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Abstract

We propose to use economic theories to construct estimators in empirical microe-

conomics that perform well when the theories’ empirical implications are approxi-

mately correct, but perform no worse than unrestricted estimators if the theories’

implications do not hold. We describe a construction of such estimators using the

empirical Bayes paradigm. We implement this construction in various settings, in-

cluding labor demand and wage inequality, and estimation of consumer demand.

We provide theoretical characterizations of the behavior of the proposed estimators,

and evaluate them using Monte Carlo simulations. Our approach is an alternative

to the use of theory as something to be tested or to be imposed on estimates. Our

approach complements uses of theory for identification and extrapolation.
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1 Introduction

There are various ways economic theory might be put to use in empirical microeco-

nomics.1 A common role of theory is to provide predictions with empirical content.

These predictions might be tested, using statistical tests controlling size at conventional

levels such as 5%. A theory that has not been rejected is maintained. The predictions

of a theory (which has not been rejected) might then be imposed on estimated parame-

ters. Theory might further provide the assumptions necessary to identify objects such as

causal effects or economic primitives, which would not be identified based on observation

alone. It might also be used to extrapolate to counterfactual settings. Finally, theory

may provide guidance for researchers in terms of what questions to take to the data, in

a way that is harder to formalize.

We propose a further, alternative use of economic theory in empirical research. For

the purposes of this paper, we consider as “theory” any argument that leads to prior

restrictions on a parameter vector β, where β would be identified even in the absence

of these restrictions. We suggest a framework for the construction of estimators which

perform particularly well when the empirical implications of a theory under consideration

are approximately correct. By “approximately correct” we mean that deviations from

the theory’s predictions are of the same order of magnitude as the standard errors of

unrestricted estimates. Estimators constructed in the proposed way tend to outperform

estimators ignoring the theory, regardless of what the true data generating process is

and whether the theory is correct or not. Our approach provides an alternative to the

testing and imposition of theories. We will argue that it is well suited for theories that

are only approximately correct, as might be the case for many theories in economics. If

the restrictions implied by theory do not hold, their rejection by tests is only a matter of

sample size, and their imposition might cause estimators to be biased and inconsistent.

Our approach is complementary to the roles of theory in identification and in guiding

the choice of research questions.

Estimator construction Our approach is based on estimators shrinking toward the

theory in a data dependent way. Such estimators can be constructed as follows. Our

construction uses the empirical Bayes paradigm, which requires a family of priors. We

1We thank Alberto Abadie, Isaiah Andrews, Gary Chamberlain, Ellora Derenoncourt, Liran Einav,
Yuriy Gorodnichenko, Kei Hirano, Michael Kummer, José Montiel Olea, Ashesh Rambachan, Neil Shep-
hard, several anonymous referees, as well as seminar participants at Duke, Harvard, UBC, SFU, Hebrew
University, Tel Aviv University, University of Graz, JKU Linz, University of Rochester, and Bank of
Canada for helpful discussions and comments.
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consider families of priors for the parameters of interest, where the priors are centered

on the set of parameters consistent with the predictions of the theory. These priors are

further governed by a parameter of dispersion, providing a measure for how well the

theory appears to describe the data. A prior with a dispersion of zero would correspond

to imposing the theory; an infinite dispersion to an uninformative prior, ignoring the

theory, and estimating an unrestricted model.

Estimation proceeds in three steps. In a first step, the parameters of interest are es-

timated in an unrestricted way, ignoring the predictions of economic theory. This yields

noisy but consistent preliminary estimates. This first step requires that the parameters

of interest are identified even when ignoring the theory. In a second step, the hyper-

parameters governing the family of priors are estimated. The hyper-parameters include

both the parameters of the restricted model and the measure of dispersion, where the

latter provides a measure of model fit. The hyper-parameters can be estimated by max-

imizing the marginal likelihood for the preliminary estimates, or alternatively by using

a method-of-moments estimator, or by minimizing Stein’s unbiased risk estimate. In a

third step, “posterior means” for the parameters of interest are calculated, condition-

ing on the preliminary estimates and on the estimated values for the hyper-parameters.

These posterior means are “shrinking” the preliminary estimates toward the restricted

model.

Contributions The main contribution of this paper is to bring together economic

theory with the tools of the empirical Bayes paradigm, in order to leverage economic

theory for improved estimation in a way that contrasts with the “testing and imposition”

approach. Empirical Bayes estimators were originally proposed by Robbins (1956); they

are closely related to shrinkage estimators as introduced by James and Stein (1961) and

characterized by Stein (1981). Parametric empirical Bayes was introduced by Morris

(1983). The empirical Bayes estimators usually considered in the statistics literature

shrink toward an arbitrary point in the parameter space, such as 0. We instead modify

the construction to shrink toward parameter sets consistent with economic theories such

as structural models of labor demand (as in Card 2009), or the theory of consumer

choice (as in Blundell et al. (2017)). The supplementary appendix discusses additional

applications shrinking toward the predictions of general equilibrium models of asset

markets (as in Jensen et al. 1972), to structural discrete choice models of consumer

demand (as in Train 2009), or toward the predictions of abstract theories of economic

decision making (as in McFadden 2005).
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In addition to proposing to use the restrictions implied by economic theory to con-

struct shrinkage estimators, and providing guidelines and examples for implementation,

we develop statistical theory results, characterizing the behavior of the proposed estima-

tors. Our estimators are related to but different from the shrinkage estimators discussed

in Hansen (2016); our results complement those of Hansen (2016) in a way discussed in

greater detail below.

Our approach stands in contrast to other approaches for estimating the parameters

of interest, including (i) unrestricted estimation, (ii) estimation imposing the theory,

(iii) fully Bayesian estimation, and (iv) pre-testing where the theory is imposed if and

only if it is not rejected. There are a number of advantages to our approach relative to

these alternatives. (i) The resulting estimates are consistent, i.e., converge to the truth

as samples get large, for any parameter values, in contrast to estimation imposing the

theory. (ii) The variance and mean squared error of the estimates is smaller than under

unrestricted estimation. Simulations, finite sample characterizations, and asymptotic

approximations show this is the case uniformly over most of the parameter space.2 (iii)

In contrast to a fully Bayesian approach, no tuning parameters (features of the prior)

have to be picked by the researcher. (iv) Our empirical Bayes approach avoids the

irregularities (poor mean squared error in intermediate parameter regions) which are

associated with testing theories and imposing them if they are not rejected (cf. Leeb

and Pötscher, 2005). (v) Counterfactual predictions and forecasts are driven by the

data whenever the latter are informative.

After introducing our approach in Section 2, we implement it in two economic con-

texts in Section 3. These contexts are distinguished in particular by the type of “theory”

considered, including parametric structural models of production and labor demand, and

the general theory of consumer demand. The applications in the supplement consider

general equilibrium models of financial markets, structural models of preferences, and

abstract theories of decision making. Let us briefly sketch the settings considered in the

main paper.

Labor demand and wage inequality Wage inequality has increased significantly in

most industrial countries since the 1980s. There is considerable disagreement over the

relative contribution to this increase of alternative factors, such as technical change (Au-

tor et al., 2008), migration (Card, 2009), and institutional factors (Fortin and Lemieux,

1997). Some of these disagreements have methodological roots. The workhorse method

2It is however possible to construct counter-examples when hyper-parameters are estimated by max-
imizing the marginal likelihood, see Section 4.2.
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of estimating structural models of labor demand yields results that depend on the specific

model chosen and the implied substitutability patterns. Flexible (unrestricted) estima-

tion, on the other hand, results in very noisy estimates. We propose instead estimating

flexible systems of labor demand, shrinking toward the predictions of a canonical model

such as the 2-type constant elasticity of substitution (CES) model. We apply this method

to data from the Current Population Survey (CPS) and the American Community Sur-

vey (ACS). We generally find negative but small inverse elasticities of substitution. The

explanatory power of changes in labor supply for changes in relative wages appears to

be quite small, based on our estimates. The 2-type CES model does not fit our data

very well.

Consumer demand and the Slutsky condition The price and income elasticities

of consumer demand are key parameters for the design of taxes and other policies. The

price and income elasticity of gasoline demand, for instance, matter for the effectiveness

and incidence of potential taxes aiming to reduce carbon emissions. A large literature

considers the estimation of consumer demand; recent contributions to this literature

include Dette et al. (2016) and Blundell et al. (2017).

Assuming exogenous variation of prices and income, the elasticities of demand can

be estimated using local linear quantile regression or related nonparametric methods.

If demand arises from utility maximization by consumers, then compensated own-price

elasticities of demand are non-positive. Dette et al. (2016) show that negative semi-

definiteness of compensated demand slopes holds not only for individual demand func-

tions, but also for quantile demand functions. This is a theoretical restriction on price

and income elasticities which could be imposed in order to improve estimator precision,

as in Blundell et al. (2017). We propose to instead use an estimator that shrinks to-

ward this theoretical restriction. In our application to gasoline demand using the 2001

National Household Travel Survey (NHTS), unrestricted estimates of price elasticities

violate this restriction for high and low prices. The empirical Bayes estimator, by con-

trast, yields elasticities that are close to zero or negative over the entire range of observed

prices. Negative compensated elasticities provide a good fit for our data.

Characterizations of estimator properties In Section 4 we provide characteriza-

tions of the behavior of the proposed estimators. We first show consistency and charac-

terize the mapping from unrestricted estimates to empirical Bayes estimates. Our key

results in this section are Theorem 1 and Theorem 2, which provide complementary

characterizations of the mean squared error of the proposed estimators. Theorem 1 uses

5



an asymptotic approximation that is valid whenever the hyper-parameters are estimated

with small variance relative to the parameters of interest. This approximation works

well when the dimension of hyper-parameters is small, as in our application to labor

demand. Theorem 2 provides a characterization of the mean squared error which does

not rely on asymptotic approximations, and instead uses Stein’s unbiased risk estimate.

This characterization assumes normality of unrestricted estimates, but covers the case of

theoretical restrictions which allow for high-dimensional hyper-parameters, as in our ap-

plication to consumer demand where only inequality restrictions are imposed by theory.

This characterization allows us to prove uniform dominance of our estimator relative to

the unrestricted estimator, under certain conditions. Monte Carlo simulations (in the

supplementary online appendix) confirm the validity of our characterizations of risk for

realistic specifications.

Roadmap The rest of this paper is structured as follows: Section 2 discusses the em-

pirical Bayes paradigm and introduces our proposed construction of estimators. This

section also reviews some related literature. Section 3 implements and adapts this con-

struction to the economic settings described above. Section 4 develops statistical theory

for the estimators we consider, including consistency and theoretical characterizations

of their risk properties. Section 5 concludes. Appendix A describes a way to construct

empirical Bayes confidence sets, based on the heuristic arguments of Laird and Louis

(1987). Appendix B contains all proofs. The supplementary online appendix contains

additional applications, Monte Carlo simulations, a geometric analysis of the proposed

estimators, some additional discussion of labor demand systems, and a discussion of nu-

merical methods for maximizing the marginal likelihood for our application to decision

theory.

2 Estimator construction

Throughout this paper, we assume that there is a preliminary estimator β̂ of the pa-

rameter vector of interest, β, where the preliminary estimator does not make use of

restrictions implied by economic theory. Economic theory is assumed to provide overi-

dentifying restrictions on β; for simplicity of exposition, we focus on linear equality- and

inequality-restrictions in this section. We briefly discuss how smooth restrictions are

asymptotically equivalent to linear restrictions. We use these restrictions to construct

an estimator β̂EB designed to outperform β̂ if the restrictions are approximately correct,
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and to perform no worse than β̂ if they are not. In Section 3 we will then adapt this

setting to our applications, detailing in each case where the preliminary estimator and

the theoretical restrictions are coming from.

This section is structured as follows. First, we introduce the setup in Section 2.1

and review the general empirical Bayes approach in Section 2.2. Section 2.3 presents our

proposed empirical Bayes estimator. Section 2.4 reviews some of the relevant literature

on empirical Bayes estimation and shrinkage.

2.1 Setup

Throughout this section, we consider as our object of interest a J-vector β. We assume

the availability of a preliminary, unrestricted estimator

β̂ ∼ N(β, V ), (1)

of β, with consistently estimable variance V . This assumption implies that β is identi-

fied. The assumption of normality is best thought of as an asymptotic approximation.

We will use the assumption of normality in order to construct estimators within the

empirical Bayes paradigm. Most of our discussion of the theoretical properties of these

estimators will not use normality. Asymptotically normal estimators β̂ might for in-

stance be obtained using linear regressions, Y = X · β + ε, which might be estimated

using ordinary least squares, instrumental variables, panel variation, etc.

The second key ingredient to our setting is the availability of overidentifying restric-

tions implied by economic theory. In this section, we will focus on the case where a

theoretical model implies that

β0 ∈ B0 = {b : R1 · b = 0, R2 · b ≤ 0}. (2)

Here B0 is the set of parameter vectors β0 satisfying the restrictions implied by theory,

including a set of linear equality restrictions R1 · b = 0, and a set of linear inequality re-

strictions R2 ·b ≤ 0. The inequality is to be understood componentwise, and the matrices

R1 and R2 are known. More generally, shrinkage toward non-linear smooth restrictions

(imposing that β0 lies in some smooth manifold) could be considered. Theorem 1 in

Hansen (2016) provides the type of result needed for such a generalization, using a local

asymptotic framework.

The results reviewed in chapter 7 of van der Vaart (2000) imply that, under suf-
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ficient regularity conditions and i.i.d. asymptotics, the likelihood ratio process of any

parametric model converges to the likelihood ratio process of the normal means problem

as considered here. Additionally, smooth restrictions on the mean vector asymptoti-

cally become linear restrictions on the local parameter. Under the framework of local

asymptotic normality, the assumptions we impose are therefore without loss of gener-

ality. Rather than explicitly invoking the apparatus of limiting experiments and local

asymptotic normality, the theoretical discussion in Section 4 below will impose the nor-

mal means / linear restrictions form of the limiting experiment directly.

2.2 General empirical Bayes estimation

Two approaches to estimation are commonly used in settings of this kind, one impos-

ing the restrictions of the theoretical model, and one leaving the model unrestricted.

Estimation based on the theoretical model has a small variance, but yields non-robust

conclusions and estimates that are biased and inconsistent if the model is mis-specified.

Estimation using the unrestricted model is unbiased and consistent, but leads to esti-

mates of large variance.

The paradigm of empirical Bayes estimation allows one to cover a middle ground

between these two approaches, and combines the advantages of both. An elegant expo-

sition of this approach can be found in Morris (1983). The parametric empirical Bayes

approach can be summarized as follows:

Y |η ∼ f(Y |η) (3)

η ∼ π(η|θ), (4)

where Y are the observed data, both f and π describe parametric families of distribu-

tions, and where usually dim(θ) ≤ dim(η) − 2. Note that θ might include a subset of

the parameters in η. Equation (3) describes the unrestricted model for the distribution

of the data given the full set of parameters η. Equation (4) describes a family of “prior

distributions” for η, indexed by the hyper-parameters θ.

Estimation in the empirical Bayes paradigm proceeds in two steps. First we obtain

an estimator of θ. This can be done by considering the marginal likelihood of Y given

θ, which is calculated by integrating over the distribution of the parameters η:

Y |θ ∼ g(Y |θ) :=

∫
f(Y |η)π(η|θ)dη. (5)
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In models with suitable conjugacy properties, such as the one we will consider below,

the marginal likelihood g can be calculated in closed form. A natural estimator for θ is

obtained by maximum likelihood,

θ̂ = argmax
θ

g(Y |θ). (6)

Other estimators for θ are conceivable and commonly used, as well. In the second step

of empirical Bayes estimation, η is estimated as the “posterior expectation”3 of η given

Y and θ, substituting the estimate θ̂ for the hyper-parameter θ,

η̂ = E
[
η|Y, θ = θ̂

]
. (7)

The general empirical Bayes approach includes fully Bayesian estimation as a special

case if the family of priors π contains just one distribution. This general approach also

includes unrestricted frequentist estimation as a special case, when θ = η. The general

approach finally includes structural estimation when again θ = η, and the support of θ

is restricted to parameter values allowed by the structural model. We can think of such

support restrictions as imposition of dogmatic prior beliefs, in contrast to non-dogmatic

priors that have full support.

2.3 An empirical Bayes model for our setup

Let us now specialize the general empirical Bayes approach to the setting considered in

this paper. We directly model the distribution of the unrestricted estimator β̂. This un-

restricted estimator is then mapped to an empirical Bayes estimator β̂EB. To construct

a family of priors for β, we assume that β is equal to a vector of parameters consistent

with the structural model plus noise of unknown variance.

Modeling β̂ We assume that the unrestricted estimator β̂ is normally distributed

given the true coefficients, unbiased for the true coefficient vector β, and has a variance

V ,

β̂|β, V ∼ N(β, V ). (8)

This assumption can be justified by conventional asymptotics, letting the number n of

cross-sectional units go to infinity in many applications of interest (as in Hansen 2016).

3The quotation marks reflect the fact that this would only be a posterior expectation in the strict
sense if θ̂ had been chosen independently of the data, rather than estimated.
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We emphasize again that normality of β̂ is only used for estimator construction, and

is not imposed in our theoretical discussion of its properties in Section 4. We further

assume that we have a consistent estimator V̂ of V , i.e.,

V̂ · V −1 →p I,

where →p denotes convergence in probability.

Prior distributions We next need to specify a family of prior distributions. We model

β as corresponding to the coefficients of the structural model plus some disturbances,

that is

β = β0 + ζ,

ζ ∼ N(0, τ2 · I),

β0 ∈ B0. (9)

The term β0 ∈ B0 corresponds to a set of coefficients satisfying the structural model.

The term ζ is equal to a random J-vector with variance Var(ζ) = τ2 · I.

If we were to set τ2 = 0, the empirical Bayes approach would reduce to imposing

the theoretical model. If we let τ2 go to infinity, we effectively recover the unrestricted

model. We consider τ2 to be a parameter to be estimated, however, which measures

how well the given theoretical model fits the data. Note that this choice of a family of

priors is not “correct” or “incorrect” in an empirical setting; rather it is a device for the

construction of an estimator.

Summarizing our setting in terms of the general notation introduced in Section 2.2,

we get:

η = (β, V )

θ = (β0, τ2, V )

β̂|η ∼ N(β, V )

β|θ ∼ N(β0, τ2 · I). (10)

Solving for the empirical Bayes estimator In order to obtain estimators of β0

and τ2, consider the marginal distribution of β̂ given θ. This marginal distribution is

10



normal,

β̂|θ ∼ N(β0,Σ(τ2, V )), (11)

where (leaving the conditioning on θ implicit)

Σ(τ2, V ) = Var
(
β̂
)

= Var
(
E
[
β̂|η
])

+ E
[
Var

(
β̂|η
)]

= τ2 · I + V.

Substituting the consistent estimator V̂ for V , we obtain the empirical Bayes estimators

of β0 and τ2 as the solution to the maximum (marginal) likelihood problem

(β̂0, τ̂2) = argmin
b0∈B0, t2≥0

log
(

det(Σ(t2, V̂ ))
)

+ (β̂ − b0)′ · Σ(t2, V̂ )−1 · (β̂ − b0). (12)

If B0 is only subject to equality restrictions, but no inequality restrictions, then we

can simplify this optimization problem by concentrating out b0. Let M be a matrix the

columns of which form a basis of the orthocomplement of R1, so that R1 ·M = 0 and

rank(M)+rank(R) = J . With this notation, and given t2, the optimal b0 takes the form

of a GLS estimator and is equal to

β̂0 = M · (M · Σ(t2, V̂ )−1 ·M ′)−1 ·M · Σ(t2, V̂ )−1 · β̂.

Substituting this expression into the objective function, we obtain a function of t2 alone,

which is easily optimized numerically.

Given the unrestricted estimates β̂, as well as the estimates β̂0 and τ̂2, we can finally

obtain the “posterior expectation” of β as

β̂EB = β̂0 +

(
I +

1

τ̂2
V̂

)−1
· (β̂ − β̂0). (13)

This is the empirical Bayes estimator of the coefficient vector of interest.

Discussion It is instructive to relate the proposed empirical Bayes procedure to re-

stricted estimation, where the theoretical model is imposed. The empirical Bayes es-

timator β̂EB of β is not given by β̂0. Instead we can think of it as an intermediate

point between β̂0 and the unrestricted estimator β̂. The relative weights of these two

are determined by the matrices τ̂2 · I and V̂ . When τ̂2 is close to 0, we get β̂EB ≈ β̂0.
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When τ̂2 is large, we get β̂EB ≈ β̂, cf. Equation (13).

Our construction of a family of priors thus implies the following: When the restricted

model appears to describe the data well, then our estimate of β will be close to what

is prescribed by the restricted model. When the restricted model fits poorly, then the

estimator will essentially disregard it and provide estimates close to the unrestricted

ones. A key point to note is that this is done in a data-dependent and smooth way, in

contrast to the discontinuity of pre-testing estimators such as

β̂PT = β̂0 + ψ · (β̂ − β̂0), ψ = 1
(

(β̂ − β̂0)′V̂ −1(β̂ − β̂0) > χ
)
,

where χ is the 1− α critical value of the appropriate χ2 distribution.

The estimator β̂0 is very similar to the restricted estimator of β obtained by directly

imposing the theoretical constraints when estimating β; in both cases we are considering

an orthogonal projection of the unrestricted estimator β̂ onto the set B0 of estimates

consistent with the theory. The projection is with respect to different norms, however.

When the restricted estimator is obtained by least squares regression of Y on X subject

to linear constraints, the projection is with respect to the norm ‖b‖β := (b′ ·Var(X)·b)1/2.
In the context of our empirical Bayes approach, the projection is with respect to the

norm ‖b‖β,EB = (b′ · Σ(t2, V̂ )−1 · b)1/2. The two objective functions coincide (up to a

multiplicative constant) if (i) t2 = 0, so that the restricted model is assumed to be cor-

rect, and (ii) V̂ is estimated assuming homoskedasticity.

Our approach is based upon directly modeling the distribution of the unrestricted

estimator β̂. If β̂ contains the coefficients of an OLS regression, there is a one-to-one

mapping between (i) the dependent variables Y and (ii) the estimated coefficients and

residuals of the unrestricted model. To the extent that β̂ is a sufficient statistic for β,

our approach does not waste any information; this is true, in particular, for a standard

parametric linear/normal model.

Using SURE to estimate τ2 Our empirical Bayes estimator uses the marginal like-

lihood to estimate both τ2 and β0. The resulting estimator of τ2 behaves well when

the dimension of B0 is small relative to the dimension of β. When the dimension of

B0 is not small, then maximum likelihood might choose a value of τ2 that is too small.

The resulting estimator β̂EB shrinks too aggressively toward B0. This is the case for

instance when B0 is constrained only by inequality restrictions, as in our application to

consumer demand.
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An alternative to maximization of the marginal likelihood for choosing hyper-parameters

is minimization of Stein’s unbiased risk estimate. Denote β̂EB(τ2) = β̂0+
(
I + 1

τ2
V̂
)−1
·

(β̂ − β̂0), where β̂0 = argmin b0∈B0(β̂ − b0)′ · Σ(τ2, V̂ )−1 · (β̂ − b0) as before. Let

g(β̂) = β̂ − β̂EB(τ2)

SURE(τ2) = trace
(
V̂
)

+
∥∥∥g(β̂)

∥∥∥2 + 2 · trace
(
∇g(β̂) · V̂

)
. (14)

It follows from Theorem 1 in Stein (1981) that SURE(τ2) is an unbiased estimator of

the mean squared error of the estimator β̂EB(τ2) when β̂ ∼ N(β, V̂ ). Choosing τ̂2 as

the minimizer of SURE(τ2) yields an estimator β̂EB(τ̂2) with small mean squared error.

We use this approach in our application to consumer demand in Section 3.2.

2.4 Related literature

The main contribution of the present paper is to bring together economic theory with the

tools of the empirical Bayes paradigm, to leverage economic theory for improved estima-

tion. Our approach builds on a long tradition of research on empirical Bayes methods

in statistics, which has its roots in the seminal contributions of Robbins (1956), who

first considered the empirical Bayes approach for constructing estimators, and James

and Stein (1961), who demonstrated that the conventional estimator for the mean of a

multivariate normal vector (of dimension greater than 2) is inadmissible and dominated

by empirical Bayes estimators. Empirical Bayes approaches were developed further by

Efron and Morris (1973) and Morris (1983). The latter introduced the parametric em-

pirical Bayes framework on which we build. Practical implementation of non-parametric

empirical Bayes has recently been discussed by Koenker and Mizera (2014). Inference

in empirical Bayes settings was discussed by Laird and Louis (1987) and Carlin and

Gelfand (1990), among others; a review can be found in Casella et al. 2012. A good

introduction to empirical Bayes estimation can be found in Efron (2010), another review

is provided by Zhang (2003). In the introduction, we contrasted our approach to the

pre-testing approach. In this alternative approach, the theoretical predictions β ∈ B0

are first tested and then imposed on a second-stage estimator if and only if they are not

rejected. Such pre-testing approaches are known to perform poorly in terms of mean

squared error for intermediate parameter values in a neighborhood of the set B0. This

is familiar from the literature on “Hodges’ estimator”; see for instance the discussion in

Leeb and Pötscher (2005).

In Section 4, we provide a theoretical characterization of the risk properties of our
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empirical Bayes procedure. The first characterization relies on asymptotic arguments

related to those invoked by Xie et al. (2012), the second one on the characterization of

risk by Stein (1981). Graham and Hirano (2011) propose an estimator for missing data

models that shrinks nonparametric estimates towards the predictions of a parametric

linear model, using an approach similar to ours. Ideas related to our approach, in a fully

Bayesian setting, have also been used in the literature on macroeconomic forecasting,

where theoretical DSGE models can be used to inform priors for the parameters of

statistical VAR models fit to the data. Del Negro and Schorfheide (2004) and Del Negro

et al. (2007), for instance, construct hierarchical Bayesian models for VARs, with a

hyperparameter measuring the fit of the theoretical model.

In an elegant recent paper complementing our analysis, Hansen (2016) studies the

asymptotic properties of component-wise linear shrinkage estimators in parametric mod-

els. Allowing for nonlinear models, smooth nonlinear restrictions, and smooth non-

quadratic loss functions, Hansen (2016) uses local asymptotics to recover a setting with

normally distributed estimators, linear restrictions, and quadratic loss functions. Hansen

(2016) proposes a class of shrinkage estimators that component-wise linearly interpolate

between an unrestricted and a restricted estimator and studies their risk properties using

the asymptotic normal approximation.

The focus of the present paper differs from Hansen (2016). Our focus is on leveraging

economic theory in empirical research, on providing guidelines for estimator construc-

tion, and on implementations in several economic settings. The models and estimators

we consider also differ from those in Hansen (2016). We construct estimators based on

economic theory using the empirical Bayes paradigm. To this end, we consider a family

of priors centered on theoretical restrictions. The resulting estimators differ from the

component-wise linear interpolation with constant shrinkage factors proposed by Hansen

(2016); our estimators shrink components which are less precisely estimated more toward

the theory. Our estimators therefore combine information from the data with extrap-

olations from other components of the parameters of interest, extrapolations that are

implied by economic theory, as we discuss in Section 4.1.

The framework which we have discussed in Section 2 takes normality of unrestricted

estimators and linearity of restrictions as given; this is asymptotically justified even in

nonlinear models as Hansen (2016) demonstrates. Future research might more formally

apply his asymptotic results to our settings. In the supplementary Appendix, we also

implement our general approach in economic settings involving non-normal models.
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3 Applications

We now turn to two applications of our proposed approach. These applications are

chosen from the fields of (i) labor demand and wage inequality, and (ii) consumer demand

and estimation of price and income elasticities. The supplementary appendix discusses

additional applications to (iii) financial asset returns and the capital asset pricing model,

(iv) multinomial logit and mixed multinomial logit models of discrete choice in panel

data, and (v) economic choice and general theories of decision making, such as utility

maximization.

Applications (i), (ii) and (iii) are covered by the normal-linear framework introduced

in Section 2, up to some minor modifications. Applications (iv) and (v) demonstrate the

possibility of extensions to nonlinear settings. In each of these settings we construct es-

timators shrinking toward an economic theory, where the meaning of “economic theory”

differs across applications, ranging from parametric structural models of production or of

preferences, to the theory of utility maximizing consumer choice, to general equilibrium

models of financial markets, to abstract theories of decision making.

3.1 Labor demand and wage inequality

In our first application we consider estimation of labor demand systems. Such systems

are commonly estimated in the literature on skill-biased technical change, e.g. Autor

et al. (2008), and in the literature on the impact of immigration, e.g. Card (2009).

Estimation of such demand systems involves high dimensional parameters to the extent

that we want to allow for flexible interactions between the supply of many types of

workers. In this application, the “theory” that we propose shrinking to corresponds

to models of wage determination consistent with wages equal to marginal productivity

where output is determined by a CES or nested CES production function.

3.1.1 Setup

Suppose there are J types of workers, j = 1, . . . , J , defined for instance by their level

of education and their potential experience. Consider a cross-section of labor markets

i = 1, . . . , n.4 Let Yij be the average log wage for workers of type j in labor market i,

and let Xij be the log labor supply of these same workers. Denote Yi = (Yi1, . . . , YiJ)

4We adopt cross-sectional notation for simplicity, similar arguments apply to time series or panel
data.
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and Xi = (Xi1, . . . , XiJ). We are interested in the structural relationship between labor

supply and wages, that is, in the inverse demand function.

CES-production functions, structural and unrestricted estimation The ma-

jority of contributions to the field impose a structural model, based on the assumptions

of a parametric aggregate production function of a CES or nested CES form, a small

number of labor-types, and wages equal to marginal productivity.5 These assumptions

motivate regressions of the following form (see for instance Autor et al. 2008 and Card

2009):

Yij − Yij′ = γjj′ + θ0 · (Xij −Xij′) + εijj′ . (15)

Equation (15) can be rewritten in a numerically equivalent way as a fixed effects regres-

sion with restrictions across coefficients:

Yij = αi + γj +
∑
j′

βjj′Xij′ + εij , (16)

β ∈ B0 = {b : b = θ0 ·M}, M = I − 1
JE,

where β is a J × J matrix of coefficients, I is the identity matrix, E is a matrix of 1s,

and M is the demeaning-matrix, projecting RJ on the subspace of vectors of mean 0.

To verify this equivalence, take the difference Yij − Yij′ based on Equation (16). This

equivalence is familiar from difference-in-differences regressions, which can equivalently

be written in fixed-effects form or in differenced form.

Rather than imposing the strong assumptions implied by the CES production func-

tion model or its generalizations, we could instead consider a linear specification with

a large number of types J and unrestricted own- and cross-elasticities. That is, we

could estimate (16), using least squares, without imposing any cross-restrictions on the

parameters βjj′ . Relative to this model, the CES production function restricts the J2-

dimensional parameter β to lie in a 1-dimensional subspace B0. Note, however, that

Equation (16) is not identified without further restrictions. Given the presence of the

fixed effects αi, we cannot pin down the effect of labor supply on the overall level of

wages. Adding an arbitrary vector to all rows of β, and adjusting the αi accordingly,

yields an observationally equivalent model. Differencing (16) across types j however

yields a model which is identified. Let ∆ be a (J − 1) × J matrix which subtracts the

5The CES production function takes the form fi(Ni1, . . . , NiJ) =
(∑J

j=1 γjN
θ0+1
ij

)1/(θ0+1)

, where

Nij = exp(Xij). Details are reviewed in the supplementary online appendix.
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first entry from each component of a J vector, ∆ = (−e, IJ−1), and define the differenced

matrix of coefficients δ = ∆ · β. We will consider δ as our main object of interest, and

estimate the unrestricted regression

∆ · Yi = ∆ · γ + δ ·Xi + ∆ · εi. (17)

There are J · (J − 1) free slope parameters to be estimated in the matrix δ. Relative

to this general linear fixed effects model, the CES production function imposes δ =

∆ · (θ0 ·M) = θ0 ·∆, which implies J2− J − 1 additional restrictions. The last equation

holds because ∆ ·M = ∆.

3.1.2 Empirical Bayes estimators

Empirical Bayes estimation, shrinking toward the J-type CES model We

next adapt the general approach introduced in Section 2 to the estimation of labor

demand. We discuss two cases. We first consider shrinkage toward the CES model

for the same set of types over which the unrestricted model is estimated. This CES

model is nested in the unrestricted model. We then discuss shrinkage of an unrestricted

model with many types toward the CES model for only two types. When types are

defined based on college / no college, this two-type model is the canonical model of

the literature on skill-biased technical change, cf. Acemoglu and Autor (2011). Similar

estimators are easily constructed for other models of production, such as the nested CES

model advocated by Card (2009).

Some minor modifications of the approach introduced in Section 2 are necessary.

In particular, the coefficients of interest δ that we now consider are in matrix form.

We denote the vectorized version of δ, stacking the columns on top of each other, by

δ↑ = vec(δ), and similarly for other matrices. Furthermore, a family of priors is most

naturally specified for β while estimation is for δ = ∆ · β. We model the coefficient

matrix β as corresponding to the coefficients of the structural CES model plus some

disturbances, that is

β = θ0 ·M + ζ, ζ↑ ∼ N(0, τ2I).

Differencing this model yields

δ = ∆ · β = θ0 ·∆ + ∆ · ζ.
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The variance of the second term, reflecting “prior uncertainty,” is given by Var((∆·ζ)↑) =

τ2 ·P ⊗ I, where P := ∆ ·∆′ = IJ−1 +EJ−1 and ⊗ is the Kronecker product of matrices.

This implies a prior variance of the unrestricted OLS estimator δ̂↑ equal to

Σ(τ2, V ) = Var
(
δ̂↑

)
= τ2 · P ⊗ I + V.

Substituting a consistent estimator V̂ for V , we obtain the empirical Bayes estimators

of θ0 and τ2 as solutions to the maximum (marginal) likelihood problem

(θ̂0, τ̂2) = argmin
h0,t2

log
(

det(Σ(t2, V̂ ))
)

+ (δ̂↑ − h0 ·∆↑)′ · Σ(t2, V̂ )−1 · (δ̂↑ − h0 ·∆↑).

Given t2, the optimal h0 is equal to θ̂0 = (∆ · Σ(t2, V̂ )−1 · ∆′)−1 · ∆ · Σ(t2, V̂ )−1 · δ̂↑.
Substituting this expression into the objective function, we obtain a function of t2 alone

that we optimize numerically. Given the unrestricted estimates δ̂, as well as the estimates

β̂0 and τ̂2, we obtain the empirical Bayes estimator of δ as

δ̂EB↑ = θ̂0 ·∆↑ + P ⊗ I ·
(
P ⊗ I +

1

τ̂2
V̂

)−1
· (δ̂↑ − θ̂0 ·∆↑). (18)

Empirical Bayes estimation, shrinking toward the 2-type CES model The

approach just described assumes that the structural model that we are shrinking to is

the CES model with types j = 1, . . . , J . In practice, we might want to shrink towards a

CES model with more aggregated types, such as the canonical model (cf. Acemoglu and

Autor, 2011) with just two types k of workers, where k = 1 denotes those with some

college or more, and k = 2 denotes those with high school or less.

To nest the 2-type model in a setting with J types, denote the aggregate type k

corresponding to type j by kj and denote the aggregate labor supply of this type by

Ñik. Define Xij = log(Nij/Ñikj ) and X̃ik = log(Ñik). Using this notation, we can

nest the canonical CES model in the following regression specification, which includes

regressors for both the dis-aggregated types j and the aggregated types k,

Yij − Yi1 = (γj − γ1) +
∑
j′

δjj′Xij′ + θ0 · (X̃ikj − X̃i1) + (εij − εi1). (19)

In this setting the matrix δ captures the additional effect of labor supply on relative

wages beyond the effect already taken care of by the term θ0 · (X̃ikj − X̃i1).

The canonical CES model implies the restriction δ = 0. The unrestricted approach
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estimates versions of this equation with δ left fully flexible. Our empirical Bayes approach

applied to this setting takes as its point of departure a first stage unrestricted estimator

(δ̂, θ̃0) of (δ, θ0), with estimated covariance matrix V̂ . We then consider the family of

priors δ↑ ∼ N(0, τ2 · P ⊗ I), where, as before, θ0 and τ2 are hyperparameters. Denote

the variance of the unrestricted estimators given θ0 and τ2 by

Σ(τ2, V ) = Var
(

(δ̂↑, θ̃
0)
)

=

(
τ2 · P ⊗ I 0

0 0

)
+ V ;

the conditional mean is given by (0, θ0). We obtain the empirical Bayes estimators of θ0

and τ2 as solutions to the maximum (marginal) likelihood problem

(θ̂0, τ̂2) = argmin
h0,t2

log
(

det(Σ(t2, V̂ ))
)

+ (δ̂↑, θ̃
0 − h0)′ · Σ(t2, V̂ )−1 · (δ̂↑, θ̃0 − h0)′.

Given t2, the optimal h0 is equal to θ̂0 = (e·Σ(t2, V̂ )−1 ·e′)−1 ·e·Σ(t2, V̂ )−1 ·(δ̂↑, θ̃0), where

e = (0, . . . , 0, 1). Substituting this expression into the objective function, we obtain a

function of t2 alone that we optimize numerically. We finally obtain the empirical Bayes

estimator of δ as

δ̂EB↑ = (τ̂2 · P ⊗ I, 0) · Σ(τ̂2, V̂ )−1 · (δ̂↑, θ̃0 − h0)′. (20)

3.1.3 Empirical application

We now turn to our empirical application, studying labor demand in the United States.

We use data that have been studied in the literatures on the impact of immigration on

native wages and on the impact of skill-biased technical change; see for instance Card

(2009), Autor et al. (2008), and Acemoglu and Autor (2011). We study the impact

of historical changes of the labor force composition on relative wages. Rather than

imposing one or the other of the models proposed in the literature (4-type CES, nested

2-type CES), we allow for arbitrary patterns of substitutability across a larger number

of types, but use our empirical Bayes methodology to shrink to the canonical 2-type

CES model.

Data Our analysis is based on the American Community Survey (ACS) data and

Current Population Survey (CPS) data used in much of the literature. We build two

aggregate data-sets. The first is a state-level panel for the years 1960, 1970, 1980, 1990,

and 2000 using the CPS, and 2006 using the ACS. Our construction of this data-set
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Figure 1: Log relative wages in the US – 2 types of workers
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Note: The top graph of this figure shows the US time series of log relative wages and
log relative labor supply between workers with more than a high school education, and
those with high school or less. The bottom graph shows the same, after subtracting a
linear trend in time with a kink-point in 1992. Calculations are based on the March
CPS. For details, see Section 3.1.3. This figure replicates similar figures in Autor et al.
(2008) and Acemoglu and Autor (2011).

builds on the specifications and the code provided by Borjas et al. (2012). The second

data-set is a national annual time-series for the years 1963-2008 using the March CPS.

Here we build on the specifications and code provided by Acemoglu and Autor (2011),

including their pre-cleaning of the data.

For both these data-sets we restrict the sample to individuals aged between 25 and

64 years, and with less than 49 years of potential experience. We drop all self-employed

or institutionalized workers. Labor supply for any given type of workers is defined as

total hours worked. When calculating average log wages for any given type, we further

restrict the sample to full-time workers (employed at least 40 weeks and working at least

35 hours per week) who are men. Our main analysis classifies workers into eight types,

by education (high school dropouts, high school graduates, some college, and college

graduates) and potential experience (less than 20 years and 20 years or more).
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Results We first replicate results from the literature. The leading specification in the

literature considers two types of workers, those with more than high school education

and those with high school or less. Log relative wages of these two types are regressed on

their log relative labor supply using national time series data for the US and controlling

for a linear trend with a kink-point in 1992 (see Autor et al. 2008 and Acemoglu and

Autor 2011). Running this regression, we replicate the estimate of -0.64 for the inverse

elasticity of substitution reported by Acemoglu and Autor (2011). The corresponding

time series are shown in Figure 1, where the first graph shows the actual series while

the second graph shows the residualized series after controlling for a kinked time trend.

We next estimate the same parameter using our state-level decadal panel, and con-

trolling for time and state fixed effects. Doing so, we find an elasticity of substitution

of the same sign, but much smaller magnitude: -0.06, with a standard error of 0.04.

We do not wish to take a stance on what causes this divergence of findings between

the time-series and the state panel, but will proceed with obtaining our main estimates

from the panel data. Using panel might be preferable to the extent that it allows us to

control for business cycle variation and secular time trends using time fixed effects.

We now turn to our analysis using more disaggregated types of workers, classifying

workers into 8 types by level of education and potential experience. The top left graph

in Figure 2 shows the historical evolution of log wages of all types relative to the wage of

high school dropouts with less than 20 years of potential experience. Clearly, there are

patterns in the evolution of wages not captured by the classification into just 2 types. In

particular, inequality across sub-types is rising over time, but in a non-linear manner.

The remaining graphs in this figure show the predicted (counterfactual) evolution of

wages as implied by alternative estimates of labor demand (based on the state panel)

and the historical evolution of labor supply (based on the national time series). Table 1

in the Appendix shows the corresponding coefficient estimates.

The top right graph of Figure 2 shows counterfactual wages as implied by the 2-type

CES model. For this model, by construction, relative wages of sub-types remain fixed.

The rising supply of college graduates, combined with the estimated inverse elasticity of

-0.06, imply a modest compression of relative wages over time. The actually observed

rising inequality would accordingly be due to demand factors.

The bottom left graph, and the second set of estimates in Table 1, are based on OLS

estimation of the unrestricted model. These estimates suggest, as does the structural

model, that changes of labor supply have induced a compression of wages over the initial

three decades of our period. Some additional patterns emerge however. First, shifts in
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labor supply induced a widening of inequality over the most recent two decades. Second,

these shifts also induced, over the initial three decades, a compression of wages between

different workers with high school degrees or less and a widening between those with

more than high school education. These effects appear to be reversed more recently.

The bottom right graph, and the final set of estimates in Table 1, are based on our

preferred empirical Bayes estimator. As suggested by theory, and confirmed by visual

inspection, these counterfactual predictions interpolate between those of the structural

model and those of the unrestricted model. They are designed to balance bias and

variance in a data-driven way. The predicted counterfactual changes of wages derived

from these estimates are qualitatively similar to the unrestricted model, but of reduced

magnitude.

The estimated τ̂2, our measure of model fit, is of a somewhat larger magnitude than

the variance of the OLS coefficient estimates. This implies some, but not excessive,

shrinkage towards the restricted estimates, thus leading to qualitatively similar conclu-

sions of unrestricted and empirical Bayes predictions. This also suggests that the 2-type

CES model does not provide a particularly good fit to our panel data.

3.2 Consumer demand and the Slutsky condition

In our second application we consider consumer choice and the restrictions on com-

pensated demand implied by utility maximization. In this application we build on a

rich literature on demand estimation, and more specifically on the recent contributions

of Dette et al. (2016) and Blundell et al. (2017). Utility maximization by consumers

implies that the matrix of slopes of compensated demand is symmetric and negative

semi-definite. Consider quantile demand functions, where quantiles are across a pop-

ulation of consumers with arbitrary preference heterogeneity. Dette et al. (2016) have

shown that negative semi-definiteness of compensated demand slopes holds not only for

individual demand functions, but also for quantile demand functions.

This application involves high dimensional parameters to the extent that we are

interested in estimating demand elasticities at many different price and income levels.

In this application, the theoretical restrictions that we propose shrinking to implies

negative semi-definiteness of compensated quantile demand elasticities, and in particular

non-positive compensated own price elasticities.
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3.2.1 Setup

Suppose that we have data on a set of consumers i = 1, . . . , n, where we observe the log

quantity Yi of a good (gasoline, in our application) purchased by each consumer i. Con-

sumer i is faced with a price Pi for the good under consideration and has income (total

expenditures) Wi. Our goal is to estimate the price elasticity of demand for gasoline,

at multiple price and income levels. To simplify our discussion, we shall assume that

prices and incomes are statistically independent of unobserved preference heterogeneity

across consumers. Controlling for covariates or using control functions as in Imbens and

Newey (2009) would yield immediate extensions to the endogenous case.

Unrestricted estimator Let qπ(p, w) be the π quantile of Yi given Pi = p,Wi = w,

where the quantile is across the distribution of consumers i and across the distribution

of prices for other goods. Our goal is to estimate the (uncompensated) price elasticity

βpj of the quantile demand function qπ(p, w) at a series of price levels p1, . . . , pJ and a

given income level w, as well as the corresponding income elasticity βwj ,

βpj =
∂ log qπ(pj , w)

∂ log p
, βwj =

∂ log qπ(pj , w)

∂ logw
.

We can get an unrestricted estimator of the price elasticity βpj and of the income elasticity

βwj using local linear quantile regression,

(α̂j , β̂
p
j , β̂

w
j ) = argmin

a,bp,bw

∑
i

Kh(logPi − log pj , logWi − logw)

· ρπ(Yi − a− bp · (logPi − log pj)− bw · (logWi − logw)), (21)

where Kh is a kernel function of bandwidth h (we use the Epanechnikov kernel), and

ρπ(e) = (π−1(e < 0)) ·e.6 We estimate the variance V of β̂ = (β̂pj , β̂
w
j )Jj=1, jointly across

all j, using the bootstrap. The variance of α̂j is negligible relative to V under standard

asymptotics, which is also true numerically in our application.

Negative compensated demand slopes Recall the classic consumer choice prob-

lem, as discussed in Chapter 3 of Mas-Colell et al. (1995). Let ~Xi be the k vector of

goods demanded by consumer i, where Yi = logXi1, and ~Pi the corresponding k vector

6For implementation of quantile regression, we use the code provided by Koenker (2005).
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of prices. Denote Pi = ~Pi1. Assume that ~Xi = ~Xi(~Pi,Wi), where

~Xi(~P ,w) = argmax
x

ui(x) s.t. x · ~P ≤ w,

where ui is a continuous and locally nonsatiated utility function that represents a strictly

convex preference relation. Define

Si(~P ,w) := ∂~P
~Xi(~P ,w) + ∂w ~Xi(~P ,w) · ~Xi(~P ,w)′.

The k × k matrix Si(~P ,w) collects the slopes of compensated (Hicksian) demand for

consumer i. By Propositions 3.G.2 and 3.G.3 in Mas-Colell et al. (1995), the matrix

Si(~P ,w) is negative semi-definite, symmetric, and satisfies S(~P ,w)~P = 0. Negative semi-

definiteness implies, in particular, that the diagonal elements of Si(~P ,w), corresponding

to the compensated own-price elasticities of demand, are non-positive.

Absent restrictions on heterogeneity it is not possible to identify the slopes of any

individual consumer’s demand function. With exogeneous variation of P and w we can,

however, identify quantiles qπ(p, w) of demand for good 1 across consumers given the

price of good 1 and given income. Under some regularity conditions, Theorem 1 in Dette

et al. (2016) implies that

Sπ,1(p, w) := ∂pq
π(p, w) + ∂wq

π
1 (p, w) · qπ(p, w) ≤ 0.

Underlying this result is the fact that the slopes of of the quantile demand function

qπ(p, w) are equal to the average of individual demand slopes conditional on Xi1(p, w) =

qπ(p, w). Rewritten in terms of elasticities, we get the inequality

∂log p1 log qπ(p, w) + ∂logw log qπ(p, w) · qπ(p, w)p/w ≤ 0. (22)

This is the quantile analog of the condition that compensated own price elasticities are

negative. Equation (22) is the key theoretical restriction which we use in this section in

the construction of our empirical Bayes estimator.

3.2.2 Empirical Bayes estimation

Written in terms of the slope parameters of our quantile regressions, Equation (22) can

be expressed as β = (βpj , β
w
j )Jj=1 ∈ B0,

B0 = {b : bpj + bwj · (αjpj/w) ≤ 0 ∀ j}. (23)
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We estimate β using the empirical Bayes estimator β̂EB, which is constructed as fol-

lows. This estimator shrinks the unrestricted estimator β̂ toward β̂0 ∈ B0. The hyper-

parameter τ2 is chosen to minimize Stein’s unbiased risk estimate (SURE).

β̂0(τ2) = argmin
b0∈B0

(β̂ − b0)′ · (τ2I + V̂ )−1 · (β̂ − b0)

β̂EB(τ2) = β̂0(τ2) +

(
I +

1

τ2
V̂

)−1
· (β̂ − β̂0(τ2))

g(β̂) = β̂ − β̂EB(τ2)

SURE(τ2) =
∥∥∥g(β̂)

∥∥∥2 + 2 · trace
(
∇g(β̂) · V̂

)
τ̂2 = argmin SURE(τ2)

β̂EB = β̂EB(τ̂2). (24)

3.2.3 Empirical application

We implement this approach in order to estimate the price and income elasticity of

gasoline demand. We use the data and sample construction of Blundell et al. (2017);

details can be found in their discussion, which we briefly summarize here. The data are

from the 2001 National Household Travel Survey (NHTS). Heterogeneity is reduced by

restricting the sample to households with a white respondent, two or more adults, at

least one child under age 16, and at least one driver. Households in the most rural areas

and in Hawaii are dropped, as are households with missing relevant variables or without

a gasoline based vehicle. The resulting sample contains 3,640 observations.

We first present unrestricted estimates using local linear quantile regression, with

bandwidths equal to the standard deviation of log price and log income, respectively,

and with log pj ranging over 80 gridpoints in the observed range of values for log price.

The income levels w considered are at the .25, .5, and .75 quantiles of the income

distribution in the sample. We focus on the median demand function, corresponding to

π = .5. For the local linear quantile regressions, we choose the bandwidth for both log p

and logw equal to their respective sample standard deviations. The joint variance of

the resulting estimates is estimated using the bootstrap, resampling 1000 times.

Figure 3 plots the resulting estimates for log gasoline demand, the budget share of

gasoline, the price elasticity βp, and the compensated price elasticity βpj +βwj · (αjpj/w),

each as a function of price pj . The figure also shows 95% confidence bands, based on

the bootstrapped standard errors. The estimates for log demand shown are similar to

the unrestricted estimates of Figure 1 in Blundell et al. (2017), where they use spline
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regression instead of local linear regression.

The budget share (αjpj/w) of gasoline among total expenditures is fairly small for

most price and income levels (the median budget share equals 0.026), and the income

elasticity βwj is less than .5 in most cases, so that the compensated elasticity is quite

close to the uncompensated elasticity βpj . The theoretical restriction implied by utility

maximization is that the compensated elasticity is non-positive. This restriction is vio-

lated for our unrestricted estimates for low and high price levels, for all income levels.

The restriction is satisfied for our unrestricted estimates at intermediate price levels.

Figure 4 again plots estimates of price elasticities and income elasticities across price

and income levels. This figure shows (i) unrestricted estimates β̂ (the same as in Figure

4), (ii) restricted estimates β̂0, subject to the theoretical restriction on compensated

price elasticities, and (iii) empirical Bayes estimates shrinking toward the theoretical

restriction. The restricted estimates are equal to the unrestricted estimates for price

levels pj where the unrestricted estimates of compensated elasticities are already non-

positive. The empirical Bayes estimates are intermediate between the unrestricted and

restricted estimates. The optimal shrinkage parameter τ2 is estimated using SURE in

order to minimimize mean squared error. We obtain estimates of 0.48, 0.32, and 0.38

for low, middle, and high incomes, respectively. This results in estimates that are closer

to the restricted estimates than to the unrestricted ones.
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Figure 3: Median gasoline demand
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Note: This figure shows unrestricted estimates of gasoline demand and of the corre-
sponding price and income elasticities across a range of price levels, based on local linear
quantile regression. The thin lines are 95% confidence bands based on the bootstrap.
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Figure 4: Empirical Bayes estimator of median gasoline demand elasticities
low incomes
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Note: This figure shows unrestricted, restricted, and empirical Bayes estimates of gaso-
line demand, where empirical Bayes shrinks unrestricted estimates toward the restriction
of non-positive compensated price elasticities.
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4 Behavior of the empirical Bayes estimator, its mean

squared error, and uniform dominance

In this section, we characterize the behavior of the empirical Bayes estimator introduced

in Section 2. We start with some basic properties. We show, in particular, consis-

tency of the estimator, demonstrate how counterfactual predictions combine theory and

available evidence in a data-driven, intuitive way, and rewrite the estimator in canon-

ical coordinates. The rest of this Section is then dedicated to characterizing the risk

function (mean squared error, MSE) of β̂EB. Section B in the supplementary appendix

explores the geometry of the mapping from the preliminary, unrestricted estimator β̂ to

the empirical Bayes estimator β̂EB.

The desirability of using our proposed estimator β̂EB hinges on the claim that it

delivers more precise estimates (estimates with lower MSE) relative to the unrestricted

estimator β̂. We justify this claim by characterizing the mean squared error of β̂EB

using two complementary approaches. The first approach uses an asymptotic approx-

imation, assuming that the dimension J of β is large relative to the dimension of the

hyper-parameters. For such high-dimensional estimation problems, the variability of

the estimated hyper-parameters (β̂0, τ̂2) is small relative to the variability of β̂. We

can therefore approximate (β̂0, τ̂2), which maximize the marginal likelihood, by (β0, τ2),

which maximize the expected marginal likelihood. With this approximation, β̂EB be-

comes a linear function of β̂, and we can write its MSE as a simple sum of variance and

squared bias terms.

The second approach uses Stein’s Unbiased Risk Estimate (SURE), to prove uniform

dominance relative to β̂ for fixed J . This approach takes into account the variability of

(β̂0, τ̂2). This approach extends the classic proof of uniform dominance of the James-

Stein shrinkage estimator to the case of shrinkage toward more general linear equality

and inequality restrictions.

These two approaches toward characterizing the MSE of our estimator are comple-

mentary and non-nested. While the first approach relies on a large-J approximation, it

does not require normality of β̂, nor does it restrict the form of V = Var(β̂) or the form

of the theoretical restrictions B0. The second approach, on the other hand, does not

rely on approximations, but it requires normality of β̂ and restricts V to a canonical case.
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Recall the form of the estimator introduced in Section 2,

(β̂0, τ̂2) = argmin
b0∈B0,t2

log
(

det(Σ(t2, V̂ ))
)

+ (β̂ − b0)′ · Σ(t2, V̂ )−1 · (β̂ − b0),

B0 = {b : R1 · b = 0, R2 · b ≤ 0},

β̂EB = β̂0 +

(
I +

1

τ̂2
V̂

)−1
· (β̂ − β̂0), (25)

where β̂, V̂ , and B0 are known, and Σ(τ2, V̂ ) = τ2 · I + V̂ . We shall consider this

estimator for the remainder of this section, and will assume throughout that Eβ[β̂] = β

(the unrestricted estimator is unbiased) and Varβ(β̂) = V = V̂ (the variance is known).

We use subscript β to emphasize that expectation and variance are taken for a given,

non-random β over the sampling distribution of β̂. We do not impose normality of β̂

until Section 4.3.

4.1 Consistency and data-driven predictions

In contrast to restricted estimation in the misspecified case, the empirical Bayes esti-

mator of β is consistent as sample size n goes to infinity. If V̂ →p 0, then β̂EB and

β̂ become asymptotically equivalent. Consistency of β̂EB therefore follows immediately

from consistency of unrestricted estimation.

Proposition 1 (Consistency)

Consider the empirical Bayes estimator defined in Equation (25). Assume that β̂ →p β

and V̂ →p 0 as n→∞. Then β̂EB →p β as n goes to infinity.

The proof of this proposition can be found in appendix B. The proof of consistency

relies on the fact that β̂EB ≈ β̂ if V̂ ≈ 0.

The formula for β̂EB given in Equation (25) shows that the empirical Bayes estimator

interpolates between the unrestricted estimator β̂ and the structural estimator β̂0. Sup-

pose we are interested in making a prediction of the form ŷ = x · β̂EB. Heuristically, we

would like our prediction to be based on the data alone (neglecting the structural model)

whenever the data by themselves do allow us to make a precise prediction. When, on the

other hand, a prediction of counterfactuals based on the data alone would be imprecise,

we would like to leverage the theoretical model. The following proposition shows that

this is exactly how the empirical Bayes estimator behaves.
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Proposition 2 (Counterfactual predictions)

Consider the empirical Bayes estimator defined in Equation (25). Consider the predic-

tion at x, ŷ = x · β̂EB, and assume that V̂ is non-singular. Then

∣∣∣ŷ − x · β̂∣∣∣ ≤ √xV̂ x
τ̂

· ‖β̂‖,

and
∣∣∣ŷ − x · β̂0∣∣∣ ≤ τ̂ ·√xV̂ −1x · ‖β̂‖.

The first inequality of proposition 2 tells us that empirical Bayes predictions are

close to unrestricted predictions whenever the standard deviation of the latter,
√
xV̂ x,

is small relative to the measure of model fit τ̂ . The second inequality tells us that

empirical Bayes predictions are close to predictions using the structural model when the

reverse situation holds. To gain intuition for this result, rearrange Equation (25),

β̂EB = β̂ + V̂ ·
(
τ̂2 · I + V̂

)−1
· (β̂0 − β̂).

Consider a point x such that x · V̂ · x′ ≈ 0, which implies x · V̂ ≈ 0. For such a point x,

we get

x · β̂EB = x ·
[
β̂ + V̂ ·

(
τ̂2 · I + V̂

)−1
· (β̂0 − β̂)

]
≈ x · β̂.

This suggests that for points x with small variance of the unrestricted prediction ŷ = x·β̂,

the predicted value ŷ using empirical Bayes is close to the predicted value using unre-

stricted estimation – and thus also close to the predicted value using the true coefficients

β, as the latter is estimated with small variance. This insight is relevant in particular

when considering historical counterfactuals (“how much did past changes in labor supply

affect wage inequality?”), that might rely on variation which is actually observed in the

data.

Canonical coordinates The variance matrix V̂ need not be diagonal in general. This

matrix is, however, symmetric and positive semi-definite. We can therefore always find

some orthonormal matrix O such that

V̂ = O · diag(vj) ·O′.

Expressing both β̂ and β̂EB in terms of coordinates corresponding to the columns of O,

it is then without loss of generality to assume V̂ = diag(vj). Quadratic estimation error
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is invariant under such an orthonormal change of coordinates, as well.

Under the assumption that V̂ = diag(vj), the empirical Bayes estimator is given by

a component-wise weighted average of β̂0 and β̂,

β̂EBj =

(
vj

τ̂2 + vj

)
· β̂0j +

(
τ̂2

τ̂2 + vj

)
· β̂j . (26)

The hyper-parameters β0 and τ2 are estimated by maximizing the marginal log likeli-

hood, which now simplifies to

(β̂0, τ̂2) = argmin
b0∈B0,τ2

1
J ·
∑
j

log(τ2 + vj) +

(
β̂j − b0j

)2
τ2 + vj

 . (27)

Writing β̂EB in canonical coordinates makes transparent how our estimator differs

from the family of estimators considered by Hansen (2016), which (in our setting) take

the form (
1− λ̂

)
· β̂0 + λ̂ · β̂,

so that each component of β̂ is shrunk by the same factor λ̂. Our estimator allows for a

more flexible form of shrinkage, where precisely estimated components of β̂ (components

with small vj) are not shrunk by much, whereas imprecisely estimated components are

shrunk substantially toward the predictions of the theoretical model.

4.2 Large J characterization of the MSE

One of the main arguments for using an empirical Bayes approach such as the one

proposed in this paper is that it performs well in terms of risk (mean squared error,

MSE). We might expect such favorable performance since our estimator is a close relative

of the James-Stein shrinkage estimator, which is well known to uniformly dominate the

unrestricted estimator for dimension J ≥ 3.

We now proceed to characterize the risk of our estimator for large J . The key

argument in our characterization is that variability of (β̂0, τ̂2) can be neglected for large

J when calculating the MSE. We formalize this argument in Theorem 1. We then discuss

the properties of the asymptotic approximation to risk obtained in this way and compare

it to an oracle-optimal choice of (β0, τ2).

33



Asymptotic characterization of risk Our goal is to characterize the squared error

of the empirical Bayes estimator, SE(β̂EB, β) = 1
J ‖β̂

EB − β‖2, and the corresponding

mean squared error (MSE) given β,

MSE(β̂EB, β) = Eβ

[
1
J ‖β̂

EB − β‖2
]

= Eβ

 1
J ·

J∑
j=1

(
β̂EBj − βj

)2 .
The mean squared error is the most common criterion for evaluating the performance

of estimators in the theory of point estimation; see for instance chapter 7 in Casella and

Berger (2001). The MSE is equal to the variance of the estimator plus the square of its

bias. Estimators with good performance in terms of MSE trade off bias and variance.

This is familiar from non-parametric estimation in econometrics, and central to the more

recent literature on machine learning. Depending on context, other loss functions might

sometimes be appropriate.

In order to obtain our desired characterizations, we consider an asymptotic ap-

proximation where J becomes large, such that β̂0 and τ̂2 converge in probability. Let

β̂EB(b0, τ2) be the empirical Bayes estimator for given (non-random) hyper-parameters

(b0, τ2),7 and let MSE(β̂EB(b0, τ2), β) be the corresponding mean squared error. Re-

calling our assumption that V̂ = V = diag(vj), the MSE given b0 and τ2 can be written

as a sum of variance and squared bias terms,

MSE(β̂EB(b0, τ2), β) = 1
J ·

J∑
j=1

[(
τ2

τ2 + vj

)2

· vj +

(
vj

τ2 + vj

)2

· (βj − b0j )2
]
. (28)

Define (β0, τ∗2) to be the maximizer of the expected marginal log-likelihood, or equiva-

lently the minimizer of the expectation of (27),

(β0, τ∗2) = argmin
b0∈B0,τ2

1
J ·

J∑
j=1

log(τ2 + vj) +

(
βj − b0j

)2
+ vj

τ2 + vj

 .
The following theorem shows that as J becomes large, we can approximate the loss

(squared error) of the empirical Bayes estimator β̂EB by the risk (mean squared error)

of the infeasible estimator using the limiting pseudo-true values of (β0, τ∗2). The theorem

relies on an assumption regarding the behavior of β, V and B0 when J goes to infinity,

which we shall discuss immediately after stating our result.

7Actually, β̂EB(b0, τ2) is the Bayes estimator for the prior β ∼ N(b0, τ2I).
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Theorem 1

Consider the empirical Bayes estimator of Equations (26) and (27). Under Assumption

1,

SE(β̂EB, β)−MSE(β̂EB(β0, τ∗2), β)→p 0

as J →∞.

Assumption 1 (Random coefficient sequence)

For the estimator defined by Equations (26) and (27), assume that B0 is of the form

B0 = {b0 : b0 = M ′ · c, S · c ≤ 0},

where c is of dimension k, S does not depend on J , and M = (M1, . . . ,MJ). The

components (β̂j , βj , vj ,Mj) of (β̂, β, diag(v),M) are i.i.d. draws from some distribution

P , where P does not depend on J , and where ‖(βj , vj ,Mj)‖ < C for some fixed constant

C with probability 1. As before, E[β̂|β, V,M ] = β and Var(β̂|β, V,M) = V .

Discussion Our goal in this section is to give a simple characterization of the MSE of

our proposed estimator, based on the variance and bias squared formula of Equation (28),

and based on the expected first order conditions for the hyper-parameters. Theorem 1

states that the conditions of Assumption 1 are sufficient to allow us to do so, as long as

J is large.

In order to state results of this form, we need to spell out what happens to the

components of β, V , and B0 as J increases. The easiest way to do this is in terms of

the random coefficient setup of Assumption 1. Note that this assumption also implies

that the dimension k of the set B0 stays constant as J increases. This is achieved by

reparametrizing, and writing β = M ′c for fixed c of dimension k and M a sequence of

random vectors. An alternative to the random coefficient setup would be to consider

deterministic sequences (βj , vj ,Mj), and to impose constraints on their behavior. This

is the approach taken by Xie et al. (2012), for instance.

In related work (Abadie and Kasy, 2017) we provide stronger results of the form of

Theorem 1, proving uniform risk consistency of tuning parameter choice using criteria

such as cross validation or Stein’s unbiased risk estimate. The uniform risk consistency

is toward estimators using an infeasible oracle optimal choice of tuning parameters. The-

orem 1, by contrast, shows point-wise risk consistency toward the pseudo-true choice of

(β0, τ∗2), which need not be optimal.

35



Recall that we obtain unrestricted estimation and structural estimation as limiting

cases of our proposed estimator, where τ2 →∞ corresponds to unrestricted estimation

and τ2 → 0 to restricted estimation. The mean squared error MSE(β̂EB(b0, τ2), β) for

given values of (b0, τ2) is equal to the sum of a variance term and a squared bias term,

cf. Equation (28). The mean squared error of the unrestricted estimator contains only

variance terms, MSE(b0,∞) = 1
J

∑
j vj , and the mean squared error of the structural

estimator converges to an average containing only bias terms, minb0∈B0 MSE(b0, 0) −
minb0∈B0

1
J

∑
j(βj − b0j )2 →p= 0.

Under the assumptions of Theorem 1 it then follows immediately that, for large

enough J , our estimator has lower mean squared error than the unrestricted estimator

if

MSE(β̂EB(β0, τ∗2), β) < 1
J ·

J∑
j=1

vj ,

and larger mean squared error if this inequality is reversed. Our estimator has lower

mean squared error than the restricted estimator for large J if

MSE(β̂EB(β0, τ∗2), β) < min
b0∈B0

1
J ·

J∑
j=1

(βj − b0j )2,

and larger mean squared error if this inequality is reversed.

The role of heteroskedasticity The infeasible oracle-optimal choice of (b0, τ2) would

minimize MSE(β̂EB(β0, τ∗2), β) and automatically yield an estimator that dominates

structural and unrestricted estimation uniformly. The first order condition for the opti-

mal τ×2 that minimizes the mean squared error is

J∑
j=1

[
v2j

(τ×2 + vj)3
·
(
τ×2 − (βj − β0j )2

)]
= 0.

The empirical Bayes estimate (β̂0, τ̂2), by contrast, maximizes the marginal log likeli-

hood, and for large J (β0, τ∗2) approximately maximizes the expected log likelihood.

The first order condition characterizing τ∗2 is

J∑
j=1

[
1

(τ∗2 + vj)2
(
τ∗2 − (βj − β0j )2

)]
= 0.
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How does τ∗2 relate to the optimal choice of τ×2? As can be seen from the first

order conditions, both are weighted averages of (βj − β0j )2. The weights differ slightly,

however. Minimization of the mean squared error assigns a slightly larger weight to draws

j with smaller values of vj , relative to to maximization of the expected log likelihood.

For homoskedastic settings (vj constant), or settings where vj and βj are independent

across j, the two objectives do in fact coincide. In these cases it is immediate that

our empirical Bayes estimator dominates both unrestricted and restricted estimation for

large enough J . It is also possible to reverse the dominance of empirical Bayes relative

to unrestricted estimation, however, by introducing strong correlation across j between

βj and vj . Suppose in particular that J is even, that B0 = {0}, and that

vj = βj = 0 for j odd,

vj = βj = 2 for j even.

Then τ∗2 = 0 and MSE(β̂EB(β0, τ∗2), β) = 2 while MSE(β0,∞) = 1 so that unre-

stricted estimation has lower mean squared error than empirical Bayes for large samples.

Restricted estimation, on the other hand, dominates empirical Bayes for small enough

samples if β ∈ B0. Note, however, that in this case the two estimators become equivalent

for large enough J since τ̂2 →p 0.

4.3 Fixed J characterization of the MSE

The last section characterized the mean squared error of β̂EB under the assumption

that sampling variability of the hyper-parameters (β̂0, τ̂2) is negligible relative to the

variance of β̂. We formally showed that this is a valid assumption for the case for large

J under a random coefficient sequence. The advantage of this characterization is that it

yields simple and easily interpreted expressions for the MSE. The disadvantage is that

it relies on an approximation that might be misleading when J is too small.

In this section, we characterize the MSE taking into account the sampling variability

of the hyper-parameters (β̂0, τ̂2), but restrict our attention to the homoskedastic and

normally distributed case with canonical coordinates for the restrictions imposed by B0.

In this section J is fixed and β is non-random. The results in this section generalize a

classic proof by Stein (1981), of the uniform dominance of James-Stein shrinkage, to our

estimator.
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Homoskedastic case, canonical coordinates We assume for the rest of this section

that V = I, and that the restrictions imposed by B0 take the canonical form

B0 = {b : b1, . . . , bK = 0, bK+1, . . . , bL ≤ 0}.

These assumptions are restrictive. Homoskedasticity eliminates the weighting issues

discussed in the previous section. The form of the equality restrictions in the definition

of B0 is without loss of generality. The assumed form of the inequality restrictions is

restrictive whenever L − K > 1, but our derivation easily generalizes to more general

sets B0. Denote

R =

K∑
j=1

β̂2j +

L∑
j=K+1

max(β̂j , 0)2.

Under these assumptions, our empirical Bayes estimator is given as follows.

β̂0 =


0 j = 1, . . .K

max(β̂j , 0) j = K + 1, . . . , L

β̂j j = L+ 1, . . . , J

τ̂2 = max
(
1
JR− 1, 0

)
β̂EBj =


τ̂2

τ̂2+1
· β̂j j = 1, . . .K

or j = K + 1, . . . , L and β̂j > 0,

β̂j else.

(29)

Stein’s Unbiased Risk Estimate (SURE) A celebrated result by Stein (1981)

provides a characterization of the mean squared error of arbitrary estimators of the

form β̃ = β̂ + g(β̂), whenever β̂ ∼ N(β, I) and g is almost differentiable.8 By Theorem

1 of Stein (1981), the risk function (mean squared error) of β̃ as an estimator of β is

given by

MSE(β̃, β) = 1 + 1
JEβ

[
‖g(β̂)‖2 + 2∇ · g(β̂)

]
, (30)

where ∇ · g =
∑

j ∂jgj is the divergence of g and the expectation is taken for a fixed β.

The risk function of β̂ itself as an estimator of β is given by MSE(β̂, β) = 1. Stein’s

8g is almost differentiable if there exists a function ∇g = (∂1g, . . . , ∂Jg) such that we can write

g(b′′)− g(b′) =
∫ b′′
b′ ∇g(b)db for all b′, b′′ and arbitrary paths of integration between these two points.
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result immediately implies that β̃ uniformly dominates β̂ in terms of MSE if

‖g(β̂)‖2 + 2∇ · g(β̂) < 0 (31)

for all β̂. Note that this is a sufficient but not necessary condition for uniform dominance.

SURE for our estimator We now apply Stein’s general result to our estimator, as

defined in Equation (29).

Theorem 2

Assume that β̂ ∼ N(β, I) and consider the estimator β̂EB as defined in Equation (29).

Then MSE(β̂EB, β) = 1 + Eβ [∆], where

∆ =

 1
R · [J + 4− 2J∗] R > J

1
J · [R− 2J∗] else,

(32)

R =
∑K

j=1 β̂
2
j +

∑L
j=K+1 max(β̂j , 0)2, and J∗ = K +

∑L
j=K+1 1(β̂j > 0).

By Stein’s result, β̂EB uniformly dominates β̂ in terms of MSE if ‖g(β̂)‖2+2∇·g(β̂) <

0 for all β̂. By Equation (32), the empirical Bayes estimator therefore has uniformly

lower risk than the unrestricted estimator for all β if

J∗ > J/2 + 2.

Since J∗ ≥ K, this holds automatically if K > J/2 + 2, that is, if there are enough

equality restrictions. Note, however, that the inequality restrictions also contribute to

reducing risk.

Corrected degrees of freedom We can improve risk uniformly by applying a degree

of freedom corrections to the estimation of τ̂2. Replacing, in particular, J by L − 2 in

the denominator of the expression defining τ̂2, we get

τ̂2 = max
(

1
L−2R− 1, 0

)
,

‖g(β̂)‖2 + 2∇ · g(β̂) =

L−2
R · [L+ 2− 2J∗] R > L− 2

R− 2J∗ else,

which is uniformly more negative than the corresponding expression for our empirical

Bayes estimator. To see this, note that the quadratic expression x[x+ 4− 2J∗] is mini-
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mized at x = J∗−2 ≥ L−2. This estimator with corrected degrees of freedom uniformly

dominates the maximum likelihood estimator if J∗ > L−2
2 , which holds automatically if

2K > L − 2. This estimator shrinks less aggressively toward the set B0 relative to the

empirical Bayes estimator discussed before.

5 Conclusion

We have proposed a general purpose approach for using economic theory in order to

construct estimators. These estimators perform particularly well when the empirical

predictions of the theory are approximately correct, but are robust to moderate or large

violations of the theoretical predictions.

Our approach can be summarized as follows: (i) Obtain a first-stage estimate of the

parameters of interest that neglects the theoretical predictions. This first-stage estimate

will often have a large variance. (ii) Assume that the true parameter values are equal to

parameter values conforming to the theoretical predictions (the structural model), plus

some noise of unknown variance. This assumption yields a family of priors for the pa-

rameters of interest. The priors are indexed by hyperparameters, namely the variance of

noise and the parameters of the structural model. (iii) Use the marginal likelihood of the

data given the hyperparameters to obtain estimates of the latter. The estimated variance

of noise, in particular, provides a measure of model fit. (iv) Use Bayesian updating con-

ditional on the estimated hyperparameters and the data in order to obtain estimates of

the parameters of interest. We demonstrate how to implement this approach in a variety

of settings, constructing estimators that shrink toward parameter sets consistent with

economic theories, such as structural models of labor demand, consumer demand satis-

fying Slutsky conditions, general equilibrium models of asset markets, abstract theories

of economic decision making, or structural discrete choice models.

In a normal-normal setting with linear equality and inequality restrictions implied by

economic theory, our approach leads to particularly tractable and interpretable estima-

tors. Theorems 1 and 2 provide characterizations of the risk function of our estimator.

Theorem 1 is based on an asymptotic approximation that implies that the variability

of the estimated hyperparameters is negligible relative to variability of the estimates of

interest. This assumption is justified as long as the dimension of the parameters of in-

terest is large relative to the dimension of the hyperparameters. Theorems 2 uses Stein’s

unbiased risk estimate to provide a characterization and proof of uniform dominance

that does not rely on this asymptotic approximation.
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Appendix

A Inference

This paper does not contribute to the theory of shrinkage inference. For empirical

applications we adapt the heuristic approach introduced by Laird and Louis (1987) to our

setting. Inference in our setting is easily implemented, though conceptually somewhat

subtle. We construct empirical Bayes confidence regions C for β. Such confidence regions

must satisfy

P (β ∈ C|θ) ≥ 1− α (33)

and were first proposed by Morris (1983) and analyzed further by Laird and Louis (1987)

and Carlin and Gelfand (1990). Definition (33) arguably captures the natural notion

of inference corresponding to empirical Bayes estimation. Empirical Bayes confidence

regions are intermediate between frequentist confidence sets and Bayesian pre-posterior

inference. The requirement of definition (33) is weaker than the requirement of frequen-

tist coverage, P (β ∈ C|η) ≥ 1− α.

We use standard frequentist inference to capture sampling variation of the estimates

β̂EB and posterior inference to capture uncertainty about β given these estimates. The

proposed procedure obtains a predictive distribution for β that is similar to a posterior

distribution of the form

P
(
β
∣∣β̂, V̂ ) =

∫
P
(
β
∣∣β̂, V̂ , θ)P (θ∣∣β̂, V̂ ) dθ,

but replaces the posterior for the hyperparameter θ by the sampling distribution QR for

θ̂ obtained using standard frequentist inference, thus obtaining a mixture distribution

M
(
β|β̂, V̂

)
=

∫
P
(
β
∣∣β̂, V̂ , θ)QR (θ∣∣β̂, V̂ ) dθ. (34)

Our inference procedure can be summarized as follows:

1. Obtain r = 1, . . . , R i.i.d. draws β̂r from the distribution N
(
β̂, V̂

)
.

2. For each of these R draws, obtain estimates θ̂r = (β̂0,r, τ̂
2
r ) by maximizing the

marginal likelihood, as discussed in Section 2.3.

3. Calculate the posterior mean β̂EBr and variance V EB
r for β conditional on β̂r and
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θ̂r, using Equation (13) and

V EB
r = Var(β|β̂ = β̂r, θ = θ̂r)

= τ̂2 · I −
(
τ̂2
)2 · (τ̂2 · I + V̂

)−1
=
(
I + 1

τ̂2
V̂
)−1
· V̂ .

4. Consider the mixture distribution

M
(
β|β̂, V̂

)
:=

1

R

∑
r

N
(
β̂EBr , V EB

r

)
. (35)

5. Obtain standard errors based on the variance of the mixture distribution, and

confidence intervals for components of β using the appropriate quantiles of the

mixture distribution M
(
β|β̂, V̂

)
.

Discussion Empirical Bayes confidence sets need to take into account two types of

variation. This is best illustrated by first considering two invalid inference procedures,

both of which ignore one of these two sources of variation. First, one might consider sets

with the right coverage under the pseudo-posterior distribution, so that P (β ∈ C|β̂, θ =

θ̂) ≥ 1 − α. These sets are similar to Bayesian credible sets. Such sets ignore the

fact that θ had to be estimated and therefore might undercover in the empirical Bayes

sense. Second, one might estimate the sampling variation of β̂EB, for instance using the

bootstrap. Confidence sets obtained in this way are similar to frequentist confidence

sets, but ignore the fact that there is residual uncertainty about β conditional on β̂ and

θ.

The situation is analogous to the forecasting of outcomes using a linear regression.

Forecast uncertainty involves uncertainty about regression slopes (analogous to θ in our

case, and captured by the bootstrap), and uncertainty about the outcome around its

conditional expectation (analogous to the pseudo-posterior distribution in our setting).

A correct inference procedure combines both aspects.
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B Proofs

Proof of Proposition 1: Rearranging our expression for the empirical Bayes estimator,

we can write

β̂EB = β̂ + 1
τ̂2
V̂ ·
(
I + 1

τ̂2
V̂
)−1
·
(
β̂0 − β̂

)
.

By assumption, β̂ →p β. Our claim follows, by Slutsky’s theorem, if we can show that
1
τ̂2
V̂ →p 0, and β̂0 = Op(1). Since V̂ →p 0, this holds if (β̂0, τ̂2) converge in probability.

By the standard arguments for consistency of m-estimators (see for instance van der

Vaart 2000, chapter 3), we get convergence of these hyper-parameters,

(β̂0, τ̂2)→p argmin
b0,t2

log
(
det(Σ(t2, 0))

)
+ (β − b0)′ · Σ(t2, 0)−1 · (β − b0)

= argmin
b0,t2

J · log
(
t2
)

+
1

t2
‖β − b0‖2.

The required conditions for applicability of this general consistency result are uniform

consistency of the objective function and well-separatedness of the maximum. Both are

easily verified given convergence of β̂ and V̂ . �

Proof of proposition 2: By Equation (25),

ŷ − x · β̂ = x · 1

τ̂2
V̂ ·
(
I +

1

τ̂2
V̂

)−1
· (β̂0 − β̂)

=

(
x · 1

τ̂
V̂ 1/2

)
·
(
τ̂ V̂ −1/2 +

1

τ̂
V̂ 1/2

)−1/2
·
(
I +

1

τ̂2
V̂

)−1/2
· (β̂0 − β̂),

and thus

∣∣∣ŷ − x · β̂∣∣∣ ≤ ∥∥∥∥x · 1

τ̂
V̂ 1/2

∥∥∥∥ ·
∥∥∥∥∥
(
τ̂ V̂ −1/2 +

1

τ̂
V̂ 1/2

)−1/2∥∥∥∥∥ ·
∥∥∥∥∥
(
I +

1

τ̂2
V̂

)−1/2
· (β̂0 − β̂)

∥∥∥∥∥ .
By Equation (25), again,∥∥∥∥∥

(
I +

1

τ̂2
V̂

)−1/2
· (β̂0 − β̂)

∥∥∥∥∥ = min
β0∈B0

∥∥∥∥∥
(
I +

1

τ̂2
V̂

)−1/2
· (β0 − β̂)

∥∥∥∥∥
≤

∥∥∥∥∥
(
I +

1

τ̂2
V̂

)−1/2
· β̂

∥∥∥∥∥ ≤ ∥∥∥β̂∥∥∥ ,
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where the last inequality holds by positive definiteness of V̂ , which also implies∥∥∥∥∥
(
τ̂ V̂ −1/2 +

1

τ̂
V̂ 1/2

)−1/2∥∥∥∥∥ ≤ 1.

The first inequality claimed in proposition 2 follows. The proof for ŷ − x · β̂0 proceeds

analogously. �

The following simple lemma gives a sufficient condition which allows us to approx-

imate the squared error for the estimator using the estimated (β̂0, τ̂2) by the mean

squared error of the infeasible estimator using (β0, τ∗2). This lemma is used in the proof

of Theorem 1. Let ĉ0 and c0 be such that β̂0 = M ′ · ĉ0 and β0 = M ′ · c0, where M is as

in Assumption 1.

Lemma 1

Suppose that Assumption 1 holds, that (ĉ0, τ̂2)− (c0, τ∗2)→p 0, and that

sup
(c,τ2)∈U

∣∣∣SE(β̂EB(M ′ · c, τ2), β)−MSE(β̂EB(M ′ · c, τ2), β)
∣∣∣→p 0,

where U is some neighborhood of plim(c0, τ∗2). Then

SE(β̂EB, β)−MSE(β̂EB(β0, τ∗2), β)→p 0.

Proof of lemma 1:

This is immediate from∣∣∣SE(β̂EB, β)−MSE(β̂EB(β0, τ∗2), β)
∣∣∣ ≤ ∣∣∣SE(β̂EB, β)−MSE(β̂EB, β)

∣∣∣
+
∣∣∣MSE(β̂EB, β)−MSE(β̂EB(β0, τ∗2), β)

∣∣∣ ,
once we note that MSE(β̂EB(M ′ · c, τ2) is uniformly continuous as a function of (c, τ2)

by boundedness of the sequence (βj , vj ,Mj). �

Proof of Theorem 1:

We need to show that the sufficient conditions of lemma 1 are satisfied. Convergence of
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(ĉ0, τ̂2) and (c0, τ∗2) to the limiting pseudo-true parameters

plim(c0, τ∗2) = argmin
τ2,c:S·c≤0

E

log(τ2 + vj) +

(
β̂j −Mjc

0
)2

τ2 + vj


follows from standard results on the consistency of maximum likelihood estimators, cf.

van der Vaart (2000), chapters 5.2 and 5.5.

It remains to be shown that uniform convergence of

SE(β̂EB(M ′c, τ2), β)−MSE(β̂EB(M ′c, τ2), β) = (EJ − E)

[(
β̂EBj (M ′c, τ2)− βj

)2]
holds in a neighborhood U of plim(c0, τ∗2), where EJ denotes the average over j =

1, . . . , J . Such uniform convergence follows if we can show that the family of mappings

(β̂j , βj , vj ,Mj)→
(
β̂EBj (M ′c0, τ2)− βj

)2
,

indexed by (c0, τ2) ∈ U , is a Glivenko-Cantelli class, cf. van der Vaart (2000) chapter

19.2.

That this family of mappings is in fact a Glivenko-Cantelli class follows because it is

a special case of example 19.8, p.272 in van der Vaart (2000):

(i) Continuity of
(
β̂EB(M ′c, τ2)− βj

)2
in (c, τ2) is immediate.

(ii) Compactness of the neighborhood U of plim(c0, τ∗2) can be imposed without loss

of generality.

(iii) It remains to be shown that an integrable envelope function exists on U . Suppose

w.l.o.g. that the neighborhood U is of the form [c, c]×[t2, t2]. Then
(
β̂EBj (M ′c, τ2)− βj

)2
always attains its maximum at one of the corners of U . This holds by monotonicity of

β̂EBj (M ′c, τ2) in its arguments and the convexity of squaring. An envelope is therefore

given by

max
(c,τ2)∈{c,c}×{t2,t2}

(
β̂EBj (M ′c, τ2)− βj

)2
.

This envelope is integrable since we assumed finite second moments, given the form of

β̂EBj (M ′c, τ2). �

Proof of Theorem 2:
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By Equation (29) and the definition of g, we have

gj(β̂) = β̂EBj − β̂j =


− 1
τ̂2+1

· β̂j j = 1, . . .K

or j = K + 1, . . . , L and β̂j > 0,

0 else.

Noting that (τ̂2 + 1)2 = 1
J max(R, J) > 0, the squared norm of g is given by

‖g(β̂)‖2 =
R

(τ̂2 + 1)2
=

J2R

max(R, J)2
=

J2/R R > J

R else.

The function g is almost differentiable. It has kink points at values of β̂ where either

R = J or j = K + 1, . . . , L and β̂j = 0. The derivatives ∂j τ̂
2 and ∂jgj away from these

kink points are given by

∂j τ̂
2 = 1(R > J) ·


2β̂j/J j = 1, . . .K

or j = K + 1, . . . , L and β̂j > 0,

0 else.

and

∂jgj(β̂) =


− 1
τ̂2+1

+
β̂j

(τ̂2+1)2
· ∂j τ̂2 j = 1, . . .K

or j = K + 1, . . . , L and β̂j > 0,

0 else

=

[
− J

max(R,J) + 2J
1(R>J)β̂2

j

max(R,J)2

]
· 1(j = 1, . . .K or j = K + 1, . . . , L and β̂j > 0)

= min(J/R, 1) ·
[
−1 + 2

1(R>J)β̂2
j

R

]
· 1(j = 1, . . .K or j = K + 1, . . . , L and β̂j > 0).

Recalling our notation J∗ = K +
∑L

j=K+1 1(β̂j > 0), and summing across j, we get

∇ · g(β̂) =
∑
j

∂jgj(β̂) = min(J/R, 1) · [−J∗ + 2 · 1(R > J)]

=

 J
R · [2− J

∗] R > J

−J∗ else.
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Collecting terms yields

‖g(β̂)‖2 + 2∇ · g(β̂) = min(R, J2/R) + 2[−J∗ + 2] ·min(J/R, 1)

=

 J
R · [J + 4− 2J∗] R > J

R− 2J∗ else.

The claim now follows.�
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