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Introduction

Most regularization methods shrink toward 0,
or some other arbitrary point.

What if we instead shrink toward parameter values
consistent with the predictions of economic theory?

Most economic theories are only approximately correct.
Therefore:

Testing them always rejects for large samples.
Imposing them leads to inconsistent estimators.
But shrinking toward them leads to uniformly better estimates.

Shrinking to theory is an alternative to the standard paradigm
of testing theories, and maintaining them
while they are not rejected.

Yields uniform improvements of risk,
largest when theory is approximately correct.
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General construction of estimators shrinking to theory:

Parametric empirical Bayes approach.
Assume true parameters are theory-consistent parameters
plus some random effects.
Variance of random effects can be estimated,
and determines the degree of shrinkage toward theory.

We apply this to:

1. Consumer demand
shrunk toward negative semi-definite
compensated demand elasticities.

2. Effect of labor supply on wage inequality
shrunk toward CES production function model.

3. Decision probabilities
shrunk toward Stochastic Axiom of Revealed Preference.

4. Expected asset returns
shrunk toward Capital Asset Pricing Model.
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Two complementary characterizations of risk (MSE)

1. Approximate, for the high-dimensional case.

Variability of hyper-parameters negligible.
Simple characterization.
Marginal likelihood maximization vs. risk minimization.

2. Exact, using Stein’s unbiased risk estimate.

In analogy to proof of uniform dominance of James-Stein.
Key novelty: Extension to the case of inequality restrictions.
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A simple construction of shrinkage-estimators

Goal: constructing estimators shrinking to theory.

Preliminary unrestricted estimator:

β̂ |β ∼ N(β ,V )

Restrictions implied by theoretical model:

β
0 ∈ B0 = {b : R1 ·b = 0, R2 ·b ≤ 0}.

Empirical Bayes (random coefficient) construction:

β = β
0 + ζ ,

ζ ∼ N(0,τ2 · I ),
β
0 ∈ B0.
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Solving for the empirical Bayes estimator

Marginal distribution of β̂ given β0,τ
2:

β̂ |β0,τ
2 ∼ N(β

0,τ2 · I +V )

Maximum likelihood estimation of β0,τ
2 (tuning):

(β̂
0, τ̂2) = argmin

b0∈B0, t2≥0
log
(

det
(

τ
2 · I + V̂

))
+ (β̂ −b0)′ ·

(
τ
2 · I + V̂

)−1
· (β̂ −b0).

“Bayes” estimation of β (shrinkage):

β̂
EB = β̂

0 +

(
I +

1

τ̂2
V̂

)−1
· (β̂ − β̂

0).
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Application 1: Consumer demand

Consumer choice and the restrictions on compensated demand
implied by utility maximization.

High dimensional parameters if we want to estimate demand
elasticities at many different price and income levels.

Theory we are shrinking to:

Negative semi-definiteness of compensated quantile demand
elasticities,
which holds under arbitrary preference heterogeneity by Dette
et al. (2016).

Application as in Blundell et al. (2017):

Price and income elasticity of gasoline demand,
2001 National Household Travel Survey (NHTS).
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Unrestricted demand estimation
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Empirical Bayes demand estimation
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Application 2: Wage inequality

Estimation of labor demand systems, as in literatures on

skill-biased technical change, e.g. Autor et al. (2008),
impact of immigration, e.g. Card (2009).

High dimensional parameters if we want to allow for flexible
interactions between the supply of many types of workers.

Theory we are shrinking to:

wages equal to marginal productivity,
output determined by a CES production function.

Data: US State-level panel for the years 1960, 1970, 1980,
1990, and 2000 using the Current Population Survey, and
2006 using the American Community Survey.
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Counterfactual evolution of US wage inequality

1965 1970 1975 1980 1985 1990 1995 2000 2005

0

0.2

0.4

0.6

0.8

1

1.2

Historical evolution

1965 1970 1975 1980 1985 1990 1995 2000 2005

0

0.2

0.4

0.6

0.8

1

1.2

2-type CES model

1965 1970 1975 1980 1985 1990 1995 2000 2005

0

0.2

0.4

0.6

0.8

1

1.2

Unrestricted model

1965 1970 1975 1980 1985 1990 1995 2000 2005

0

0.2

0.4

0.6

0.8

1

1.2

Empirical Bayes

<HS, high exp

HS, low exp

HS, high exp

sm C, low exp

sm C, high exp

C grad, low exp

C grad, high exp

11 / 18



Some theory – canonical coordinates

By orthogonal change of coordinates, w.l.o.g.

V̂ = diag(vj).

Then

β̂
EB
j =

(
vj

τ̂2 + vj

)
· β̂ 0

j +

(
τ̂2

τ̂2 + vj

)
· β̂j .

and

(β̂
0, τ̂2) = argmin

b0∈B0,τ2

1
J ·∑

j

log(τ
2 + vj) +

(
β̂j −b0j

)2
τ2 + vj

 .
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Approximate MSE

Mean squared error for fixed b0,τ
2: MSE (β̂EB(b0,τ2),β ) =

1
J ·

J

∑
j=1

[(
τ2

τ2 + vj

)2

·vj +

(
vj

τ2 + vj

)2

· (βj −b0j )2

]
.

Hyper-parameters maximizing expected LLH:

(β
0,τ∗2) = argmin

b0∈B0,τ2

1
J ·

J

∑
j=1

log(τ
2 + vj) +

(
βj −b0j

)2
+ vj

τ2 + vj

 .
Theorem

Under [some empirical Bayes assumptions]

SE (β̂
EB ,β )−MSE (β̂

EB(β
0,τ∗2),β )→p 0

as J → ∞.
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Marginal likelihood vs. MSE

FOCs for optimal τ2 in high dimensional limit.

Minimizer of MSE:

J

∑
j=1

[
v2j

(τ×2 + vj)3
·
(
τ
×2− (βj −β

0
j )2
)]

= 0.

Maximizer of expected marginal LLH:

J

∑
j=1

[
1

(τ∗2 + vj)2
(
τ
∗2− (βj −β

0
j )2
)]

= 0.

The two differ when βj and vj are correlated across j .

In that case, EB can be inefficient.
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Exact characterization of risk: SURE

Consider canonical coordinates with V = I , and restrictions of
the form

B0 = {b : b1, . . . ,bK = 0, bK+1, . . . ,bL ≤ 0}.

Denote R = ∑
K
j=1 β̂ 2

j + ∑
L
j=K+1 max(β̂j ,0)2. Then

β̂
0 =


0 j = 1, . . .K

max(β̂j ,0) j = K + 1, . . . ,L

β̂j j = L+ 1, . . . ,J

τ̂
2 = max

(
1
JR−1,0

)
β̂
EB
j =


τ̂2

τ̂2+1
· β̂j j = 1, . . .K

or j = K + 1, . . . ,L and β̂j > 0,

β̂j else.
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Exact characterization of risk, continued

Theorem

Under these assumptions, MSE (β̂EB ,β ) = 1 +Eβ [∆], where

∆ =

{
1
R · [J + 4−2J∗] R > J
1
J · [R−2J∗] else,

(1)

R = ∑
K
j=1 β̂ 2

j + ∑
L
j=K+1 max(β̂j ,0)2, and

J∗ = K + ∑
L
j=K+11(β̂j > 0).

Immediate consequence: EB has uniformly lower risk than the
unrestricted estimator for all β if

J∗ > J/2 + 2.
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Summary

Proposed estimator construction:

1. First-stage: estimate neglecting the theoretical predictions.
2. Assume: True parameter values = parameter values

conforming to the theory + noise.
3. Maximize the marginal likelihood of the data given the

hyperparameters. (Variance of noise ≈ model fit!)
4. Bayesian updating | estimated hyperparameters, data ⇒

estimates of the parameters of interest.

Implement for range of applications / theories:

1. Consumer demand,
2. Effect of labor supply on wage inequality,
3. Decision probabilities,
4. Capital Asset Pricing Model.

Two characterizations of risk:

1. High-dimension asymptotics (simple and transparent).
2. Exact (somewhat more restrictive setting).
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Thank you!
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