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Two key features of machine learning procedures

@ Regularization / shrinkage:
Improve prediction or estimation performance
by trading off variance and bias (“avoiding overfitting”)

@ Data-dependent choice of tuning parameters:
Try to do trade-off optimally

Large number of methods:
@ Regularization:
o Ridge,
e Lasso,
o Pre-testing,
o Trees, Neural Networks, Support Vector Machines, ...

@ Tuning:
o Cross-validation (CV),
e Stein’s Unbiased Risk Estimate (SURE),
e Empirical Bayes (marginal likelihood), ...



Questions facing the empirical researcher

@ When should we bother with regularization?

@ What kind of regularization should we choose?
What features of the data generating process matter for this
choice?

© When do CV or SURE work for tuning?



Roadmap

@ Our answers to these questions
@ A stylized setting: Estimation of many means

@ Backing up our answers, using

@ Theory
@ Empirical examples
© Simulations

@ Conclusion and summary of our formal contributions



1) When should we bother with regularization?
Answer: Can reduce risk (mean squared error)
@ when there are many parameters,
@ and we care about point-estimates for each of these.

Examples:
@ Causal/ predictive effects, many treatment values:
Location effects: Chetty and Hendren (2015)
Teacher effects: Chetty et al. (2014)
Worker and firm effects: Abowd et al. (1999), Card et al. (2012)
Judge effects: Abrams et al. (2012)

@ Binary treatment, many subgroups:
o Class size effect for different demographic groups: Krueger (1999)
e Event studies: DellaVigna and La Ferrara (2010)
(many treatments and many treated units)

@ Prediction with many predictive covariates / transformations of
covariates:
e Macro forecasting: Stock and Watson (2012)
e Series regression: Newey (1997)



2) What kind of regularization should we choose?

Answer: Depends on the setting / distribution of parameters.
@ Parameters smoothly distributed, no true zeros:
o Ridge / linear shrinkage
e e.g.: location effects
(Chetty and Hendren, 2015)
e Arguably most common case in econ settings.

@ Many true zeros, non-zeros well separated:
o Pre-testing / hard thresholding
e e.g.: large fixed costs for non-zero behavior
(DellaVigna and La Ferrara, 2010)
o Rare!

@ Many true zeros, non-zeros not well separated
(intermediate case):
e Lasso / soft thresholding
e Robust choice for many settings.



3) When do CV or SURE work for tuning?

Answer:

@ CV and SURE are uniformly close to the oracle-optimum
— in high-dimensional settings.

@ Intuition:
e Optimal tuning depends on the distribution of parameters.

e When there are many parameters, we can learn this distribution.

@ Requirements:

@ SURE: normality
@ CV: number of observations > number of parameters



Stylized setting: Estimation of many means

@ We observe n independent random variables Xj, ..., X,, where
E[)(I] = MU,
Var(X;) = o?.

@ Componentwise estimators:
ﬁi = m(Xh/l)
@ Squared error loss:

L(p,p) = %Z(ﬁi — i)

@ Many applications: X; equal to OLS estimated coefficients



Example

Chetty, R. and Hendren, N. (2015). The impacts of
neighborhoods on intergenerational mobility: Childhood
exposure effects and county-level estimates.

Working Paper, Harvard University and NBER.

@ ;: causal effect of growing up in commuting zone i

@ X;: unbiased but noisy estimate of u; identified from sibling
differences of families moving between locations



Componentwise estimators

@ Ridge:
mg(x,A) = argmin ((x — ¢)*+ Ac?)
ceR
IREYA
@ Lasso:

my(x,A) = argmin ((x —¢)*+2A|c|)
ceR
=1(x < -A)(x+A)+1(x>A)(x—A).
@ Pre-test:

mpr(x,A) =1(|x| > 1)x.
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Componentwise estimators
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Risk

Risk = expected loss = mean squared error

Conceptual subtlety:
Think of u; (more generally: P;) as fixed or random?

Compound risk: ty,..., U, as fixed effects,
average over their sample distribution:
n
Rn(m(-,A),P) =7} E[(m(Xi,A) — ui)?| P

i=1

Empirical Bayes risk: 1,..., U, as random effects,
average over their population distribution:

’E"(m('72‘)77r) = Eﬂ[(m(Xlﬂ)’) _”1)2]’

where (Xj, i) ~
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Characterizing mean squared error

Random effects setting: Joint distribution (X, i) ~ 7

Conditional expectation:

My (x) = Exlu|X = x]

Theorem: The empirical Bayes risk of m(-, 1) can be written as
R = const. + Ex [(m(X,A) — m}(X))?],

@ = Performance of estimator m(-,A) depends on how closely it
approximates mx(-).

Fixed effects / compound risk: Completely analogous,
with empirical distribution 4, ..., i, instead of .

13/33



A useful family of examples: Spike and normal DGP

@ Assume X; ~ N(uj,1)
@ Distribution of u; across i:
Fraction p ui=0
Fraction 1 —p  p; ~ N(lo, 68)

@ Covers many interesting settings:

e p = 0: smooth distribution of true parameters
e p>0, Uup and Gg large: sparsity, non-zeros well separated
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Comparing risk

@ Consider ridge, lasso, pre-test, optimal shrinkage function.
@ Assume A is chosen optimally (will return to that).

@ Can calculate, compare, and plot mean squared error:

e By construction smaller than 1
(1 = risk of unregularized estimator, A = 0),
o larger than risk for optimal shrinkage mj(-)
(by previous theorem).

@ Paper: Analytic risk functions R.
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Best estimator

o is ridge, x is lasso, - is pretest
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Mean squared error
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Estimating A

@ So far: Benchmark of optimal (oracle) A*.

@ Can we consistently estimate A%,
and do almost as well as if we knew it?

@ Answer: Yes, for large n, suitably bounded moments.

@ We show this for two methods:

@ Stein’s Unbiased Risk Estimate (SURE)
(requires normality)

@ Cross-validation (CV)
(requires panel data)

18/33



Uniform loss consistency

@ Shorthand notation for loss:
Lo(A) =LY (m(Xi, A) — i)?
i

@ Definition: N _
Uniform loss consistency of m(.,A) for m(.,A*):

sup Py ( Ln(i) - Ln(i*) >
T

£>—>0

@ as n— oo for all € > 0, where P; ~ 7.

19/33



Minimizing estimated risk

@ Estimate A* by minimizing estimated risk:

A= argmin R(A)
A

e Different estimators R(A) of risk: CV, SURE

@ Theorem: Regularization using SURE or CV
is uniformly loss consistent
as n — o in the random effects setting
under some regularity conditions.

@ Contrast with Leeb and Potscher (2006)!
(fixed dimension of parameter vector)

@ Key ingredient: uniform laws of larger numbers to get
convergence of L,(1), R(A).
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Two methods to estimate risk

@ Stein’s Unbiased Risk Estimate (SURE)
Requires normality of X;.

R( 12 m(Xi,A) — X;)? + penalty — 1

Rldge . m
penalty = { Lasso:  2Pp(|X| > 1)
Pre-test: 2P,(|X| > A)+2A4 - (F(—=1) + (1))

@ Cross validation (CV)
Requires multiple observations Xj; for ;.

n k
= %ZZ Xi—js A Xij)2

i=1j=1
Xi,—j = leave-one-out-mean.
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Applications

@ Neighborhood effects:
The effect of location during childhood on adult income
(Chetty and Hendren, 2015)

@ Arms trading event study:
Changes in the stock prices of arms manufacturers following
changes in the intensity of conflicts in countries under arms trade
embargoes
(DellaVigna and La Ferrara, 2010)

@ Nonparametric Mincer equation:
A nonparametric regression equation of log wages on education
and potential experience
(Belloni and Chernozhukov, 2011)
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Estimated Risk

@ Stein’s unbiased risk estimate R
@ at the optimized tuning parameteri*

@ for each application and estimator considered.

n Ridge Lasso Pre-test
location effects 595 0.29 0.32 0.41
2.44 1.34 5.00
0.50 0.06 -0.02
0.98 1.50 2.38
1.00 0.84 0.93
0.01 0.59 1.14

*

arms trade 214

*

returns to education 65

*

) J) ) i > 3
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Neighborhood effects: SURE estimates

SURE as function of A
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Neighborhood effects: shrinkage estimators

Shrinkage estimators
T T T

25

25 -
3 2 1 0 1 2 3
T
Kernel estimate of the density of X
T T T

=

(=

L L L L L

Solid line in top figure is an estimate of M} (x)

25 /23



Arms event study: SURE estimates

SURE as function of A
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Arms event study: shrinkage estimators

Shrinkage estimators
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Mincer regression: SURE estimates

SURE as function of A
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Mincer regression: shrinkage estimators

Shrinkage estimators
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Monte Carlo simulations

Spike and normal DGP

Number of parameters n = 50,200, 1000

A chosen using SURE, CV with 4,20 folds

Relative performance: As predicted.
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Summary and Conclusion

@ We study the risk properties of machine learning estimators in the
context of the problem of estimating many means u; based on
observations X;

@ We provide a simple characterization of the risk of machine
learning estimators based on proximity to the optimal shrinkage
function

@ We use a spike-and-Normal setting to investigate how simple
features of the DGP affect the relative performance of the
different estimators

@ We obtain uniform loss consistency results under SURE and CV
based choices of regularization parameters

@ We use data from recent empirical studies to demonstrate the
practical applicability of our findings
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Recommendations for empirical work

@ Use regularization / shrinkage when you have many parameters
of interest, and high variance (overfitting) is a concern.

@ Pick a regularization method appropriate for your application:

@ Ridge: Smoothly distributed true effects, no special role of zero:
@ Pre-testing: Many zeros, non-zeros well separated
© Lasso: Robust choice, especially for series regression / prediction

@ Use CV or SURE in high dimensional settings, when number of
observations > number of parameters.
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Thank you!



Connection to linear regression and prediction

@ Normal linear regression model:

YW~ N(W'B,c2).

Sample Wy,...,W,. Let Q = 3 YL, W; W,
Draw new value of covariates from sample for prediction.
Expected squared prediction error

R=E|(v—WB)| =t (2-E[B~B)(B-B)]) +02

~0LS .
o Orthogonalize: Let u = Q'/28, X = Q2B ", i = m(X;,A).
@ Then 5
o}
X ~ N <‘U,, Nln> 5
and

R=E + E[€7].

Z(ﬁi — )

i




Table: Average Compound Loss Across 1000 Simulations with N = 50
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Table: Average Compound Loss Across 1000 Simulations with N = 200
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Table: Average Compound Loss Across 1000 Simulations with N = 1000
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