices

When the price of good 2 changes, how does that affect the welfare of different
individuals? Formally, what is ∂p2vi(p, yi)?

To make the notation less cluttered, we drop the subscript i from the follow-
ing derivation. You should not forget that everything is different for different
individuals, though. We can calculate the welfare effect of changing p2 us-
ing (i) the chain rule, (ii) substituting for ∂p2x1 using the rewritten budget
constraint, (iii) rearranging, and (iv) using the first order condition of utility
maximization:

∂p2v(p, y) = ∂x1
u(x) · ∂p2x1 + ∂x2

u(x) · ∂p2x2

= ∂x1
u(x) ·

(
−x2
p1
− ∂p2x2

p2
p1

)
+ ∂x2

u(x) · ∂p2x2

= −∂x1u(x) · x2
p1

+

(
−∂x1u(x)

p1
+
∂x2u(x)

p2

)
· p2 · ∂p2x2

= −x2 ·
∂x1

u(x)

p1
.

Make sure you understand each step of this proof! The most important step in
this derivation is the last one: because we assume that individuals maximize
utility, the first order condition holds. And because the first order condition
holds, we can drop the term involving ∂p2x2. As far as their welfare is con-
cerned, it does not really matter how individuals react to price changes!9

We can do a completely similar calculation to get the effect of increasing
income y:

∂yv(p, y) = ∂x1
u(x) · ∂yx1 + ∂x2

u(x) · ∂yx2

= ∂x1u(x) ·
(
− 1

p1
− ∂yx2

p2
p1

)
+ ∂x2u(x) · ∂yx2

= −∂x1
u(x)

p1
+

(
−∂x1

u(x)

p1
+
∂x2

u(x)

p2

)
· p2 · ∂p2x2

= −∂x1
u(x)

p1
.

As before: as far as their welfare is concerned, it does not really matter how
individuals react to income changes. Now we are almost done. We can calculate
how the welfare effect of a price change dp2 compares to the welfare effect of
a change in income. This is called equivalent variation, we abbreviate it by

9In fact, there is a deep sense in which this is the only implication of “welfarism,” where
welfarism is the idea of evaluating household welfare based on their realized utility. This is
sometimes also called utilitarianism.



48 Chapter 8. Equivalent variation

EV :

EV =
∂p2v(p, y) · dp2
∂yv(p, y)

=
−x2 ·

∂x1
u(x)

p1
· dp2

−∂x1u(x)

p1

= −x2 · dp2. (8.5)

Increasing the price of good 2 by one dollar has the same effect on individual i as
decreasing her income by −x2,i dollars, where x2,i is the amount she consumes
of good 2.

8.3 Generalizing this result

So far, we have considered a fairly special case. Only the price of good 2 changes,
there are only two goods, and individuals are only consumers. All of these are
easily generalized:

• There is nothing special about good 2, so we get the same result for good
1:

EV =
∂p1vi(p, yi) · dp1
∂yvi(p, yi)

= −x1,i · dp1.

• There is nothing special about the case of 2 goods. We might just as
well assume that there are J goods, and do the exact same proof. (This
would be a good exercise!). When the price of good j changes by dpj for
j = 1 . . . J , this implies a welfare change of

EV =
dvi(p, yi)

∂yvi(p, yi)
= −

∑
j

xj,i · dpj .

• We also don’t need to assume that individuals are only consumers. Suppose
they start out with an endowment

ωi = (ω1,i, . . . , ωJ,i),

which they can either consume or sell on the market. Their net consump-
tion of good j is equal to xj,1 − ωj,i. In such a setting, we get

EV =
dvi(p, yi)

∂yvi(p, yi)
=
∑
j

(ωj,i − xj,i) · dpj .

These formulas are the basis of so-called Paasche price indices. They say that
we should evaluate price changes by weighting them with an appropriate con-
sumption basket, corresponding to the amounts consumed of each good. This
formula gives a different price index for every individual. To evaluate the distri-
butional impact of price changes, all we have to do is to collect information on
every individual’s net consumption of various goods. Once we have estimates of
the welfare changes (in dollar terms) for each individual, we can plot how these
welfare changes relate to income or various demographic factors, for instance
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location of residence.

In fact, the same logic carries us much further. We won’t prove it here, but
we get similar evaluations of the welfare effect of price changes if:

• Individuals also face discrete choices, rather than just continuous ones, as
we have assumed so far.

• Individuals make intertemporal choices, that is choices over time.

• Individuals also face constraints other than their budget constraint, such
as informational constraints, credit constraints, etc.

In all of these cases we can still compare the welfare effect of changing prices (or
wages, or interest rates, for that matter), to the welfare effect that a lump-sum
transfer of money would have. And in all of these cases we derive this welfare
effect by essentially ignoring any behavioral responses to a change in prices.

8.4 Matlab exercises



Chapter 9

Redistributive taxation –
optimal tax theory

One of the primary policy tools to address economic inequality is redistributive
taxation. Redistributive taxation is, obviously, a very contested field of policy.
There is a field of economics that aims to derive “optimal taxes,” including
optimal redistributive income taxes, inheritance taxes, etc. We will discuss some
of the basic ideas of this field in the present chapter. A key reference for our
discussion is Saez (2001).

Recall that we discussed the distributional impact of changes in prices on in-
dividuals’ welfare in the previous chapter. What we will do next is very similar,
with changing taxes taking the place of changing prices. Additional complica-
tions arise because we need to talk about government revenues, and about how
to compare the welfare of different people.

There are many different kinds of taxes in practice, including value-added
taxes, income taxes, wealth taxes, inheritance taxes, etc. The framework we
discuss applies, in principle, to the analysis of all of these.

9.1 General principles

There are some general principles in common to the analysis of “optimal taxes”
for different kinds of taxes:

1. Marginal policy changes:
The theory of optimal taxation is concerned with finding policies that
maximize some notion of social welfare. As usual, we can characterize max-
imizers by first order conditions. At the optimum, any (feasible) marginal
policy change has no effect on social welfare. We thus need to understand
the effect of marginal policy changes on welfare.

2. Envelope theorem:
The first key ingredient to understand such marginal changes is the result

50
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we proved in the previous chapter: If we (i) measure individual welfare
by realized utility and (ii) assume that individuals are maximizing util-
ity subject to the constraints they face, then we can ignore the effect of
behavioral responses to policy changes. This result is called the envelope
theorem.

3. Welfare weights:
The envelope theorem allows us to evaluate the effect of a policy change
on any individual, in terms of the amount of dollars that we could equiv-
alently have given or taken from them. But how do we get from there to
social welfare? We have to somehow decide how much we care about an
additional dollar for a rich person versus an additional dollar for a poor
person, or an additional dollar for a disabled person versus for an able-
bodied person, etc. It is important to recognize that there is no “scientific”
way to make this decision! In particular, it is meaningless from the point of
view of economic theory to sum up dollars across people. The decision how
to make these trade-offs depends on our moral judgments, and in practice,
on the outcome of distributional struggles between different groups.

If we have settled on how to make these trade-offs between different people,
we can express them in terms of welfare weights ωi that measure the value
we attach to an additional dollar for person i.

4. Government budget constraint:
When we think about changing taxes, we also have to think about the
impact of these changes on government revenues. One way to do this is
to only consider tax changes that do not change total revenues. Another
way, which is mathematically equivalent, assumes that there is a marginal
value λ of additional government revenues, where λ is on the same scale
as the welfare weights ωi. This is the approach we will take.

When we are considering the effect of tax changes on government revenues,
we can not ignore behavioral responses to these changes. Usually, the tax
base, and thereby government revenues, are affected by such behavioral
responses. Rich individuals might for instance respond to a tax increase
by exploiting additional loopholes in the tax code or by tax evasion.

5. Effects on prices:
When thinking about the effect of changing some tax, we also have to
think about how prices and wages are affected by this change. This can
be complicated, and is an empirical matter. To simplify our exposition,
we will assume in this chapter that prices and wages do not change in
response to policy changes.

Let us now state these principles in a more formal way. Suppose we are
changing a tax parameter α, individual welfare for person i is given by vi,
and government revenues are given by g. A choice of α is optimal if

∂αSWF = 0.
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Adding up all components of social welfare, and using the appropriate welfare
weights, we get

∂αSWF =
∑
i

ωi · ∂αvi + λ · ∂αg. (9.1)

The envelope theorem tells us that ∂αvi can be calculated as the effect
on the individual’s budget constraint, holding behavior constant.

The effect on government revenue ∂αg has two components, the direct
effect (holding behavior fixed), and the behavioral effect of individuals re-
acting to the policy change.

9.2 Linear income tax

Let us go through these terms in a more specific context, where individuals
choose their labor supply l and consumption x subject to a linear income tax
t = α + β · l · w, where l denotes labor supply and w denotes the wage. Real
income taxes are rarely linear, but this assumption allows us to considerably
simplify our discussion. Different individuals have different utility functions and
different wages. In generalization of the setup we considered in section 8.1,
assume individuals solve

(xi, li) = argmax
x

ui(x, l) (9.2)

subject to the budget constraint

xi · p ≤ −α+ wi · li · (1− β). (9.3)

Note that the choice variables xi and li are functions of prices p, wages wi, and
the tax parameters α and β. Realized utility, as before is given by

vi = ui(xi, li).

By exactly the same arguments as in chapter 8, we get that the envelope
theorem in this setting implies that the equivalent variation of marginally
increasing α, and of marginally increasing β, is given by

EVα = −1

EVβ = −wi · li.

As an exercise, try to prove this, going step by step through the arguments of
chapter 8.

What about government revenues? Effects on these are given by the sum
of a mechanical and a behavioral component,

∂αg = N + β ·
∑
i

wi · ∂αli

∂βg =
∑
i

wi · li + β ·
∑
i

wi · ∂βli,
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where N is the number of people in the population. To simplify exposition, we
shall assume that there are no effects of changing α on labor supply, so that
∂αli = 0 and thus ∂αg = N .

Now we have all terms that we need to calculate the marginal effect on
social welfare of changing α and β:

∂αSWF =
∑
i

(λ− ωi)

∂βSWF =
∑
i

(λ− ωi) · wi · li + λ · β ·
∑
i

wi · ∂βli.

These expressions are obtained by simply adding up everyone’s equivalent vari-
ation, weighted by ωi, and the impact on government revenues, weighted by
λ.

At the optimal linear income tax, both of these expressions have to equal
zero. This implies

λ = E[ωi]

λ · β · E[w · ∂βl] = Cov(ω,w · l),

where E denotes the average across individuals, and Cov the covariance across
individuals.

The first equation says that the value of an additional dollar for the gov-
ernment is the same as the average value of an additional dollar across the
population. The second equation can be rewritten as

β =
Cov(ω/λ,w · l)
E[w · ∂βl]

.

This equation says that the marginal tax rate β, that is the degree of redis-
tribution,

1. is decreasing in the covariance of welfare weights and earnings.
This covariance is negative if we assign larger welfare weights to people
with lower earnings, and it is more negative the more welfare weights
reflect a desire for redistribution.10

2. is decreasing in the behavioral response of the tax base to an
increase in tax rates, −E[w · ∂βl].
If higher tax rates lead to increased tax evasion, for instance, than this
behavioral response is negative, as well. This second item reflects con-
straints on feasible redistribution. To the extent that there are behavioral
responses to taxation, it is not possible to take 1$ from a rich person and
give 1$ to a poor person. If behavioral responses are small (as seems to be
the case, with the exception of tax evasion), we might get close, though.

10It would be a good exercise, involving some calculus, to verify this claim assuming that
ω is a decreasing function of w · l.
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9.3 Optimal top tax rate

Let us now turn to nonlinear income taxes, where we go through a simplified
exposition of the arguments in Saez (2001). We will only consider how to set the
top tax rate. In standard models, welfare weights (“the marginal welfare value of
additional income”) go to zero as income goes to infinity, relative to the welfare
weights of people with average income. Put differently, an additional dollar for
a billionaire is considered to be of much smaller value than an additional dollar
for a poor person. If that is so, we want to set the top tax rate to maximize
revenues, since the assumption implies

∂τSWF = λ · ∂τg,

where τ is the top tax rate. This top tax rate applies to everyone above the
income threshold y.

Assume, returning to chapter 2, that top incomes follow a Pareto distri-
bution with parameter α:

P (Y > y|Y ≥ y) =
(
y/y
)α
.

Assume further that the elasticity of taxable income with respect to the
“net of tax” rate 1−τ is equal to η for those above the income threshold y, that
is

η = −∂τyi ·
1− τ
yi

. (9.4)

Government revenues from taxes on top income receivers are equal to

g(τ) = τ ·N ·
(
E[Y |Y ≥ y]− y

)
,

where N is the number of individuals above the threshold. We have all terms
that we need to calculate the effect of a change of τ on government revenues,
which is given by a sum of mechanical and behavioral effects:

1
N · ∂τg =

(
E[Y |Y ≥ y]− y

)
− τ

1− τ
· η · E[Y |Y ≥ y]

= y ·
(

α

α− 1
·
(

1− τ

1− τ
· η
)
− 1

)
(9.5)

Solving the first order condition ∂τg = 0 yields(
α

α− 1
·
(

1− τ

1− τ
· η
)
− 1

)
= 0,

or, after some algebra

τ =
1

1 + α · η
.

If we plug in the realistic parameter values α = 2 and η = .25, this formula
implies an optimal top tax rate of 1/(1+0.5) = 67%. More generally, optimal
top tax rates are larger (i) the more unequal the distribution of incomes is (small
α), and (ii) the less responsive taxable incomes are to changes in tax rates (less
tax loopholes, better tax enforcement).



Bibliography

Angrist, J. D. and Pischke, J.-S. (2010). The Credibility Revolution in Em-
pirical Economics: How Better Research Design is Taking the Con out of
Econometrics. Journal of Economic Perspectives, 24(2):3–30.

Atkinson, A. (2014). After Piketty? The British Journal of Sociology, 65(4):619–
638.

Atkinson, A. B. (2015). Inequality: What Can be Done?. Harvard University
Press.

Atkinson, A. B., Piketty, T., and Saez, E. (2011). Top incomes in the long run
of history. Journal of Economic Literature, 49(1):3–71.

Autor, D. H., Katz, L. F., and Kearney, M. S. (2008). Trends in US wage
inequality: Revising the revisionists. The Review of Economics and Statistics,
90(2):300–323.

Bertrand, M. and Mullainathan, S. (2004). Are Emily and Greg More Em-
ployable Than Lakisha and Jamal? A Field Experiment on Labor Market
Discrimination. American Economic Review, 94(4):991–1013.

Black, S. and Devereux, P. (2011). Recent developments in intergenerational
mobility. Handbook of Labor Economics, 4:1487–1541.

Boustan, L. P. (2009). Competition in the promised land: Black migration and
racial wage convergence in the north, 1940–1970. The Journal of Economic
History, 69(03):755–782.

Card, D. (2009). Immigration and inequality. The American Economic Review,
99(2):1–21.

Chetty, R., Hendren, N., Kline, P., and Saez, E. (2014). Where is the land
of opportunity? The geography of intergenerational mobility in the United
States. Quarterly Journal of Economics, 129(4):1553–1623.

Clemens, M. A., Montenegro, C. E., and Pritchett, L. (2009). The place pre-
mium: wage differences for identical workers across the US border.

55



56 Bibliography

Deaton, A. (1989). Rice prices and income distribution in Thailand: a non-
parametric analysis. The Economic Journal, pages 1–37.

Deaton, A. (2013). The great escape: Health, wealth, and the origins of inequality.
Princeton University Press, Princeton.

DiNardo, J., Fortin, N., and Lemieux, T. (1996). Labor market institutions and
the distribution of wages, 1973-1992: A semiparametric approach. Economet-
rica, 64:1001–1044.

Firpo, S., Fortin, N., and Lemieux, T. (2011). Decomposition methods in eco-
nomics. Handbook of Labor Economics, 4:1–102.

Fogel, R. W. (1994). Without consent or contract: the rise and fall of American
slavery. WW Norton & Company.

Fortin, N. M. and Lemieux, T. (1997). Institutional changes and rising wage in-
equality: Is there a linkage? The Journal of Economic Perspectives, 11(2):pp.
75–96.

Fraser, N. (2013). Fortunes of Feminism: From State-Managed Capitalism to
Neoliberal Crisis. Verso Books.

Goldin, C. (2006). The quiet revolution that transformed women’s employment,
education, and family. American Economic Review, 96(2):1–21.

Goldin, C. D. and Katz, L. F. (2009). The race between education and technology.
Harvard University Press.

Kasy, M. (2014). Who wins, who loses? tools for distributional policy evaluation.
working paper.

Milanovic, B. (2015). Global Inequality of Opportunity: How Much of Our
Income Is Determined by Where We Live? The Review of Economics and
Statistics, 2(97):452–460.

Piketty, T. (2014). Capital in the 21st Century. Harvard University Press,
Cambridge.

Rawls, J. (1973). A theory of justice. Harvard University Press, Cambridge.

Roemer, J. E. (1998). Theories of distributive justice. Harvard University Press,
Cambridge.

Saez, E. (2001). Using elasticities to derive optimal income tax rates. The
Review of Economic Studies, 68(1):205–229.

Sen, A. (1995). Inequality reexamined. Oxford University Press, Oxford.

Wright, E. O. (2005). Approaches to class analysis. Cambridge University Press,
Cambridge.


	Preface
	Why research economic inequality?
	Acknowledgments
	Readings

	The 1% – The Pareto distribution and maximum likelihood
	Definition of the Pareto distribution
	Maximum likelihood
	Censored data
	Maximum likelihood with censored data
	Piketty's r-g and the Pareto parameter
	Matlab exercises

	Gender Inequality – Elasticities of Labor Supply
	Elasticities of labor supply
	Decomposing changes
	Some critical remarks

	Discrimination – Experiments
	Potential outcomes and causal effects
	(Randomized) controlled experiments
	Estimation and t-tests
	Matlab exercises

	Unions – Distributional decompositions
	Setup
	Reweighting
	Causal interpretation
	Estimation
	Matlab exercises

	Migration, technology, education – Estimating labor demand
	Backwards-engineering wage regressions
	General labor demand
	Demand based on a production function
	The CES production function
	Generalizations of the CES production function
	Instruments
	Matlab exercises

	Intergenerational mobility – Measurement error
	Classical measurement error and transitory shocks
	Non-classical measurement error and the lifetime profile of earnings
	Remedies
	The causal effect of parental income; instruments
	Matlab exercises

	The distributional effect of changing prices – Equivalent variation
	The consumer problem
	Changing prices
	Generalizing this result
	Matlab exercises

	Redistributive taxation – optimal tax theory
	General principles
	Linear income tax
	Optimal top tax rate


