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Introduction

Introduction

I How to use (quasi-)experimental evidence when choosing
policies, such as

I tax rates,
I health insurance copay,
I unemployment benefit levels,
I class sizes in schools, etc.?

I Answer in this paper: Maximize posterior expected welfare.
I Answer combines

1. optimal policy theory (public finance),
2. machine learning using Gaussian process priors.

I Application: coinsurance rates, RAND health insurance
experiment.
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Introduction

Contrast with “sufficient statistic approach”
I Standard approach in public finance:

1. Solve for optimal policy in terms of key behavioral elasticities at
the optimum (“sufficient statistics”).

2. Plug in estimates of these elasticities,
3. Estimates based on log− log regressions.

I Problems with this approach:
1. Uncertainty: Optimal policy is nonlinear function of elasticities.

Sampling variation therefore induces systematic bias.
2. Relevant dependent variable is expected tax base,

not expected log tax base.
3. Elasticities are not constant over range of policies.

I Posterior expected welfare based on nonparametric priors
addresses these problems.

I Tractable closed form expressions available.
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Optimal insurance

Optimal insurance and taxation
I (Baily, 1978; Saez, 2001; Chetty, 2006)

I Example: Health insurance copay.
I Individuals i , with

I Yi health care expenditures,
I Ti share of health care expenditures covered by the insurance,
I 1−Ti coinsurance rate,
I Yi · (1−Ti) out-of-pocket expenditures.

I Behavioral response:
I Individual: Yi = g(Ti ,εi).
I Average expenditures given coinsurance rate: m(t) = E[g(t,εi)].

I Policy objective:
I Weighted average utility, subject to government budget constraint.
I Relative value of $ for the sick: λ .
I Marginal change of t → mechanical and behavioral effects.

4 / 17



Optimal policy using ML

Optimal insurance

Social welfare

I Effect of marginal change of t :
I Mechanical effect on insurance budget: −m(t)
I Behavioral effect on insurance budget: −t ·m′(t)
I Mechanical effect on utility of the insured: λ ·m(t)
I Behavioral effect on utility of the insured: 0

By envelope theorem (key assumption: utility maximization)

I Summing components:

u′(t) = (λ −1) ·m(t)− t ·m′(t).

I Integrate, normalize u(0) = 0 to get social welfare:

u(t) = λ

∫ t

0
m(x)dx− t ·m(t).
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Prior and posterior

Experimental variation, GP prior

I n i.i.d. draws of (Yi ,Ti), Ti independent of εi

I Thus

E[Yi |Ti = t] = E[g(t,εi)|Ti = t] = E[g(t,εi)] = m(t).

I Auxiliary assumption: normality, Yi |Ti = t ∼ N(m(t),σ2).

I Gaussian process prior:

m(·)∼ GP(µ(·),C(·, ·)).

I Read: E[m(t)] = µ(t) and Cov(m(t),m(t ′)) = C(t, t ′).
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Prior and posterior

Posterior

I Denote Y = (Y1, . . . ,Yn), T = (T1, . . . ,Tn),

µi = µ(Ti), Ci,j = C(Ti ,Tj), Ci(t) = C(t,Ti).

I µ , C(t), and C : vectors and matrix collecting these terms.

I Posterior expectation of m(t):

m̂(t) = E[m(t)|Y ,T ]

= E[m(t)|T ]+Cov(m(t),Y |T ) ·Var(Y |T )−1 · (Y −E[Y |T ])

= µ(t)+C(t) ·
[
C +σ

2I
]−1 · (Y −µ).

7 / 17



Optimal policy using ML

Prior and posterior

Posterior expected welfare

I Recall: u(t) is a linear functional of m(·),

u(t) = λ

∫ t

0
m(x)dx− t ·m(t).

I Thus:

ν(t) = E[u(t)] = λ

∫ t

0
µ(x)dx− t ·µ(t), and

D(t, t ′) = Cov(u(t),m(t ′))) = λ ·
∫ t

0
C(x , t ′)dx− t ·C(t, t ′).

I Notation: D(t) = Cov(u(t),Y |T ) = (D(t,T1), . . . ,D(t,Tn))
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Prior and posterior

I Posterior expected welfare:

û(t) = E[u(t)|Y ,T ] = ν(t)+D(t) ·
[
C +σ

2I
]−1 · (Y −µ).

I Derivative:

∂

∂ t û(t) = ν
′(t)+B(t) ·

[
C +σ

2I
]−1 · (Y −µ)

where

B(t, t ′) = ∂

∂ t D(t, t ′) = (λ −1) ·C(t, t ′)− t · ∂

∂ t C(t, t ′).

I Bayesian policymaker maximizes posterior expected welfare:

t̂∗ = t̂∗(Y ,T ) ∈ argmax
t

û(t).

I First order condition:

∂

∂ t û(t̂
∗) = E[u′(t̂∗)|Y ,T ] = ν

′(t̂∗)+B(t̂∗) ·
[
C +σ

2I
]−1

= 0.

9 / 17



Optimal policy using ML

Prior and posterior

Prior specification, covariates

I Choice of covariance kernel:
Squared-exponential, plus diffuse linear trend (popular in ML).

C(t1, t2) = v0 + v1 · t1t2 +exp
(
−|t1− t2|2/(2l)

)
.

I Covariates and conditional independence:
I If exogeneity holds only conditional on covariates or control

functions, then Ti ⊥ εi |Wi
I Extend above analysis for k(t,w) = E[Y |T = t,W = w ].
I Gaussian process prior for k(t,w).
I Dirichlet prior for PW .
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Application

Application: The RAND health insurance experiment

I Cf. Aron-Dine et al. (2013).

I Between 1974 and 1981,
representative sample of 2000 households,
in six locations across the US.

I Families randomly assigned to
plans with one of six consumer coinsurance rates.

I 95, 50, 25, or 0 percent,
2 more complicated plans (I drop those).

I Additionally: randomized Maximum Dollar Expenditure limits,
5, 10, or 15 percent of family income,
up to a maximum of $750 or $1,000.
(I pool across those.)
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Application

Table: Expected spending for different coinsurance rates

(1) (2) (3) (4)
Share with Spending Share with Spending

any in $ any in $
Free Care 0.931 2166.1 0.932 2173.9

(0.006) (78.76) (0.006) (72.06)
25% Coinsurance 0.853 1535.9 0.852 1580.1

(0.013) (130.5) (0.012) (115.2)
50% Coinsurance 0.832 1590.7 0.826 1634.1

(0.018) (273.7) (0.016) (279.6)
95% Coinsurance 0.808 1691.6 0.810 1639.2

(0.011) (95.40) (0.009) (88.48)
family x month x site X X X X

fixed effects
covariates X X
N 14777 14777 14777 14777
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Application

Assumptions

1. Model: The optimal insurance model as presented before

2. Prior: Gaussian process prior for m, squared exponential in
distance, uninformative about level and slope

3. Relative value of funds for sick people vs contributors:
λ = 1.5

4. Pooling data: across levels of maximum dollar expenditure

Under these assumptions we find:

Optimal copay equals 18%
(But free care is almost as good)
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Application

Posterior for m with confidence band
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Application

Posterior expected welfare and optimal policy choice

t = 0.82

0

500

0.00 0.25 0.50 0.75 1.00
t

uhat uprimehat

15 / 17



Optimal policy using ML

Application

Confidence band for u′ and t∗
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Application

Thank you!
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