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Introduction

@ Most regularization methods shrink toward 0,
or some other arbitrary point.

@ What if we instead shrink toward parameter values
consistent with the predictions of economic theory?
@ Most economic theories are only approximately correct.
Therefore:
e Testing them always rejects for large samples.
e Imposing them leads to inconsistent estimators.
e But shrinking toward them leads to uniformly better estimates.
@ Shrinking to theory is an alternative to the standard paradigm
of testing theories, and maintaining them
while they are not rejected.

@ Yields uniform improvements of risk,
largest when theory is approximately correct.



@ General construction of estimators shrinking to theory:

o Parametric empirical Bayes approach.
o Assume true parameters are theory-consistent parameters

plus some random effects.

e Variance of random effects can be estimated,

and determines the degree of shrinkage toward theory.

@ We apply this to:

1.

Consumer demand

shrunk toward negative semi-definite
compensated demand elasticities.

Effect of labor supply on wage inequality
shrunk toward CES production function model.

. Decision probabilities

shrunk toward Stochastic Axiom of Revealed Preference.

. Expected asset returns

shrunk toward Capital Asset Pricing Model.
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Two complementary characterizations of risk (MSE)

1. Approximate, for the high-dimensional case.

e Variability of hyper-parameters negligible.
e Simple characterization.
e Marginal likelihood maximization vs. risk minimization.

2. Exact, using Stein's unbiased risk estimate.
e In analogy to proof of uniform dominance of James-Stein.

o Key novelty: Extension to the case of inequality restrictions.
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A simple construction of shrinkage-estimators

@ Goal: constructing estimators shrinking to theory.

@ Preliminary unrestricted estimator:

@ Restrictions implied by theoretical model:
B2eB®={b: R,-b=0, Ry-b<0}.
e Empirical Bayes (random coefficient) construction:
B=B°+¢,
¢~ N(0,72-1),
B e B



Solving for the empirical Bayes estimator

@ Marginal distribution of E given Bo, T2
B1Bo, 7% ~ N(B%, 721+ V)

e Maximum likelihood estimation of Bg, 72 (tuning):

(507?2) = argmin log (det (12 I+ \7))
BOeBO, t2>0
1

(B0 (214 V) (B 1),

e “Bayes’ estimation of B (shrinkage):

~ ~ o~ 71 ~ -~
pre =B+ (14 5V) -5
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Application 1: Consumer demand

@ Consumer choice and the restrictions on compensated demand
implied by utility maximization.

@ High dimensional parameters if we want to estimate demand
elasticities at many different price and income levels.
@ Theory we are shrinking to:
o Negative semi-definiteness of compensated quantile demand
elasticities,
e which holds under arbitrary preference heterogeneity by Dette
et al. (2016).
@ Application as in Blundell et al. (2017):

e Price and income elasticity of gasoline demand,
e 2001 National Household Travel Survey (NHTS).
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Unrestricted demand estimation
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Empirical Bayes demand estimation

price elasticity of demand

restricted estimator
unrestricted estimator
empirical Bayes
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Application 2: Wage inequality

@ Estimation of labor demand systems, as in literatures on
o skill-biased technical change, e.g. Autor et al. (2008),
e impact of immigration, e.g. Card (2009).
@ High dimensional parameters if we want to allow for flexible
interactions between the supply of many types of workers.
@ Theory we are shrinking to:
e wages equal to marginal productivity,
e output determined by a CES production function.
@ Data: US State-level panel for the years 1960, 1970, 1980,
1990, and 2000 using the Current Population Survey, and
2006 using the American Community Survey.
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Counterfactual evolution of US wage inequality

Historical evolution

2-type CES model
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Some theory — canonical coordinates

@ By orthogonal change of coordinates, w.l.o.g.
V= diag(vj).

@ Then

and

0
(B\O %\2):argmin lz |Og(12+v)+(ﬁ1_bj)
, b0cBO, 12 j ’ 72+ Vj
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Approximate MSE
@ Mean squared error for fixed by, 72: MSE(BEB(bO,TZ),B) =

£ () o (e ]

@ Hyper-parameters maximizing expected LLH:

2
(ﬁO 2 1 XJ" ( <ﬁj_bjo) +Vj
,T%°) = argmin 3 log(t° 4+ vj) + ———+——
wepo” o ’ 2+

Under [some empirical Bayes assumptions]
SE(B®.B) — MSE(B(B°.7"%).B) —P 0

as J — oo,
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Marginal likelihood vs. MSE

e FOCs for optimal 72 in high dimensional limit.
@ Minimizer of MSE:

J v2
J; m ' (TXZ —(Bj _ﬁjo)2)] =0.

Maximizer of expected marginal LLH:

; 1 *2 02
> [(r*2+vj)2(f —(Bi—B;) )] =0.

Jj=1

The two differ when B; and v; are correlated across .

@ In that case, EB can be inefficient.
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Exact characterization of risk: SURE

@ Consider canonical coordinates with V =/, and restrictions of

the form

Boz{b: bla"')bK:O, bK+17-«-,bL§O}.

@ Denote R = Zszl EJ? +ZJ'L:K+1 max(ﬁj, 0)2. Then

0 j=1,...K
max(B;,0) j=K+1,...,L
ﬁj j=L+1,...,J

%\2

EoB j=1..K )
orj=K+1,....,Land B; >0,
B; else.

)
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Exact characterization of risk, continued

Under these assumptions, MSE (B EB B) =1+ Eg[A], where

L [J+4-2J] R>J
A= E o 1)
5 [R—2J7] else,

R= Zszl ﬁj? -|—ZJ.L:K+1 max(f;,0)?, and
F=K+EE 108 > 0).

Immediate consequence: EB has uniformly lower risk than the
unrestricted estimator for all B if

J > Jj2+2.
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Summary

@ Proposed estimator construction:

1.
2.

First-stage: estimate neglecting the theoretical predictions.

Assume: True parameter values = parameter values
conforming to the theory + noise.

Maximize the marginal likelihood of the data given the
hyperparameters. (Variance of noise &~ model fit!)
Bayesian updating | estimated hyperparameters, data =
estimates of the parameters of interest.

@ Implement for range of applications / theories:

1.
2.
3.
4.

Consumer demand,

Effect of labor supply on wage inequality,
Decision probabilities,

Capital Asset Pricing Model.

@ Two characterizations of risk:

1.
2.

High-dimension asymptotics (simple and transparent).
Exact (somewhat more restrictive setting).
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Thank you!
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