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Points of departure

1. Use of theory in empirical research

I standard approach: positivist, imported from physics
I testing / imposing theories
I alternative: procedures that perform well

if theories are approximately true

2. Larger agenda: econometric methods to better understand
I income inequality, in particular wage inequality
I changes in inequality
I historical causes, policy counterfactuals, predictions
I winners and losers; political economy
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Points of departures continued

3. Empirical Bayes procedures in applied econometrics
I achieve efficiency gains as in James-Stein shrinkage
I avoid requirement for applied researchers to specify tuning

parameters / priors
I proposal: shrink towards theory, rather than arbitrary point 0

4. Impact of labor supply on wage inequality
I many types of workers⇒ many regressors, few observations
I conventional solution: parametric structural model
I non-robust conclusions
I proposed solution: shrinking towards structural model

in data-dependent, optimal way
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Literature

1. Empirical Bayes:
Robbins (1956), James and Stein (1961), Efron and Morris
(1973). Morris (1983), Laird and Louis (1987), Carlin and Gelfand
(1990), Efron (2010).

2. Labor - determinants of wage distribution:
Borjas et al. (1996), Autor et al. (1998), Autor et al. (2008), Card
(2001), Card (2009), Boustan (2009), Autor and Dorn (2013)
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Outline

1. Theory in empirical research

2. Proposed procedure to construct empirical Bayes estimator
based on economic theory

3. Properties: Consistency, geometry
Key result: characterization of risk function

4. Application to labor demand
European wage inequality, EU-SILC data 2004-2013

5. Monte Carlo simulations

6. Conclusion and outlook
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Warm-up – review of CES-production functions
Notation:

I types of workers j = 1, . . . ,J,
cross-section of labor markets i = 1, . . . ,n

I wages w , labor supply N
I Yij = log(wij), Xij = log(Nij)

Assumptions:

1. marginal productivity theory of wages:

wij =
∂ fi(Ni1, . . . ,NiJ)

∂Nij

2. CES production function:

fi(Ni1, . . . ,NiJ) =

(
J

∑
j=1

γjN
ρ

ij

)1/ρ
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Wage equation

I This yields

wij =
∂ fi(Ni1, . . . ,NiJ)

∂Nij
=

(
J

∑
j ′=1

γjN
ρ

ij ′

)1/ρ−1

· γj ·Nρ−1
j .

I relative wage between groups j and j ′ is equal to

wij

wij ′
=

γj

γj ′
·
(

Nij

Nij ′

)ρ−1

.

I Taking logs yields

Yj,i −Yj ′,i = log(γj)− log(γj ′) + β0 · (Xj,i −Xj ′,i),

where β0 = ρ−1.
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Example: Impact of migration on wage inequality

I Literature: Estimate CES-production function model,
consider historical counterfactual of no immigration.

I “Migration increased inequality”
I Borjas et al. (1996)
I CES-model with 4 types, by education
I national economy, time series variation

I “Migration did not increase inequality”
I Card (2001), Card (2009)
I nested CES, 2 education types, natives vs migrants

(justified by pre-tests)
I cross-city, Bartik-type instrument

⇒ Conclusions depend on functional form choices!
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Theory in empirical economics

I Structural models seem to cause non-robustness,
possibly inconsistency.
⇒ Should we use theory in empirical research at all?

The positivist ideal:

I Follow the example of physics.
I Develop theories which

1. are assumed to be universally true, and
2. have testable implications.

I Maintain these theories while they have not been rejected by
statistical tests.

I When they have been rejected, replace them with new theories
that are consistent with all available evidence.
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The reality of economic theory

I We have no theories that are even approximately universally true.
I People don’t universally – or even consistently in well defined

contexts –
I maximize utility,
I discount exponentially,
I maximize expected utility under risk,
I play Nash equilibrium,
I act as price takers on markets, ...

I Even less
1. do people maximize utility with additive EV1 errors,
2. does aggregate production follow a CES production function with

3 inputs, ...

I All of these theories can be, and have been, rejected.
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What to do?

Several options:

1. Ignore this, keep following the positivist ideal, argue that theories
don’t actually have to be true.
(Wasn’t there something about Billiard players?)

2. Forget about economic theory, just try to do good statistics /
mostly harmless econometrics.

3. Try to find a middle ground that makes reasonable use of theory.
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An attempt at a middle ground

I Shrink “towards theory”
I Advantages:

I Improves estimator performance if theory is (approximately) true.
I Is not dogmatic – yields consistent estimates either way.

I Bayesian interpretation: (improper) priors that put low weight on
parameter values deviating a lot from theory.

I Can do empirical Bayes version – avoids critique of subjectivism /
arbitrary choice of tuning parameters.

I Might yield James-Stein type shrinkage informed by theory.

I Coming next: an implementation of this program in the context of
labor demand.
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The parametric empirical Bayes approach
I Parameters η , hyper-parameters θ

I Model:
Y |η ∼ f (Y |η)

I Family of priors:
η ∼ π(η |θ)

I Marginal density of Y :

Y |θ ∼ g(Y |θ) :=
∫

f (Y |η)π(η |θ)dη

I Estimation of hyperparameters: marginal MLE

θ̂ = argmax
θ

g(Y |θ).

I Estimation of η :
η̂ = E[η |Y ,θ = θ̂ ]
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Simplified setup for estimation with theory

1. Preliminary, unrestricted estimator:

β̂ ∼ N(β ,V )

2. Restriction implied by theory:

β = β0 ·M

Conventional approaches:

I structural estimation

I unrestricted estimation

I pre-testing
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An empirical Bayes approach for our setup

I Model:
unrestricted estimator as sufficient statistic;
asymptotic approximation:

β̂ ∼ N(β ,V )

V̂ ·V−1→p I.

I Family of priors:
coefficients = structural model + noise of unknown variance

β = β0 ·M + ζ

ζj ∼iid N(0,τ2),
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I Parameters η , hyper-parameters θ :

η = (β ,V )

θ = (β0,τ
2,V )

β̂ |η ∼ N(β ,V )

β |θ ∼ N(β0 ·M,τ2 · I).

I Marginal density of Y :

β̂ |θ ∼ N(β0 ·M,Σ(τ
2,V ))

where
Σ(τ

2,V ) = Var
(

β̂
∣∣θ)= τ

2 · I + V .
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Solving for the estimator

I Hyperparameters: MLE for the marginal likelihood,

(β̂0, τ̂
2) = argmin

b0,t2
log
(

det(Σ(t2, V̂ ))
)

+ (β̂ −b0 ·M)′ ·Σ(t2, V̂ )−1 · (β̂ −b0 ·M).

I Parameter of interest β :

β̂
EB = β̂0 ·M +

(
I +

1
τ̂2 V̂

)−1

· (β̂ − β̂0 ·M).
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Empirical Bayes confidence sets

I Require
P(β ∈ C|θ)≥ 1−α

I hybrid of
1. frequentist coverage

P(β ∈ C|η)≥ 1−α

2. Bayesian pre-posterior analysis

P(β ∈ C)≥ 1−α

I cf. Laird and Louis (1987).
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Implementation of confidence sets

1. Generate r = 1, . . . ,R i.i.d. draws β̂r from N
(

β̂ , V̂
)

.

2. For each r , obtain θ̂r = (β̂0,r , τ̂
2
r ), β̂ EB

r

3. Let

V EB
r = Var(β |β̂ = β̂r ,θ = θ̂r ) =

(
I + 1

τ̂2 V̂
)−1
· V̂ .

4. Consider the mixture distribution

M
(

β |β̂ , V̂
)

:=
1
R ∑

r
N
(

β̂
EB
r ,V EB

r

)
.

5. Confidence intervals: bounded by quantiles of M
(

β |β̂ , V̂
)

.
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Aside: other uses of this framework in labor economics

I Many interesting recent papers estimate large number of fixed
effects:

I Location effects and intergenerational mobility: Chetty and
Hendren (2015)

I Teacher Effects: Chetty et al. (2014)
I Worker and firm effects: Card et al. (2012)
I Judge effects: Abrams et al. (2012)

I Our framework immediately applies to these settings:
I Take β̂ as the OLS FE estimates.
I Take V̂ as the appropriate (heteroskedasticity robust, clustered)

variance matrix.
I Assume βi ∼iid N(β0,τ

2).
or βi |Wi ∼ N(Wi · γ0,τ

2)
I All the following results apply.
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Properties of our estimator

1. Consistent conditional on any value of β

2. Counterfactual predictions driven by data, whenever these are
informative

3. Lower mean squared error (MSE) than unrestricted estimation for
most of the parameter space.
cf. James-Stein shrinkage!

4. Lower MSE than structural estimation for modest violations of
theory.
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Proposition (Consistency)

Suppose that β̂ →p β and that V̂ →p 0. Then

β̂
EB →p

β

as sample size n goes to infinity.
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Data-driven predictions

I Direction where unrestricted estimates are precise:

x · V̂ · x ′ ≈ 0,

I Then

x · β̂ EB = x ·
[

β̂ + V̂ ·
(

τ̂
2 · I + V̂

)−1
· (β̂0 ·M− β̂ )

]
≈ x · β̂ .
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Geometry

I Empirical Bayes maps β̂ → β̂ EB

I Geometry of this mapping?
I Simplifying assumptions (for exposition):

1. diagonal V (just a change of coordinates)
2. β0 = 0 (general case discussed in paper)

I Formally:

β̂ |β ∼ N(β ,diag(v))

β |τ2 ∼ N(0,τ2 · I),
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Empirical Bayes in this simplified setting

I β̂ EB given τ̂2:

β̂
EB = diag

(
τ̂2

τ̂2 + vk

)
· β̂ .

I Does not directly give mapping β̂ → β̂ EB,
since τ̂2 depends on β̂

I FOC for τ̂2:

∑
k

1
τ̂2 + vk

= ∑
k

β̂ 2
k

(τ̂2 + vk )2 .
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Suppose τ̂2 is given

1. What’s the set of β̂ yielding this τ̂2? Ellipsoid with semi-axes of
length

(τ̂
2 + vk ) ·

√
∑
k ′

1
τ̂2 + vk ′

.

2. What’s the corresponding set of β̂ EB? Circle (!) of radius

τ̂
2 ·
√

∑
k ′

1
τ̂2 + vk ′

.

3. τ̂2 is 0 inside ellipsoid with semi-axes of length

vk ·
√

∑
k ′

1
vk ′

.
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Fixing τ̂2

dim(β ) = 2, v1 = 2, v2 = 1
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The mapping from β̂ to τ̂2 and β̂ EB
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Two objective functions for τ2

1. Expected marginal log likelihood of τ2, given β :

ELLH(τ
2) :=

1
K
·∑

k

(
log(τ

2 + vk ) +
β 2

k + vk

τ2 + vk

)
2. Mean squared error of (empirical) Bayes, given β :

MSE(τ
2) := ∑

k

[(
τ2

τ2 + vk

)2

· vk +

(
vk

τ2 + vk

)2

·β 2
k

]
.
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First order conditions

1. Maximizing expected marginal log likelihood of τ2:

∑
k

1
(τ2 + vk )2

(
τ

2−β
2
k

)
= 0

2. Minimizing mean squared error of empirical Bayes:

∑
k

v2
k

(τ2 + vk )3 ·
(
τ

2−β
2
k

)
= 0

Maximilian Kasy Harvard

How to use economic theory to improve estimators 30 of 51



Introduction Theory and empirics Empirical Bayes Properties Labor demand Monte Carlo Conclusion

Theorem (Asymptotic risk)

Let

τ̂
2 = argmax

τ2
LLH(τ

2)

τ
2 = argmax

τ2
ELLH(τ

2)

Suppose random effects setup: (β̂i ,βi ,vi) are jointly i.i.d. with finite
variance.
Then, as K → ∞,

SE(τ̂
2)−MSE(τ

2)→ 0, (1)

in probability and in L1.

Characterizing the risk function, in generalization of James-Stein!
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(Un)restricted estimation of labor demand

I kj : aggregate type k corresponding to type j

I X̃ik = log(Ñik )

I Xij = log(Nij/Ñikj )

I Restricted model: 2-type CES labor demand, observing wages
for

I Unrestricted model: allow wages to additionally depend on
distribution across sub-types

I

Yij −Yi1 = (γj − γ1) +β0 · (X̃ikj − X̃i1) + (εij − εi1),

Yij −Yi1 = (γj − γ1) +∑
j ′

δjj ′Xij ′ +β0 · (X̃ikj − X̃i1) + (εij − εi1).
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Adapting our general setup
I Family of priors: β = (βj,j ′)∼iid N(0,τ2)

I Variance of vectorized δ = ∆ ·β :

Var
(
δ↑
)

= τ
2 ·P⊗ IJ ,

where P = ∆ ·∆′ = IJ−1 + E .
I Thus:

Σ(τ
2,V ) = Var

(
(δ̂↑, β̂1)

)
=

(
τ2 ·P⊗ I 0

0 0

)
+ V .

I Estimating hyper-parameters:

(β̂0, τ̂
2) = argmin

b0,t2
log
(

det(Σ(t2, V̂ ))
)

+ (δ̂↑, β̂1−b0)′ ·Σ(t2, V̂ )−1 · (δ̂↑, β̂1−b0)′.
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Empirical application 1: USA

I Much-studied datasets: American Community Survey (ACS),
Current Population Survey (CPS).

I Following Acemoglu and Autor (2011), build national time series.

I Years 1963-2008 using the march CPS.

I Following Borjas et al. (2012), build state-level panel.

I Years 1960, 1970, 1980, 1990, and 2000 using the CPS, and
2006 using the ACS.
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Sample and variable definitions

I Sample:
I aged between 25 and 64,
I less than 49 years of potential experience,
I no self-employed or institutionalized workers.

I Labor supply: total hours worked per type.

I Average log wages: male full-time workers.
I Main analysis classifies workers into eight types:

I by education (high school dropouts, high school graduates, some
college, and college graduates),

I and by potential experience (less than 20 years, and 20 years or
more).
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Log relative wages in the US – 2 types of workers
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Summary of findings

I Estimate of 2-type inverse elasticity:
1. Time-series with trend: −0.64 (replicating lit)
2. State panel with FEs: −0.06, standard error 0.04.

I Model fit τ̂2 for 2-type model: not that great.
I Next slide:

I counterfactual wage evolution,
I based on national time series of labor supply,
I with alternative estimates of labor demand using panel.
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Log relative wages in the US – actual evolution and
counterfactual changes
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Empirical Application 2: Europe

I EU-SILC (2004-2013)

I NUTS1-level dataset

I Construct residual wages and labor supply for different labor
types.

I Again following literature in terms of variable definitions.
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Available regions

I Dark: used in our analysis
I Light: in EU-SILC, but not all variables available⇒ excluded
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Dependent variable: residual log wages Yijt

I Region i , type j , year t

I So far: Yijt = log wage

I To control for changes of composition within types:
Yijt = residual of regression of log wage on observed
demographics

I We control for age, age squared, age cubed, fulltime and lowtime
dummies, labor types (education and potential experience), and
interactions

I Estimated for every year separately,
including all workers, with person level microdata

⇒ Generate mean residual wages for each type, males above age 24
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Regressors: log labor supply Xijt

4 definitions of labor supply:

1. Efficiency weighted: sum of estimated log wages
from cross-sectional wage regression (cf. previous slide)

2. Number of individuals

3. Number of hours worked

4. Efficiency weighted hours:
estimated log wages from first stage × hours
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Descriptive statistics, year 2010

All workers Male over 24
Low edu High edu Low edu High edu

Share female 0.44 0.54 0.00 0.00
(0.002) (0.003) (0.000) (0.000)

Mean age 41.5 40.6 43.2 41.8
(0.052) (0.065) (0.065) (0.097)

Mean workhours 37.8 38.6 41.3 41.7
(0.044) (0.061) (0.050) (0.084)

Share fulltime (>38h) 0.67 0.64 0.82 0.76
(0.002) (0.003) (0.002) (0.004)

Share migrant 0.07 0.07 0.07 0.07
(0.001) (0.002) (0.002) (0.002)

Number of Obs. 51,455 26,782 25,612 11,825
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Summary of findings

I Estimate of 2-type inverse elasticity: −0.05, standard error 0.07.

I Very similar to US panel!

I Model fit τ̂2 for 2-type model: again not that great.
I Next slide:

I counterfactual wage evolution,
I based on national time series of labor supply for Austria,
I with alternative estimates of labor demand using panel.
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Log relative wages in Austria – actual evolution and
counterfactual changes
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Some Monte Carlo evidence

I Comparing mean squared error of
1. structural
2. unrestricted
3. empirical Bayes

estimators.
I Two sets of simulations

1. Conditional on θ :
β = structural model + random noise

2. Conditional on η :
β fixed
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MSE relative to empirical Bayes conditional on θ

design parameters MSE relative to empirical Bayes estimation
n J σ2 β0 τ2 structural unrestricted emp. Bayes
50 16 1.0 1.0 0.2 0.83 1.20 1.00
50 16 0.5 1.0 0.2 1.55 1.15 1.00

200 16 0.5 1.0 0.2 7.76 1.04 1.00
200 4 1.0 1.0 0.5 7.92 1.10 1.00
200 4 0.5 1.0 1.0 30.54 1.03 1.00

β = (βj,j ′) = β0 ·M + ζ

ζj,j ′ ∼iid N(0,τ2)
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MSE relative to empirical Bayes conditional on η

design parameters mean squared error
n J σ2 β00 β01 β02 structural unrestricted emp. Bayes

200 4 1.0 1.0 1.0 1.0 0.18 1.47 1.00
200 4 1.0 1.0 1.0 6.0 15.04 1.03 1.00
200 4 1.0 0.0 1.0 6.0 19.37 1.01 1.00

β = β00 ·MJ0 + β01 ·MJ1 + β02 ·MJ2,

I MJ0 = M in the first J/4 columns, zero elsewhere,

I MJ2 = M in the last J/4 columns, and zero elsewhere,

I MJ1 = M in the middle J/2 columns, and zero elsewhere.
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Summary

I Object of interest: regressions with many regressors βjj ′ ,
one for each pair of types of labor

I Restrictions of structural model:

β = β0 ·M

I Structural model: inconsistent
Unrestricted model: high variance

I Proposed solution: Empirical Bayes

β̂ |η ∼ N(β ,V )

β |θ ∼ N(β0 ·M,τ2 · I).
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Thanks for your time!
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