The risk of machine learning

Alberto Abadie Maximilian Kasy

July 27, 2017

Two key features of machine learning procedures

- Regularization / shrinkage: Improve prediction or estimation performance by trading off variance and bias ("avoiding overfitting")
- Oata-dependent choice of tuning parameters: Try to do trade-off optimally

Large number of methods:

- Regularization:
 - Ridge,
 - Lasso,
 - Pre-testing,
 - Trees, Neural Networks, Support Vector Machines, ...
- Tuning:
 - Cross-validation (CV),
 - Stein's Unbiased Risk Estimate (SURE),
 - Empirical Bayes (marginal likelihood), ...

Questions facing the empirical researcher

- When should we bother with regularization?
- What kind of regularization should we choose? What features of the data generating process matter for this choice?
- When do CV or SURE work for tuning?

Roadmap

- Our answers to these questions
- A stylized setting: Estimation of many means
- Backing up our answers, using
 - Theory
 - Empirical examples
 - Simulations
- Conclusion and summary of our formal contributions

1) When should we bother with regularization?

Answer: Can reduce risk (mean squared error)

- when there are many parameters,
- and we care about point-estimates for each of these.

Examples:

- Causal / predictive effects, many treatment values:
 - Location effects: Chetty and Hendren (2015)
 - Teacher effects: Chetty et al. (2014)
 - Worker and firm effects: Abowd et al. (1999), Card et al. (2012)
 - Judge effects: Abrams et al. (2012)
- Binary treatment, many subgroups:
 - Class size effect for different demographic groups: Krueger (1999)
 - Event studies: DellaVigna and La Ferrara (2010) (many treatments and many treated units)
- Prediction with many predictive covariates / transformations of covariates:
 - Macro forecasting: Stock and Watson (2012)
 - Series regression: Newey (1997)

2) What kind of regularization should we choose?

Answer: Depends on the setting / distribution of parameters.

- Parameters smoothly distributed, no true zeros:
 - Ridge / linear shrinkage
 - e.g.: location effects (Chetty and Hendren, 2015)
 - Arguably most common case in econ settings.
- Many true zeros, non-zeros well separated:
 - Pre-testing / hard thresholding
 - e.g.: large fixed costs for non-zero behavior (DellaVigna and La Ferrara, 2010)
 - Rare!
- Many true zeros, non-zeros not well separated (intermediate case):
 - Lasso / soft thresholding
 - Robust choice for many settings.

3) When do CV or SURE work for tuning?

Answer:

• CV and SURE are uniformly close to the oracle-optimum

- in high-dimensional settings.

- Intuition:
 - Optimal tuning depends on the distribution of parameters.
 - When there are many parameters, we can learn this distribution.
- Requirements:
 - SURE: normality
 - 2 CV: number of observations \gg number of parameters

Stylized setting: Estimation of many means

• We observe *n* independent random variables X_1, \ldots, X_n , where

$$E[X_i] = \mu_i,$$

 $Var(X_i) = \sigma_i^2.$

• Componentwise estimators:

$$\widehat{\mu}_i = m(X_i, \lambda)$$

Squared error loss:

$$L(\widehat{\mu},\mu) = \frac{1}{n} \sum_{i} (\widehat{\mu}_i - \mu_i)^2$$

Many applications: X_i equal to OLS estimated coefficients

Connection to linear regression and prediction

Example

Chetty, R. and Hendren, N. (2015). The impacts of neighborhoods on intergenerational mobility: Childhood exposure effects and county-level estimates. Working Paper, Harvard University and NBER.

- μ_i: causal effect of growing up in commuting zone i
- X_i: unbiased but noisy estimate of μ_i identified from sibling differences of families moving between locations

Componentwise estimators

Ridge:

$$egin{aligned} m_R(x,\lambda) &= \operatorname*{argmin}_{c\in\mathbb{R}} \left((x-c)^2 + \lambda c^2
ight) \ &= rac{1}{1+\lambda} \, x. \end{aligned}$$

• Lasso:

$$egin{aligned} m_L(x,\lambda) &= \operatorname*{argmin}_{c\in\mathbb{R}} \left((x-c)^2 + 2\lambda |c|
ight) \ &= \mathbf{1}(x < -\lambda)(x+\lambda) + \mathbf{1}(x > \lambda)(x-\lambda). \end{aligned}$$

• Pre-test:

$$m_{PT}(x,\lambda) = \mathbf{1}(|x| > \lambda)x.$$

Componentwise estimators

(Ridge: $\lambda = 1$, Pretest: $\lambda = 4$, Lasso: $\lambda = 2$)

Risk

- Risk = expected loss = mean squared error
- Conceptual subtlety: Think of µ_i (more generally: P_i) as fixed or random?
- Compound risk: μ₁,..., μ_n as fixed effects, average over their sample distribution:

$$R_n(m(\cdot,\lambda),\boldsymbol{P}) = \frac{1}{n} \sum_{i=1}^n E[(m(X_i,\lambda) - \mu_i)^2 | P_i]$$

 Empirical Bayes risk: μ₁,..., μ_n as random effects, average over their population distribution:

$$\bar{R}(m(\cdot,\lambda),\pi)=E_{\pi}[(m(X_{i},\lambda)-\mu_{i})^{2}],$$

where $(X_i, \mu_i) \sim \pi$

Characterizing mean squared error

- Random effects setting: Joint distribution $(X, \mu) \sim \pi$
- Conditional expectation:

$$\bar{m}_{\pi}^*(x) = E_{\pi}[\mu|X=x]$$

• **Theorem**: The empirical Bayes risk of $m(\cdot, \lambda)$ can be written as

$$\bar{R} = const. + E_{\pi} [(m(X,\lambda) - \bar{m}_{\pi}^*(X))^2],$$

- ⇒ Performance of estimator m(·, λ) depends on how closely it approximates m
 ^{*}_π(·).
- Fixed effects / compound risk: Completely analogous, with empirical distribution μ₁,..., μ_n instead of π.

A useful family of examples: Spike and normal DGP

- Assume $X_i \sim N(\mu_i, 1)$
- Distribution of μ_i across *i*:

Fraction p $\mu_i = 0$ Fraction 1 - p $\mu_i \sim N(\mu_0, \sigma_0^2)$

- Covers many interesting settings:
 - p = 0: smooth distribution of true parameters
 - $p \gg$ 0, μ_0 and σ_0^2 large: sparsity, non-zeros well separated

Comparing risk

- Consider ridge, lasso, pre-test, optimal shrinkage function.
- Assume λ is chosen optimally (will return to that).
- Can calculate, compare, and plot mean squared error:
 - By construction smaller than 1

 (1 = risk of unregularized estimator, λ = 0).
 - larger than risk for optimal shrinkage $\bar{m}_{\pi}^{*}(\cdot)$ (by previous theorem).
- Paper: Analytic risk functions \overline{R} .

Best estimator

Estimating λ

- So far: Benchmark of optimal (oracle) λ^* .
- Can we consistently estimate λ*, and do almost as well as if we knew it?
- Answer: Yes, for large *n*, suitably bounded moments.
- We show this for two methods:
 - Stein's Unbiased Risk Estimate (SURE) (requires normality)
 - Cross-validation (CV) (requires panel data)

Uniform loss consistency

• Shorthand notation for loss:

$$L_n(\lambda) = \frac{1}{n} \sum_i (m(X_i, \lambda) - \mu_i)^2$$

Definition:

Uniform loss consistency of $m(., \hat{\lambda})$ for $m(., \bar{\lambda}^*)$:

$$\sup_{\pi} P_{\pi}\left(\left|L_{n}(\widehat{\lambda})-L_{n}(\overline{\lambda}^{*})\right|>\varepsilon\right)\to 0$$

• as $n \to \infty$ for all $\varepsilon > 0$, where $P_i \sim^{iid} \pi$.

Minimizing estimated risk

• Estimate λ^* by minimizing estimated risk:

$$\widehat{\lambda}^* = \mathop{\mathrm{argmin}}\limits_{\lambda} \widehat{R}(\lambda)$$

- Different estimators $\widehat{R}(\lambda)$ of risk: CV, SURE
- Theorem: Regularization using SURE or CV is uniformly loss consistent as n→∞ in the random effects setting under some regularity conditions.
- Contrast with Leeb and Pötscher (2006)! (fixed dimension of parameter vector)

Two methods to estimate risk

Stein's Unbiased Risk Estimate (SURE) Requires normality of X_i.

$$\widehat{R}(\lambda) = \frac{1}{n} \sum_{i} (m(X_{i}, \lambda) - X_{i})^{2} + penalty - 1$$

$$penalty = \begin{cases} Ridge : & \frac{2}{1+\lambda} \\ Lasso : & 2P_{n}(|X| > \lambda) \\ Pre\text{-test} : & 2P_{n}(|X| > \lambda) + 2\lambda \cdot (\widehat{f}(-\lambda) + \widehat{f}(\lambda)) \end{cases}$$

Cross validation (CV)
 Requires multiple observations X_{ij} for μ_i.

$$\widehat{R}(\lambda) = \frac{1}{kn} \sum_{i=1}^{n} \sum_{j=1}^{k} (m(\overline{X}_{i,-j}, \lambda) - X_{ij})^{2}$$
$$\overline{X}_{i,-j} = leave-one-out-mean.$$

Applications

Neighborhood effects:

The effect of location during childhood on adult income (Chetty and Hendren, 2015)

Arms trading event study:

Changes in the stock prices of arms manufacturers following changes in the intensity of conflicts in countries under arms trade embargoes (DellaVigna and La Ferrara, 2010)

• Nonparametric Mincer equation:

A nonparametric regression equation of log wages on education and potential experience (Belloni and Chernozhukov, 2011)

Estimated Risk

- Stein's unbiased risk estimate \widehat{R}
- at the optimized tuning parameter $\widehat{\lambda}^*$
- for each application and estimator considered.

	n		Ridge	Lasso	Pre-test
location effects	595	Ŕ	0.29	0.32	0.41
		$\widehat{\lambda}^*$	2.44	1.34	5.00
arms trade	214	R	0.50	0.06	-0.02
		$\widehat{\lambda}^*$	0.98	1.50	2.38
returns to education	65	Ŕ	1.00	0.84	0.93
		$\widehat{\lambda}^*$	0.01	0.59	1.14

Neighborhood effects: SURE estimates

Neighborhood effects: shrinkage estimators

Solid line in top figure is an estimate of $\bar{m}_{\pi}^{*}(x)$

Arms event study: SURE estimates

Arms event study: shrinkage estimators

Mincer regression: SURE estimates

28/33

Mincer regression: shrinkage estimators

Monte Carlo simulations

- Spike and normal DGP
- Number of parameters n = 50, 200, 1000
- λ chosen using SURE, CV with 4,20 folds
- Relative performance: As predicted.
- Simulation results

Summary and Conclusion

- We study the risk properties of machine learning estimators in the context of the problem of estimating many means μ_i based on observations X_i
- We provide a simple characterization of the risk of machine learning estimators based on proximity to the optimal shrinkage function
- We use a spike-and-Normal setting to investigate how simple features of the DGP affect the relative performance of the different estimators
- We obtain uniform loss consistency results under SURE and CV based choices of regularization parameters
- We use data from recent empirical studies to demonstrate the practical applicability of our findings

Recommendations for empirical work

- Use regularization / shrinkage when you have many parameters of interest, and high variance (overfitting) is a concern.
- Pick a regularization method appropriate for your application:
 - Ridge: Smoothly distributed true effects, no special role of zero:
 - Pre-testing: Many zeros, non-zeros well separated
 - Salar Lasso: Robust choice, especially for series regression / prediction
- Ouse CV or SURE in high dimensional settings, when number of observations ≫ number of parameters.

Thank you!

Connection to linear regression and prediction

Normal linear regression model:

$$Y|W \sim N(W'\beta, \sigma^2).$$

• Sample $\boldsymbol{W}_1, \dots, \boldsymbol{W}_n$. Let $\boldsymbol{\Omega} = \frac{1}{N} \sum_{j=1}^N \boldsymbol{W}_j \boldsymbol{W}_j'$.

• Draw new value of covariates from sample for prediction.

Expected squared prediction error

$$\tilde{R} = E\left[(Y - W\hat{\beta})^2\right] = \operatorname{tr}\left(\mathbf{\Omega} \cdot E[(\hat{\beta} - \beta)(\hat{\beta} - \beta)']\right) + \sigma^2.$$

• Orthogonalize: Let $\mu = \Omega^{1/2}\beta$, $\mathbf{X} = \Omega^{1/2}\widehat{\beta}^{OLS}$, $\widehat{\mu}_i = m(X_i, \lambda)$.

Then

$$\boldsymbol{X} \sim N\left(\mu, \frac{\sigma^2}{N} \boldsymbol{I}_n\right),$$

and

$$\tilde{R} = E\left[\sum_{i}(\widehat{\mu}_{i}-\mu_{i})^{2}\right]+E[\varepsilon^{2}].$$

			SURE			Cross-Validation $(k = 4)$				Cro	NPEB		
p	μ_0	σ_0	ridge	lasso	pretest	ridge	lasso	pretest		ridge	lasso	pretest	
0.00	0	2	0.80	0.89	1.02	0.83	0.90	1.12		0.81	0.88	1.12	0.94
0.00	0	6	0.97	0.99	1.01	0.97	0.99	1.05		0.97	0.99	1.07	1.21
0.00	2	2	0.89	0.96	1.01	0.90	0.95	1.06		0.89	0.95	1.09	0.93
0.00	2	6	0.97	0.99	1.01	0.99	1.00	1.06		0.97	0.98	1.07	1.21
0.00	4	2	0.95	1.00	1.01	0.95	0.99	1.02		0.95	1.00	1.04	0.93
0.00	4	6	0.99	1.00	1.02	0.99	1.00	1.05		0.99	1.00	1.07	1.21
0.50	0	2	0.67	0.64	0.94	0.69	0.64	0.96		0.67	0.62	0.90	0.69
0.50	0	6	0.95	0.80	0.90	0.95	0.79	0.87		0.96	0.78	0.84	0.84
0.50	2	2	0.80	0.72	0.96	0.82	0.72	0.96		0.81	0.72	0.93	0.73
0.50	2	6	0.96	0.80	0.92	0.95	0.77	0.83		0.95	0.78	0.82	0.86
0.50	4	2	0.91	0.82	0.95	0.92	0.81	0.90		0.92	0.81	0.87	0.75
0.50	4	6	0.97	0.81	0.93	0.97	0.79	0.83		0.96	0.78	0.79	0.85
0.95	0	2	0.18	0.15	0.17	0.17	0.12	0.15		0.18	0.13	0.19	0.17
0.95	0	6	0.49	0.21	0.16	0.51	0.19	0.16		0.49	0.19	0.19	0.16
0.95	2	2	0.26	0.17	0.18	0.27	0.16	0.18		0.27	0.17	0.23	0.17
0.95	2	6	0.53	0.21	0.15	0.53	0.19	0.15		0.53	0.20	0.18	0.16
0.95	4	2	0.44	0.21	0.18	0.45	0.20	0.18		0.45	0.20	0.22	0.18
0.95	4	6	0.57	0.21	0.15	0.58	0.19	0.14		0.57	0.20	0.18	0.16

Table: Average Compound Loss Across 1000 Simulations with N = 50

			SURE			Cross-Validation $(k = 4)$				Cro	NPEB		
p	μ_0	σ_0	ridge	lasso	pretest	ridge	lasso	pretest		ridge	lasso	pretest	
0.00	0	2	0.80	0.87	1.01	0.82	0.88	1.04		0.80	0.87	1.04	0.86
0.00	0	6	0.98	0.99	1.01	0.98	0.99	1.02		0.98	0.99	1.03	1.09
0.00	2	2	0.89	0.95	1.00	0.90	0.95	1.02		0.89	0.94	1.03	0.86
0.00	2	6	0.98	1.00	1.01	0.98	0.99	1.02		0.98	0.99	1.03	1.10
0.00	4	2	0.95	1.00	1.00	0.96	1.00	1.01		0.95	1.00	1.02	0.86
0.00	4	6	0.98	0.99	1.01	0.98	0.99	1.01		0.99	0.99	1.03	1.09
0.50	0	2	0.67	0.61	0.90	0.69	0.62	0.93		0.67	0.61	0.90	0.63
0.50	0	6	0.94	0.77	0.86	0.95	0.76	0.82		0.95	0.77	0.83	0.77
0.50	2	2	0.80	0.70	0.94	0.82	0.71	0.93		0.80	0.69	0.91	0.65
0.50	2	6	0.95	0.78	0.88	0.96	0.78	0.83		0.95	0.77	0.82	0.77
0.50	4	2	0.91	0.80	0.94	0.92	0.81	0.87		0.91	0.80	0.87	0.67
0.50	4	6	0.96	0.79	0.92	0.97	0.79	0.81		0.97	0.78	0.80	0.76
0.95	0	2	0.17	0.12	0.14	0.17	0.12	0.14		0.17	0.12	0.15	0.12
0.95	0	6	0.61	0.18	0.14	0.62	0.18	0.14		0.61	0.18	0.14	0.14
0.95	2	2	0.28	0.16	0.17	0.29	0.16	0.18		0.28	0.15	0.17	0.14
0.95	2	6	0.63	0.19	0.14	0.64	0.19	0.14		0.63	0.18	0.14	0.13
0.95	4	2	0.49	0.20	0.17	0.50	0.20	0.17		0.48	0.19	0.17	0.14
0.95	4	6	0.68	0.19	0.13	0.70	0.19	0.13		0.67	0.19	0.14	0.13

Table: Average Compound Loss Across 1000 Simulations with N = 200

			SURE			Cross-Validation $(k = 4)$				Cro	NPEB		
р	μ_0	σ_0	ridge	lasso	pretest	ridge	lasso	pretest		ridge	lasso	pretest	
0.00	0	2	0.80	0.87	1.01	0.81	0.87	1.01		0.80	0.86	1.01	0.82
0.00	0	6	0.97	0.98	1.00	0.98	0.98	1.00		0.97	0.98	1.01	1.02
0.00	2	2	0.89	0.94	1.00	0.90	0.95	1.00		0.89	0.94	1.01	0.82
0.00	2	6	0.97	0.98	1.00	0.98	0.99	1.00		0.97	0.98	1.01	1.02
0.00	4	2	0.95	1.00	1.00	0.96	1.00	1.00		0.95	0.99	1.00	0.82
0.00	4	6	0.98	0.99	1.00	0.98	0.99	1.00		0.98	0.99	1.01	1.02
0.50	0	2	0.67	0.60	0.87	0.68	0.61	0.90		0.67	0.60	0.87	0.60
0.50	0	6	0.95	0.77	0.81	0.95	0.77	0.82		0.95	0.76	0.81	0.72
0.50	2	2	0.80	0.70	0.90	0.81	0.71	0.90		0.80	0.69	0.89	0.62
0.50	2	6	0.95	0.77	0.80	0.96	0.78	0.81		0.95	0.77	0.80	0.71
0.50	4	2	0.91	0.80	0.87	0.92	0.80	0.84		0.91	0.80	0.84	0.63
0.50	4	6	0.96	0.78	0.87	0.97	0.78	0.79		0.96	0.78	0.78	0.70
0.95	0	2	0.17	0.11	0.14	0.17	0.12	0.14		0.17	0.11	0.14	0.11
0.95	0	6	0.63	0.18	0.13	0.65	0.18	0.14		0.64	0.17	0.14	0.12
0.95	2	2	0.28	0.15	0.16	0.29	0.15	0.18		0.29	0.14	0.17	0.12
0.95	2	6	0.66	0.18	0.13	0.67	0.18	0.14		0.66	0.18	0.13	0.12
0.95	4	2	0.50	0.19	0.16	0.51	0.19	0.17		0.50	0.19	0.16	0.12
0.95	4	6	0.72	0.18	0.13	0.73	0.19	0.13		0.71	0.18	0.13	0.12

Table: Average Compound Loss Across 1000 Simulations with N = 1000