
Identification of and correction for publication bias

Isaiah Andrews Maximilian Kasy

December 13, 2017



Introduction

Fundamental requirement of science: replicability

Different researchers should reach same conclusions

Methodological conventions should ensure this
(e.g., randomized experiments)
Replicability often appears to fail, e.g.

Experimental economics (Camerer et al., 2016)
Experimental psychology (Open Science Collaboration, 2015)
Medicine (Ionnidias, 2005)
Cell Biology (Begley et al, 2012)
Neuroscience (Button et al, 2013)



Introduction

Possible explanation: selective publication of results
Due to:

Researcher decisions
Journal selectivity

Possible selection criteria:
Statistically significant effects
Confirmation of prior beliefs
Novelty

Consequences:
Conventional estimators are biased
Conventional inference does not control size



Introduction
Literature

Identification of publication bias:

Good overview:
Rothstein et al. (2006)

Regression based:
Egger et al. (1997)

Symmetry of funnel plot (“trim and fill”):
Duval and Tweedie (2000)

Parametric selection models:
Hedges (1992), Iyengar and Greenhouse (1988)

Distribution of p-values, parametric distribution of true effects:
Brodeur et al. (2016)



Introduction
Literature

Corrected inference:

McCrary et al. (2016)

Replication- and meta-studies for empirical part:

Replication of econ experiments: Camerer et al. (2016)

Replication of psych experiments: Open Science Collaboration
(2015)

Minimum wage: Wolfson and Belman (2015)

Deworming: Croke et al. (2016)



Introduction
Our contributions

1 Nonparametric identification of selectivity in the publication
process, using
a) Replication studies: Absent selectivity, original and replication

estimates should be symmetrically distributed
b) Meta-studies: Absent selectivity, distribution of estimates for small

sample sizes should be noised-up version of distribution for larger
sample sizes

2 Corrected inference when selectivity is known
a) Median unbiased estimators
b) Confidence sets with correct coverage
c) Allow for nuisance parameters and multiple dimensions of selection
d) Bayesian inference accounting for selection

3 Applications to
a) Experimental economics
b) Experimental psychology
c) Effects of minimum wages on employment
d) Effects of de-worming
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Setup

Assume there is a population of latent studies indexed by i
True parameter value in study i is Θ∗i

Θ∗i drawn from some population⇒ empirical Bayes perspective
Different studies may recover different parameters

Each study reports findings X ∗i
Distribution of X∗i given Θ∗i known

A given study may or may not be published
Determined by both researcher and journal: we don’t try to
disentangle

Probability of publication P(Di = 1|X ∗i ,Θ∗i ) = p(X ∗i )

Published studies are indexed by j



Setup

Definition (General sampling process)

Latent (unobserved) variables: (Di ,X ∗i ,Θ
∗
i ), jointly i.i.d. across i

Θ∗i ∼ µ

X ∗i |Θ∗i ∼ fX∗|Θ∗(x |Θ∗i )

Di |X ∗i ,Θ∗i ∼ Ber(p(X ∗i ))

Truncation: We observe i.i.d. draws of Xj , where
Ij = min{i : Di = 1, i > Ij−1}

Θj = Θ∗Ij

Xj = X ∗Ij



Setup
Example: treatment effects

Journal receives a stream of studies i = 1,2, . . .

Each reporting experimental estimates X ∗i of treatment effects Θ∗i
Distribution of Θ∗i : µ

Suppose that X ∗i |Θ∗i ∼ N(Θ∗i ,1)

Publication probability: “significance testing,”

p(X) =

{
0.1 |X |< 1.96

1 |X | ≥ 1.96

Published studies: report estimate Xj of treatment effect Θj



Setup
Example continued – Publication bias
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Identification
Identification of the selection mechanism p(·)

Key unknown object in model: publication probability p(·)
We propose two approaches for identification:

1 Replication experiments:
replication estimate X r for the same parameter Θ
selectivity operates only on X , but not on X r

2 Meta-studies:
Variation in σ∗, where X∗ ∼ N(Θ∗,σ∗2)
Assume σ∗ is (conditionally) independent of Θ∗ across latent
studies i
Standard assumption in the meta-studies literature; validated in our
applications by comparison to replications

Advantages:
1 Replications: Very credible
2 Meta-studies: Widely applicable



Identification
Intuition: identification using replication studies
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Identification
Approach 1: Replication studies

Definition (Replication sampling process)

Latent variables: as before,

Θ∗i ∼ µ

X ∗i |Θ∗i ∼ fX∗|Θ∗(x |Θ∗i )

Di |X ∗i ,Θ∗i ∼ Ber(p(X ∗i ))

Additionally: replication draws,

X ∗ri |X ∗i ,Di ,Θ
∗
i ∼ fX∗|Θ∗(x |Θ∗i )

Observability: as before,

Ij = min{i : Di = 1, i > Ij−1}
Θj = ΘIj

(Xj ,X
r
j ) = (X ∗Ij ,X

∗r
Ij )



Identification

Theorem (Identification using replication experiments)

Assume that the support of fX∗i ,X∗ri
is of the form A×A for some set A.

Then p(·) is identified on A up to scale.

Intuition of proof:

Marginal density of (X ,X r ) is

fX ,X r (x ,x r ) =
p(x)

E[p(X ∗i )]

∫
fX∗|Θ∗ (x |θ ∗i ) fX∗|Θ∗ (x r |θ ∗i )dµ(θ

∗
i )

Thus, for all a,b, if p(a) > 0,

p(b)

p(a)
=

fX ,X r (b,a)

fX ,X r (a,b)



Identification
Practical complication

Replication experiments follow the same protocol
⇒ estimate same effect Θ

But often different sample size
⇒ different variance⇒ symmetry breaks down

Additionally: replication sample size often determined based on
power calculations given initial estimate
p(·) is still identified (up to scale):

Assume X normally distributed
Intuition: Conditional on X ,σ , (de-)convolve X r with normal noise
to get symmetry back
µ is identified as well



Identification
Further complication

What if selectivity is based not only on observed X ,
but also on unobserved W?

Would imply general selectivity of the form

Di |X ∗i ,Θ∗i ∼ Ber(p(X ∗i ,Θ
∗
i ))

Again assume normality,

X ∗ri |σi ,Di ,X
∗
i ,Θ

∗
i ∼ N(Θ∗i ,σ

2
i )

⇒ Solution:
Identify µΘ|X from fX r |X by deconvolution
Recover fX |Θ by Bayes’ rule (fX is observed)
This density is all we need for bias corrected inference

We use this to construct specification tests for our baseline model



Identification
Intuition: identification using meta-studies
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Identification
Approach 2: meta-studies

Definition (Independent σ sampling process)

σ
∗
i ∼ µσ

Θ∗i |σ∗i ∼ µΘ

X ∗i |Θ∗i ,σ∗i ∼ N(Θ∗i ,σ
∗2
i )

Di |X ∗i ,Θ∗i ,σ∗i ∼ Ber(p(X ∗i /σ
∗
i ))

We observe i.i.d. draws of (Xj ,σj), where

Ij = min{i : Di = 1, i > Ij−1}
(Xj ,σj) = (X ∗Ij ,σ

∗
Ij )

Define Z ∗ = X∗
σ∗ and Z = X

σ



Identification

Theorem (Nonparametric identification using variation in σ )

Suppose that the support of σ contains a neighborhood of some point
σ0. Then p(·) is identified up to scale.

Intuition of proof:

Conditional density of Z given σ is

fZ |σ (z|σ) =
p(z)

E[p(Z ∗)|σ ]

∫
ϕ(z−θ/σ)dµ(θ)

Thus

fZ |σ (z|σ2)

fZ |σ (z|σ1)
=

E[p(Z ∗)|σ = σ1]

E[p(Z ∗)|σ = σ2]
·
∫

ϕ(z−θ/σ2)dµ(θ)∫
ϕ(z−θ/σ1)dµ(θ)

Recover µ from right hand side,
then recover p(·) from first equation
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Bias-corrected inference

Once we know p(·), can correct inference for selection

For simplicity, here assume X , Θ both 1-dimensional

Density of published X given Θ:

fX |Θ(x |θ) =
p(x)

E[p(X ∗)|Θ∗ = θ ]
· fX∗|Θ∗(x |θ)

Corresponding cumulative distribution function: FX |Θ(x |θ)



Bias-corrected inference
Corrected frequentist estimators and confidence sets

We are interested in bias, and the coverage of confidence sets
Condition on θ : standard frequentist analysis

Define θ̂α (x) via

FX |Θ

(
x |θ̂α (x)

)
= α

Under mild conditions, can show that

P
(

θ̂α (X)≤ θ |θ
)

= α ∀θ

Median-unbiased estimator: θ̂ 1
2

(X) for θ

Equal-tailed level 1−α confidence interval:[
θ̂ α

2
(X) , θ̂1− α

2
(X)
]



Bias-corrected inference
Example: treatment effects

Let us return to the treatment effect example discussed above

Again assume X ∗|Θ∗ ∼ N(Θ∗,1) and

p(X) = 0.1 + 0.9 ·1(|X |> 1.96)



Bias-corrected inference
Example continued – corrected confidence sets for βp = 0.1
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Applications
Replications of Lab Experiments in Economics

Camerer et al. (2016)

Sample: all 18 between-subject laboratory experimental papers
published in AER and QJE between 2011 and 2014
Scatterplot next slide:

Z = X/σ : normalized initial estimate
Z r = X r/σ : replicate estimate
Initial estimates normalized to be positive



Applications
Economics Lab Experiments: Original and Replication Z Statistics
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Applications
Economics Lab Experiments: Estimates of Selection model

Model:

Θ∗ ∼ N(0,τ2)

p(Z ) ∝

{
βp |Z |< 1.96

1 |Z | ≥ 1.96

Estimates:

τ βp

2.354 0.100
(0.750) (0.091)

Interpretation: insignificant (at the 5 % level) results about 10%
as likely to be published as significant results



Applications
Economics Lab Experiments: Adjusted Estimates
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Applications
Economics Lab Experiments: Adjusted Estimates
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Applications
Economics Lab Experiments: Meta-study Approach
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Applications
Economics Lab Experiments: Meta-study Results

Model:

Θ∗ ∼ N(0, τ̃2)

p(X/σ) ∝

{
βp |X/σ |< 1.96

1 |X/σ | ≥ 1.96

Recall replication-based estimates:

τ βp

2.354 0.100
(0.750) (0.091)

Meta-study based estimates (only βp comparable):

τ̃ βp

0.299 0.045
(0.073) (0.045)



Applications
Replications of Lab Experiments in Psychology

Open Science Collaboration (2015)

270 contributing authors

Sample: 100 out of 488 articles published 2008 in

Psychological Science
Journal of Personality and Social Psychology
Journal of Experimental Psychology: Learning, Memory, and
Cognition

Some critiques by Gilbert et al. (2016):
statistical misinterpretation,
not all replication protocols endorsed by original authors
⇒ we re-run estimators on subset of approved replications



Applications
Experiments in Psychology: Original and Replication Z Statistics
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Applications
Experiments in Psychology: Estimates of Selection Model

Model:

Θ∗ ∼ N(0,τ2)

p(Z ) ∝


βp1 |Z |< 1.64

βp2 1.64≤ |Z |< 1.96

1 |Z | ≥ 1.96

Estimates:

τ βp,1 βp,2

1.252 0.021 0.294
(0.195) (0.012) (0.128)

Results insignificant at the 10% level 2% as likely to be published
as results significant at 5% level

Results significant at the 5% level over three times as likely to be
published as results significant at 10% level



Applications
Original and Replication Z Statistics: Psychology Lab Experiments
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Applications
Psychology Lab Experiments: Meta-studies Approach
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Applications
Psychology Lab Experiments: Estimates of Meta-studies Selection Model

Model:

Θ∗ ∼ N(0,τ2)

p(Z ) ∝


βp1 |Z |< 1.64

βp2 1.64≤ |Z |< 1.96

1 |Z | ≥ 1.96

Recall replication-based estimates:

τ βp,1 βp,2

1.252 0.021 0.294
(0.195) (0.012) (0.128)

Meta-study based estimates (only βp comparable):

τ̃ βp,1 βp,2

0.252 0.025 0.375
(0.041) (0.015) (0.166)



Applications
Psychology Lab Experiments: Approved Replications

67 studies

Replication-based estimates:

τ βp,1 βp,2

1.385 0.038 0.512
(0.272) (0.024) (0.239)

Meta-study based estimates:

τ̃ βp,1 βp,2

0.272 0.042 0.621
(0.055) (0.027) (0.300)

βp estimates systematically larger than those in full dataset



Applications
Meta-study of the Effect of Minimum Wages on Employment

Wolfson and Belman (2015)

Elasticity of employment w.r.t. the minimum wage
X > 0⇔ negative employment effect

1000 estimates from 37 studies using U.S. data that were
circulated after 2000, either as articles in journals or as working
papers

For some: more than 1 estimate per study
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Estimates of selection model

Model:

Θ∗ ∼ N(θ̄ ,τ2)

p(X/σ) ∝


βp1 X/σ <−1.96

βp2 −1.96≤ X/σ < 0

βp3 0≤ X/σ < 1.96

1 X/σ ≥ 1.96

Estimates:

θ̄ τ̃ βp,1 βp,2 βp,3

-0.024 0.122 0.225 0.424 0.738
(0.053) (0.038) (0.117) (0.205) (0.289)

Bias in favor of estimates which find minimum wage reduces
employment



Applications
Meta-Study of the Effects of Deworming

Croke et al. (2016)

Follow procedures outlined in the “Cochrane Handbook for
Systematic Reviews of Interventions”

Randomized controlled trials of deworming that include child
body weight as an outcome

22 estimates from 20 studies



Applications
Meta-Study of the Effects of Deworming
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Applications
Deworming: Estimates of selection model

Model:

Θ∗ ∼ N(θ̄ ,τ2)

p(X) ∝

{
βp |X/σ |< 1.96

1 |X/σ | ≥ 1.96

Estimates:

θ̄ τ̃ βp

0.190 0.343 2.514
(0.120) (0.128) (1.872)



Conclusion

Selectivity in the publication process is a potentially serious
problem for statistical inference.
We non-parametrically identify the form of selectivity:

Using replication studies:
Original and replication estimates would be symmetrically
distributed, absent selectivity
Using meta-studies:
Under an independence assumption, higher-variance estimates
distribution would be noised-up version of lower-variance estimate
distribution, absent selectivity



Conclusion

Easy correction for selectivity, if form is known:
Median unbiased estimators
Equal-tailed confidence sets with correct coverage

Empirical findings:
Selectivity on significance in experimental economics,
experimental psychology
Selectivity towards negative employment effects in minimum wage
literature
Noisy estimates in meta-study for de-worming



Thank you!
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