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This appendix provides some additional discussion and results, supplementing the
manuscript of “How to use economic theory to improve estimators.”

In Section [A] of this appendix,we consider two additional applications of our pro-
posed approach, to a general equilibrium model of financial markets, and to structural
models of (consumer) preferences.

Our theoretical results suggest that the proposed empirical Bayes estimators
should uniformly outperform unrestricted estimators and outperform structural (re-
stricted) estimators for most parameter values. In Section |C] we discuss some Monte
Carlo simulations which do indeed confirm these predictions.

In section 3.1 of the manuscript we consider estimation of labor demand systems,
shrinking toward the predictions of a CES production function model. In Section
of this appendix, we review CES production functions and derive from them the
wage regressions considered in the manuscript.

In section 3.3 of the manuscript, we consider empirical Bayes estimators for choice
probabilities, where estimation of the hyper-parameters involves maximization of a
Dirichlet-multinomial likelihood subject to a set of linear inequality constraints. In
Section [E] of this appendix, we discuss methods for the numerical solution of such
maximization problems.
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A Further applications

This section considers two additional applications of our proposed approach. Let us
give a brief overview of both applications, before discussing them in greater detail.

Asset returns and the capital asset pricing model Various financial deci-
sions such as capital budgeting and portfolio performance evaluation require precise
estimates of the joint distribution of asset returns with market returns (see, e.g.,
Bossaerts|2013). The capital asset pricing model (CAPM) predicts that a regression
of asset returns (in excess of the risk-free rate) on market returns (in excess of the
risk-free rate) should have an intercept of 0 for each asset. Statistical tests of this
prediction tend to reject (see, e.g., Jensen et al.[1972)), but most intercepts of such
regressions appear to be quite close to 0. We propose to construct empirical Bayes es-
timators shrinking toward this empirical prediction. Our proposed estimator remains
valid in the presence of other factors explaining the cross-sectional distribution of
returns and does not require the estimation of correlations between assets. We apply
our estimator to monthly stock return data from the Center for Research in Security
Prices (CRSP) covering the NYSE, AMEX, and NASDAQ. Our estimator achieves
significant gains in out-of-sample predictive performance relative to both restricted
and unrestricted OLS estimation.

Multinomial logit and mixed multinomial logit A workhorse model of discrete
choice demand estimation is the multinomial logit model. A generalization of this
model that allows for arbitrary patterns of substitutability is the mixed (or random
coefficient) multinomial logit model, cf. Train| (2009). Heterogeneity of preferences in
the mixed multinomial logit model is plausibly identified when panel data of choices
are available, but possibly imprecisely estimated. We propose estimation of flexi-
ble mixed multinomial logit models, shrinking the parameters governing coefficient
heterogeneity towards no dispersion, as implied by the multinomial logit model.

Choice probabilities and economic decision theory Among the most general
theories in economics are theories of decision making such as utility maximization,
expected utility maximization, and exponential discounting. In considering such the-
ories, we do want to allow for arbitrary preference heterogeneity across individuals.
If choice sets are randomly assigned to individuals, these theories imply testable in-
equality restrictions on conditional choice probabilities (e.g., the stochastic axiom
of revealed preference for utility maximization, cf. |[McFadden 2005). We provide
a characterization of these restrictions for general theories of decision making, and
construct an estimator of conditional choice probabilities shrinking toward these re-
strictions in a data-dependent way. This estimator is based on a family of Dirichlet
priors centered on the simplex of conditional choice probabilities consistent with the
theory of choice under consideration.



A.1 Asset returns and the capital asset pricing model

In this application we consider estimation of the joint distribution between the re-
turns of individual financial assets and market returns. Estimation of these joint
distributions is of key importance for financial decision making in various contexts,
including capital budgeting and portfolio performance evaluation (see e.g. |Bossaerts
2013). Estimation of these joint distributions involves high dimensional parameters
of interest when we consider many different assets. In this application the “theory”
that we propose shrinking to corresponds to restrictions on the joint first and sec-
ond moments of financial assets implied by the capital asset pricing model (CAPM),
a general equilibrium model of financial markets. These restrictions are discussed
for instance in [Jensen et al. (1972)). Though CAPM is generally considered to be re-
jected by the data, it provides a useful approximation for decision making in practice.
Our approach bears some resemblance to the Bayes and empirical Bayes methods in
finance, reviewed in Jacquier et al.| (2011). However, our approach is distinct in
shrinking to the predictions of an economic theory, rather than some grand mean or
similar object. A possible extension of our approach would be shrinkage toward the
predictions of a multi-factor model of asset returns.

A.1.1 Setup

Consider a financial market on which assets ¢ € {1... N} are traded, and assume
that some risk-free asset exists on this market. Denote the market value of asset i at
the beginning of period ¢ € {1,...T} by w;. Denote its realized return in period ¢,
net of the risk-free rate of return, by R;. Returns include both dividend payments
and appreciation. Let R} be the rate of return of the “market portfolio,” net of the
rate of return of the risk-free asset. The return of the market portfolio is the market
value weighted average of the individual assets’ returns. We shall assume further that
returns are stationary over time. Define

,8‘ . COV(Rit,RiM)
‘" Var(RM)

This number 3; can be thought of as a measure of the non-diversifiable risk of asset
.

CAPM, structural and unrestricted estimation The CAPM relates the ex-
pected return of each asset ¢ to its non-diversifiable risk. Under certain assumptions
on investors’ preferences, in the absence of transaction costs, and under the above
restrictions, it can be shown that in general equilibrium the relationship

E[Ry] = B; - E[RM] (1)

holds for all assets ¢. This is a testable implication, and various tests have been
proposed, including by |Jensen| (1968) and by |Jensen et al.|(1972). Since these early



tests of CAPM, a large number of papers has appeared suggesting predictable cross-
sectional variation in expected returns explained by observables or factors other than
Rf\/[ ; a comprehensive review is provided by [Harvey et al. (2016). The potential pres-
ence of such predictable variation does not invalidate our approach as outlined below,
and might be explicitly taken into account in extended versions of our estimator.
Consider the time series best linear predictor of R given RM for each asset i
separately]]
Ry = o+ 55 - Riw + €5, (2)
where Cov(RM, €;1) = 0. The slope of this predictor is equal to 3; by definition, under
the assumption of stationarity. Estimating the coeflicients of the best linear predic-

tor using OLS, we obtain unrestricted estimators (&i, Bz), with estimated sampling

variance 171 Allowing for general heteroskedasticity and intertemporal dependence,
we can use a heteroskedasticity and autocorrelation robust estimator for V;. We do
not need to impose any assumptions on cross-sectional dependence (across assets i)
or intertemporal dependence (across t) so that our approach remains valid in the
presence of further factors explaining some of the cross-sectional variation in returns.

Equation , which holds under the assumptions of CAPM, implies the restric-
tions a; = 0 for all i. We could obtain a restricted estimator of the parameters in
Equation that imposes this restriction by running a time series OLS regression of
R;; on Riw with no intercept.

A.1.2 Empirical Bayes estimation, shrinking toward CAPM

In the spirit of the present paper, we do not want to test or impose the theoretical
restrictions implied by CAPM. Instead we want to construct estimators of the a; and
B; that perform particularly well if these restrictions are approximately true. The
resulting estimates can then serve as inputs for financial decision making in capital
budgeting, portfolio evaluation, etc.

Applying our general approach as introduced in Section 2 of the manuscript to

the present setting, we propose to take the unrestricted OLS estimates (&i, BZ) and

‘A/i as point of departure when constructing estimates which are shrunk toward the
theory. We consider the family of priors

(i, Bi) ~" N (0,8, 7). (3)
If T1; were set equal to 0, this prior would impose the restriction of Equation (1)),
as implied by CAPM. The parameter Yi; thus takes the role that 72 had in the
simplified setting of Section 2 of the manuscript.

In the second step of estimation we need to obtain estimates of the hyperparam-
eters 3° and Y. Previously, we estimated hyperparameters via maximization of the

n this section we stick with the standard finance notation of o; and S;, deviating slightly from
our previous notation based on which we would subsume both of these, for all 7, in a vector of interest

B.



marginal likelihood. Such an approach is complicated in the present setting by the
fact that the estimates (&i, BZ) are correlated across ¢ due to correlated returns across
different assets, and that their covariances are hard to estimate. We can, however,
easily construct method of moments estimators of 3° and Y that avoid the need to
estimate these covariances. In particular, let

P =30 (@)
and R
?Z}VXZ_:(<@§"§0>~(&“@§0)IZ>. (5)
Empirical Bayes estimates of («y, 5;) are then obtained in the final step via
@E 5E) = (0.8°) + T (T+0) (B - 5°). (©)

For comparison, we also consider a restricted empirical Bayes estimator. The
restricted empirical Bayes estimator takes the restricted OLS estimates of the §; as
its point of departure — these already impose a; = 0 for all ¢ — and is based on the
family of priors

Bi tid N (BO7 U2) ]
Restricted empirical Bayes otherwise proceeds like our preferred empirical Bayes es-
timator, shrinking toward the theory.

A.1.3 Empirical application

We apply this approach to data from the Center for Research in Security Prices
(CRSP) NYSE/AMEX/NASDAQ monthly stock file, accessed through the Wharton
Research Data Services (WRDS) web page. These data are available for the years
1926 to 2015. We consider two sub-samples, a recent 6 year sample for the years 2010
to 2015, and a sample for the years 1931-1965. The latter corresponds to the period
considered by |Jensen et al.| (1972) and is included for comparability.

Following the literature, we use market excess returns R;? defined as the value-
weighted return of all CRSP firms incorporated in the US and listed on the NYSE,
AMEX, or NASDAQ and which have a CRSP share code of 10 or 11 at the beginning
of month ¢, good shares and price data at the beginning of ¢, and good return data
for t. We equate the risk-free rate, relative to which excess returns are defined, to
the one-month Treasury bill rateE] We drop duplicates and all firms not existing for
more than 2 months.

2For market excess return, cf. http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
data_library.html| accessed Sep 16 2016. Background on the CRSP data can be found at http:
//www.crsp.com/products/research-products/crsp-us-stock-databases, accessed Sep 16 2016.
All data were downloaded from the UPenn Wharton Research Data Services web page, https:
//wrds-web.wharton.upenn.edu/wrds/, on Aug 9, 2016.
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Table 1: One month ahead prediction MSE for asset returns, 2010-15

OLS Restricted OLS EB Restricted EB
0.0255 0.0232 0.0219 0.0218

Note: This table shows the mean squared error of alternative predictors of excess
asset returns R;; of the form @; + 3; RM, where (@, ;) are estimated using data for
the 5-year windows [t — 60, ¢ — 1], starting in January 2010.

Predictive performance, 2010-15 In order to compare alternative estimators of
the asset-specific parameters «; and 3;, we consider their predictive performance. We
calculate the mean squared error of alternative predictors of realized returns R; ;11 in
period ¢+ 1 using market returns Rfﬁfrl and estimates of «;, §;, based on observations
for the periods 1 through t. We repeatedly estimate «; and §; using 5-year windows
of data and form predictions one month ahead. Thus, we predict returns for January
2015 using estimates based on returns for January 2010 to December 2014, then
predict returns for February 2015 using estimates based on returns for February 2010
through January 2015, etc.

We compare four estimators, (i) unrestricted OLS, (ii) restricted OLS imposing
an intercept of 0, (iii) our preferred empirical Bayes estimator shrinking to the theory,
and (iv) empirical Bayes imposing an intercept of 0 and shrinking f; to the grand
mean.

Mean squared errors, averaged across assets and across time periods, are reported
in Table[I] As can be seen from this table, using empirical Bayes estimators results in
important reductions of prediction mean squared error both relative to unrestricted
OLS and relative to restricted OLS imposing an intercept of 0 (as implied by CAPM).
Our preferred estimator is the estimator shrinking to the theory, with MSE reported
in column 3. This estimator essentially ties in terms of MSE with the restricted
empirical Bayes estimator imposing the theory, in column 4.

Distribution of estimates for the period 2011-15 We next report estimates
based on the last five years of data. For financial decision making, one would be
interested in the actual asset-specific parameters «; and 3;. For the purpose of this
paper, and given the large number of assets ¢, we focus on estimating hyperparameters
and on summarizing the distribution of alternative estimates for a; and g;.

Applying the method of moments estimators of equations and to the data
for 2011-2015, we obtain estimates 5° = 0.96 and

7 _ 0.001 —0.016
- \—0.016 0.863 )’

which implies a correlation between a and S across assets of —0.72. These estimates



suggest that the predictions of CAPM are very accurate for this time period — the
estimated mean square deviation Tn of a; from 0 equals 0.0006. Recall that ?11
corresponds the role of 7 in the simplified setting considered in Section 2 of the
manuscript and thus provides a measure of model fit.

We plot the distribution of estimates for «; and [3; across assets ¢ in Figure [1} In
interpreting these figures, note the different scale of the axes between o and §. As
suggested by the estimated T, it appears that o has very small dispersion around
0, in line with the predictions of CAPM, and the same is true for estimators a;.
Unsurprisingly empirical Bayes, our preferred estimator, as shown in the third row,
delivers estimates that are less dispersed than the unrestricted OLS estimates, for
both o and 5. The median shrinkage factor of the OLS estimates of a toward 0
implied by the empirical Bayes estimator equals 0.82, while the median shrinkage
factor of the OLS estimates of 8 toward BO equals 0.91. For purposes of comparison,
the first row of Figure [I| shows the distribution of estimates of 3 for the restricted
empirical Bayes estimator, which imposes a = 0.

Figure [2] depicts the joint distribution of OLS and empirical Bayes estimates.
The two are obviously positively correlated, and empirical Bayes estimates tend to
be closer to the grand mean, but there is variability of the empirical Bayes estimates
given the OLS estimates. This stands in contrast to component-wise linear shrinkage
estimators such as the ones discussed by Hansen (2016). The bottom plot in Figure
shows that empirical Bayes and restricted empirical Bayes estimates are rather close
to each other.

Results for the period 1931-1965 We next report similar results for the earlier
period, which is the one studied by |Jensen et al. (1972)). For this period, the method
of moments yields estimates 3° = 1.178 and

T 0.000 —0.000
~ \—0.000 0.197 )’

which implies a correlation between o and  across assets of —(0.05. These estimates
again suggest that the predictions of CAPM are very accurate — the mean square
deviation of «; from 0 equals 0.0001.

We plot the distribution of estimates for «; and (; across assets i in Figure
These plots reveal a pattern similar to the one discussed before, with more pronounced
shrinkage for the empirical Bayes estimates than in the period 2011-15. The median
shrinkage factor of the OLS estimates of o toward 0 implied by the empirical Bayes
estimator equals 0.54, while the median shrinkage factor of the OLS estimates of
toward BO equals 0.75. Figure {4| depicts the joint distribution of OLS and empirical
Bayes estimates. The pattern is again similar to the one discussed before, but shows
more pronounced shrinkage.



Figure 1: Distribution of estimates of « and § across assets for the period 2011-15
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Notes: These figures show histograms of the distribution of alternative estimators
for a; and f3; across assets 4, as discussed in Section [A ]



Figure 2: OLS and empirical Bayes estimates of o and S for the period 2011-15
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These figures show scatter plots of the joint distribution of alternative
estimators for a; and §; across assets i, as discussed in Section [A1]



Figure 3: Distribution of estimates of o and [ across assets for the period 1931-65
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10



Figure 4: OLS and empirical Bayes estimates of o and S for the period 1931-65
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Let us summarize our findings. A key prediction of CAPM — that all of the «; are
equal to 0 — does not appear to be exactly true (and has been rejected by statistical
tests in the literature). This prediction however appears to be “approximately true,”
in the sense of a small mean square deviation of a; from 0. As a consequence, our
preferred empirical Bayes estimator, which shrinks toward this theory, applies some
non-negligible shrinkage relative to the unrestricted estimator. The out-of-sample
predictive performance of our estimator exceeds that of competitors including both
unrestricted and restricted estimation.
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A.2 Choice probabilities and economic decision theory

In our second application we consider the problem of estimating the probability that
an economic agent makes a certain choice when faced with a given choice set. Such
estimation problems arise in many different economic settings. The data to estimate
choice probabilities might for example come from lab experiments, or from household
consumption surveys; see for instance Hoderlein and Stoye| (2014) who use the the
British Family Expenditure Survey to estimate bounds on the share of households
violating the weak axiom of revealed preference. Choice probabilities and the restric-
tions on them implied by economic theory have been discussed in economic decision
theory (see for instance McFadden|2005). Estimation of these choice probabilities
involves high dimensional parameters to the extent that there are many possible
choices and choice sets. In this application, the “theory” that we propose shrinking
to corresponds to abstract theories of decision making, such as utility maximization,
expected utility maximization, or exponential discounting.

Consider a set of individuals ¢ who are randomly assigned to choice sets C'. The
individuals make choices using the choice functions d, which map choice sets into
one of their elements. Suppose that all choices z belong to a finite set X of possible
choices, and consider a collection % of subsets C of X. These are the possible choice
sets faced by individuals. This setting is similar to the one considered by [McFadden
(2005)).

In this setting, theories of decision making can be described by a collection & of
choice functions d mapping each C' € % to one of its elements. A leading example of
such a theory is maximization of strict preferences. This theory corresponds to the set
of choice functions defined on % satisfying the strong axiom of revealed preference.
Other examples of such theories are expected utility maximization (when the elements
of X are lotteries), and exponential discounting (when the elements of X are time-
paths of rewards).

We can identify choice functions with vectors as follows. For each combination of
choice function d and choice x from choice set C, set d ¢ equal to 1 if = is the element
that d would choose from C. That is, dyc = 1 iff d(C) = x and d,c = 0 otherwise.
Once we stack the choice sets C' and stack choices x within these sets, we are left
with a vector d of Os and 1s. Using this vector notation for choice functions, we
can identify the collection of choice functions &, which reflects the theory of decision
making, with the matrix D containing all such column vectors d.

We want to allow for arbitrary heterogeneity, that is, arbitrary distributions of
agents across the choice functions admitted by the theory. To this end, let m € A be
a probability distribution over choice functions. 74 is the probability that a random
agent from the population of interest makes their choices according to the choice
function d € 2. A is the simplex of probability distributions on the elements of Z.
Suppose now that agents (choice functions) are randomly assigned to choice SetsE]

3This is a conceptual reference point and might be generalized in a number of ways. We could
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Let p = (pzc) be the vector of conditional choice probabilities for randomly assigned
agents, where p,c = P(d(C) = x) is the probability that a random agent faced with
choice set C' will make choice z € C'. Our setup and notation now imply that

p=D-m, (7)

and thus, in particular,
peD-A. (8)

The set & := D - A on the right hand side is in general a strict subset of the set
of all conditional probability distributions for choices x given choice sets C'. The
statement p € & is the empirical content of the theory of choice that imposes d € 2
for all agents. When the theory considered is strict preference maximization, D - A is
the set of conditional choice probabilities satisfying the stochastic axiom of revealed
preferences, as shown by [McFadden (2005). By Farkas’” Lemma we have p € & if
and only if there is no vector ¢ such that

qg-D>0
q-p<0.

Structural and unrestricted estimation Suppose now that we observe n i.i.d.
draws (C;,x;), such that z; = d*(C;). Let nyc be the number of observations such
that (C; = C,x; = ), and let nc be the number of observations such that C; = C.
Once again we will consider three alternative approaches, this time for estimating the
vector of conditional choice probabilities p. Unrestricted estimation simply estimates
conditional probabilities by conditional frequencies, that is

~u NgC
= . 9
Pzc ne ( )

Restricted estimation estimates these probabilities while imposing that the vector p
is consistent with our theory of choice, so that p € & = D - A. Structural estimation
in this context thus imposes a set of linear inequality constraints on the vector p.
The maximum likelihood estimator subject to this restriction can be written as

p® = argmax Z ngc - log(pzc)- (10)
PE?  Cgec

Empirical Bayes estimation, shrinking toward the theory The third ap-
proach uses the empirical Bayes formalism to construct an estimator shrinking to-
ward the theory. In the present context, we will deviate from the normal-normal
setting considered thus far and instead consider multinomial sampling distributions

for instance replace independence by conditional independence given observed covariates.
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and corresponding conjugate Dirichlet priors. Assume in particular for each choice
set C' € € that

(nuc)zec|p ~ MN((pzc)zec, nc) (11)
(Pzc)zec ~ Dir(a - (Pye)zec) (12)
pe s
aeRT.

We impose furthermore that independence of ((nxc)zec, (Pzc)zec) holds across dif-
ferent choice sets C'. Equation is implied by i.i.d. sampling. Equation
defines a family of priors, indexed by p and «. This family of priors will be used
to construct the empirical Bayes estimator, where the hyperparameters o and p will
be estimated using maximum marginal likelihood, and p itself will then be estimated
using a Bayesian updating step.

These assumptions yield the following likelihoods corresponding to (i) sampling,
(ii) the family of priors, (iii) the joint likelihood, and (iv) the marginal likelihood of
the observed n,c given the hyperparameters o and p:

Plnec)lpac) =] (W) <10 p]
reen=11| (oreso) <1 ]
P((nsc), (pec) 1}:<an0£§§) o) Hcp+]
o (i o) <Dt

The marginal likelihood of the last equation is the product across choice sets C of
so-called Dirichlet-multinomial distributions for each of the vectors (n,¢).ec. Condi-
tional on the hyperparameters a and p,~ as well as the observed n,¢, the expectation
of p.c is given by

- ﬁxc + naC

13
a+nge ( )

Elpzcla, b, (nec)] =
Plugging in estimates for e and p, this expression gives the empirical Bayes estimates
for pi~ EB . These empirical Bayes estimates thus linearly interpolate between the un-
restricted estimator and a structural estimator p € £, as in the normal-normal
setting considered before. Linear interpolation between structural and unrestricted
estimators in fact will happen any time we are using conjugate priors for exponential
families.
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The empirical Bayes estimator of the hyperparameters a and p,» maximizes the
marginal likelihood, or equivalently, its logarithm:

(aFB pPB) = argmax (14)
> <1og<r<a>> ~log(T(a+ne)) + Y (1og(D(a - puc + nec) ~ log(T(a -pxc»)) ,
C zeC

subject to p € & and o € RT. This optimization problem can be solved numerically;
the supplementary appendix provides some discussion on numerical implementation
of both structural estimation and maximizing the marginal likelihood in the present
setting.
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A.3 Multinomial logit and mixed multinomial logit

In our final application, we consider estimation of parametric structural models of
discrete choice. Such models are used in many settings in applied microeconomics
(Train |2009 provides a review). Estimation of these structural models of discrete
choice might involve high dimensional parameters for several reasons. We might con-
sider the influence of many characteristics of choices on choice probabilities as well
as the influence of many characeristics of decision makers on choice probabilities. We
might also wish to let either of these characteristics affect choice probabilities in a
flexible way. In this application, the “theory” that we propose shrinking to corre-
sponds to choice probabilities consistent with the multinomial logit model, which is
nested in the more general mixed multinomial logit model. The multinomial logit
model is arguably the most popular model of discrete choice, but imposes strong
restrictions on demand. It imposes, in particular, the “independence of irrelevant
alternatives” property. Tests for this property have been proposed by Hausman and
McFadden (1984).

Consider a set of decision makers i who repeatedly, in periods ¢, choose between
discrete alternatives j. Suppose that we observe these choices j, as well as a vector
of observables x;;; (with components ;) characterizing each of the available alter-
natives for decision maker i. Assume further that utility for these alternatives j is
given by

Uit = Tije - Bi + €t (15)
where the €;;; are i.i.d. given x; and follow an EV1 distribution, while the 3; are
invariant across time and drawn from a distribution with density f(5;|n), i.i.d. across
i. This is the setting considered in Train| (2009) chapter 6.7, for instance. Availability
of a panel, that is of repeated choices by the same decision makers, allows one to
credibly identify heterogeneity of the preference parameters g; across decision makers
i.

Restricted and unrestricted estimation Under these assumptions, the proba-
bility of observing a sequence of choices (ji,. .., jr) for any given decision maker i is
equal to

PMME G rfes) = [ (H gxfxﬁ’;;;f )5)>f(6\77)dﬂ- (16)

This is known as the mixed multinomial logit model. A special case of this model is
the multinomial logit model, which imposes the additional restriction that there is
no heterogeneity across ¢ in terms of 3, so that

oL e exp( xmt B) . 17
(.]17 ,jT|.’E HZ exp CL’z]t 5) ( )
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To fully parametrically specify the mixed multinomial logit model, we need to pick a
family of distributions f(5|n).
We assume that the vector §; is normally distributed across i, that is

Biln ~ N(u, ). (18)

Under this assumption about the distribution of 3;, mixed multinomial logit reduces
to multinomial logit in the boundary case 2 = 0. Note that we allow for general
correlations between the different components of ;. This contrasts with the com-
monly imposed assumption that the different components of 3; are uncorrelated, as
for instance in Train (2009) chapter 6.8. This increased flexibility allows for more real-
istic preference distributions, but requires estimation of a high-dimensional matrix 2.

As before, we consider three alternative approaches for estimating these models
and the implied choice probabilities. The first approach estimates the unrestricted
mixed multinomial logit model, parametrized by (u,$2), using maximum likelihood.
The second approach estimates the restricted multinomial logit model, parametrized
by S, using maximum likelihood again.

Empirical Bayes estimation, shrinking toward the theory The third ap-
proach estimates the mixed multinomial logit model, shrinking it toward the multi-
nomial logit model. We shall in particular consider the family of priors which imposes
that the variance matrix Q) follows an Inverse-Wishart distribution with parameters
(%—i—p—kl) and 0,

Q~IW (2 +p+1,0), (19)

where p = dim(3;). This parametrization is chosen to yield simple expressions for the
conditional expectation of €2 below. We leave the mean vector p unrestricted. In our
general empirical Bayes notation, n = (u, 2), a parameter of dimension p+p-(p+1)/2,
and 6 = (u, 7), a parameter of dimension p + 1.

This is a nonlinear model, and solutions have to be obtained using numerical
methods. Empirical Bayes estimation of this model involves two steps. First we
estimate the hyper-parameters p and 7 by maximizing the marginal likelihood. Then,
we estimate the variance matrix ) by its posterior mean, given p and 7 and given
the observed data.

In order to evaluate the marginal likelihood, we propose to use a simulated likeli-
hood approach. In order to calculate the posterior mean of §2, we propose sampling
from the posterior distributions of €2 and f;, given the observed choices and given
0 = (u, 7), using Gibbs samplingﬂ For a detailed discussion of these numerical meth-
ods, the reader is pointed to chapters 10 and 12 in Train| (2009) and chapters 11 and
12 in (Gelman et al.| (2014)).

4Gibbs sampling is a Markov Chain Monte Carlo method designed to simulate draws from a
distribution that decomposes in terms of several simpler conditional distributions.

18



Let us however briefly sketch some features of our model that simplify computa-
tion and shed some light on the behavior of the proposed empirical Bayes estimator.
Given our modeling assumptions and given our family of priors, we have

Qs 7B B~ IW (L p+ 14 mm- Q) (20)
where
Q=13"Bi—pw Bi—p,
and thus Z nr
E[Q|u,T,B1,...,0n] = T -0

If we hypothetically were to observe the f;, then empirical Bayes estimation would
involve linear shrinkage of the unrestricted variance estimator Q toward 0. As the
hyperparameter 7 varies between 0 and oo, the empirical Bayes estimator of {2 varies
between 0 (so that we recover the restricted multinomial logit model) and the un-
restricted maximum likelihood estimator Q of Q. If we observe many choices per
agent so that T is large, while the number of observed agents n is not too large, this
approximately describes the behavior of the empirical Bayes estimator where the (;
are unobserved.

Note that shrinkage happens for two distinct reasons in the mixed multinomial
logit empirical Bayes setting, reflecting the fact that we have constructed a hierarchi-
cal model with three layers of parametrization. The first reason for shrinkage, present
in conventional estimators of the MML model, is that we are estimating a discrete
choice panel model with random coefficients 3;, where the random coefficients are
considered to be drawn from a population distribution f(8|n), so that we shrink 3;
when interested in individual ¢’s preferences. Conventional unrestricted estimators
estimate 7 using maximum likelihood.

The second reason for shrinkage, which is specific to our approach, is that we are
shrinking toward the multinomial logit model and its specific patterns of substitu-
tion. The multinomial logit model imposes independence of irrelevant alternatives,
in particular, and depending on how well this assumption appears to apply in the
available data, 7 will be smaller or larger, so that the estimator of 2 shrinks more or
less.

B Geometry of our empirical Bayes estimator

We conclude our analysis of the properties of EEB by studying its geometry. The
proposed empirical Bayes estimator can be seen as providing a mapping from an
unrestricted (preliminary) estimate B to an empirical Bayes estimate BEB . Under-
standing this mapping is key for understanding the behavior of our estimator. For
this section, consider again the estimator of Assumption ?? in the canonical form
Assumption ??, where V = diag(v;).
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Special case: M =0 We first discuss the case where M = 0, so that we can ignore
estimation of 4%, In this case, the expression for BF8 simplifies further to

BEB =diag [ = 7 E
72 4 v

As T varies, this equation describes a curve interpolating between the unrestricted
estimate 8 and the “restricted estimate” 0. All points along this curve are points
of tangency between a sphere around 0 (corresponding to the prior variance) and an
ellipsoid around B with axes of length proportional to v; (correspondlng to estimator
variance). This expression does not quite reveal the mapping from ﬁ to BEB as 72
itself is a function of B\ , given by the solution to the first order condition

Yot oY
- 72+ v; - (72 4 vj)?

Given 72, this first order condition implies that 3 must be somewhere on the surface
of an ellipsoid with semi-axes that have length

o) [ o (21)

Ty

along the jth dimension. This implies in turn that the length of B\EB is given by

1
~2
. —_— . 22
T Z 72 + g ( )

k./

Note that this value does not depend on E beyond its effect on 72. All estimates BEB
corresponding to a given value of 72 are on the surface of a Sphere with this radius.
Note ﬁnally that there is a natural lower bound on 72 of O In particular, we have
that 72 is equal to 0 for any values of ﬁ inside the ellipsoid with semi-axes of length

o 34 (23)

W UK

Visual representation We can illustrate the mapping from B\ to 72 and B\EB
graphically when dim(3) = 2. Suppose that v; = 2, and va = 1. The top part of
Figure |5 I shows 72 as a function of ﬂ This function is flat and equal to 0 inside
the white ellipsoid; it rises smoothly and approaches a circular cone for large ﬂ.
The bottom part of this same figure shows (i) f¥P — 3 as a vector field (arrows

are proportional to, but smaller than, this difference) and (ii) a contour plot of the

5Since we impose this bound, our estimator resembles the positive-part James-Stein estimator.
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length of these vectors, that is, of the amount of shrinkage relative to the unrestricted
estimator.

The structure of this mapping gets more transparent when considering the ana-
lytic characterizations we just derlved Figure @ in particular, plots (i) which values
of 5 would imply such values of 72 and (ii) the corresponding estimates BEB for
various values of 72.

How can we interpret these figures? For small B , the estimator concludes that the
“theory” is essentially correct, where the theory in thls case reduces to the assumption
B =0. As B gets larger, so does the estimated 72 — the theory is considered “less
correct.” Deviations from 0 in the direction of the first coordinate are weighted less
heavily as 31 has a larger variance (is less precisely estimated). Bl is shrunk most
heavily if 52 seems to confirm the theory while 51 violates it moderately, as evident
in the bottom right plot of Figure [5, When 6 is large, so is 72, and the theory
is essentially disregarded; BEB is basically equal to the unrestrlcted estimator, as
evident in the bottom plots of Figure [6]

Geometry in the general case: M # 0 Let us now turn to the general case
where M # 0, and where we must account for estimation of QO. This can be analyzed
using the same “trick” as 1E)\efore, ~where we consider 72 and BY to be given and derive
the corresponding sets of 5 and BEB,

Given 72, B° minimizes the quadratic form

3 (B — B° - M;)?
X ?2 +Uj ’
J

so that R )
P 2B
=————7
2 Mg
This equation defines a hyper-plane in the space of B As before, the first order
condition for 72 implies

(24)

_ M)2
ZAQJrv Z 72+v '

This equation describes an ellipsoid centered at 30 M with semi-axes of length
Zk/ - along dimension k£ . Given T 72 and ,80 we thus get that 5 has to lie on

the surfaceAs of this ellipsoid, intersected with a hyper-plane through the center of this
ellipsoid. BFE is then obtained from A by shrinking on the hyper—plane towards the

center of the ellipsoid, where EEB again ends up on a sphere of radius 72+, />, = +vk,
around this center.
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Figure 5: The mapping from B\ to 72 and BEB
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Notes: These figures illustrate the mapping from preliminary estimates to empirical Bayes estimates
when dim(8) = 2, Var(f) = diag(2,1), and M = 0. The top figure shows how our measure of model
fit 72 varies with 3, the bottom left figure shows the direction and magnitude of shrinkage from 3 to

,§E B and the bottom right figure depicts just the magnitude of shrinkage. For details, see Section
7?7
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Figure 6: The geometry of empirical Bayes
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Notes: These figures illustrate the mapping from preliminary estimates for the same setting as
in Figure Each figure depicts, for a given value of 72 which preliminary estimates 3 yield this

value and to what set of empirical Bayes estimates SEZ these preliminary estimates are mapped.
For details see Section ?77.
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We can rephrase this argument by considering only 72 to be given. Conditional
on 72, we get that 3 has to lie on the surface of a hyper-cylinder with ellipsoid basis
and axis going through the origin and pointing in the direction of the vector

1 1
240 2 by )

The corresponding estimates BEB are on the surface of a hyper-cylinder with spherical

basis and the same axis. Note that the tilt of the axis depends on 72 and varies
between (1,...,1) for large 72 and ( Lo, i) for 72 = 0.

H’ Ty
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C Monte Carlo simulations

In this section, we present a series of simulations comparing the performance of our
empirical Bayes procedure to its competitors, structural (restricted) estimation and
unrestricted estimation. These simulations are modeled on the labor demand applica-
tion of section 3.1 in the manuscript. Section presents simulations corresponding
to the empirical Bayes paradigm, fixing the hyperparameter 6 and drawing from the
implied distributions of the parameters 1 and data Y. Section presents simula-
tions corresponding to the frequentist paradigm, fixing the parameter 17 and drawing
from the implied distribution of the data Y. Section considers simulations sim-
ilar to Sections and but governed by parameters calibrated to match our
empirical application.

C.1 Monte Carlo results, fixing 0, drawing from the distribution of
n and Y

Corresponding to the different paradigms of statistical inference (Bayesian, frequen-
tist, empirical Bayes), there are different notions of the performance of an estimator.
The Bayesian perspective considers expected loss averaged over possible values of
both 6§ and 7. The frequentist perspective considers expected loss conditional on
7, averaging just over repeated draws of the data. The empirical Bayes perspective
considers expected loss averaging over n but conditional on 6. Let us first consider
simulations based on the empirical Bayes perspective, where we repeatedly draw
values for 7 (in particular own- and cross-elasticities ) and data generated by the
parameter 7.

In our simulations, we vary the sample size n, the number of regressors J, the
residual variance o2, and the parameter 72, which measures how well the structural
model describes the data generating process. For all simulations, the regressors X;
are i.i.d. draws from the uniform distribution on [0, 1], and the regression residuals
are normally distributed with variance o?. Results are based on 5,000 Monte Carlo
draws for each design. Table [2| shows the results of these simulations. For each
design we show the mean squared error, calculated as an average over Monte Carlo
draws of $ and Y, for four alternative estimation procedures, relative to the proposed
empirical Bayes procedure.

At one extreme of the designs considered are those with a small sample size, a
large number of regressors, a high variance of residuals, and a good fit of the structural
model (small 72). In these designs we would expect the structural model to work well
and to potentially outperform the empirical Bayes procedure, as it exploits additional
correct information. And indeed we do find that structural estimation dominates
empirical Bayes at the very extreme of the range of designs considered.

At the other extreme of the designs considered are those with large sample size,
small number of regressors, small variance of residuals, and poor fit of the structural
model (large 72). In these designs we would expect the unrestricted estimator to
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Table 2: Mean Squared Error of alternative estimators relative to empirical Bayes
conditional on 6

Design parameters MSE relative to empirical Bayes estimation
n J 0% By 72 | Structural Unrestricted Oracle E.B.
50 4 1.0 1.0 0.2 1.59 1.70 0.97
50 16 1.0 1.0 0.2 0.82 1.21 1.00
200 4 1.0 1.0 0.2 4.42 1.19 0.98
200 16 1.0 1.0 0.2 4.18 1.11 1.01
50 4 05 1.0 0.2 2.41 1.37 0.98
50 16 05 1.0 0.2 1.56 1.14 1.01
200 4 0.5 1.0 0.2 7.87 1.09 0.99
200 16 0.5 1.0 0.2 7.80 1.03 1.00
50 4 10 1.0 0.5 2.42 1.38 0.99
50 16 1.0 1.0 0.5 1.56 1.14 1.01
200 4 1.0 1.0 0.5 7.90 1.10 1.00
200 16 1.0 1.0 0.5 7.83 1.04 1.00
50 4 05 1.0 0.5 4.05 1.19 1.00
50 16 05 1.0 0.5 2.91 1.07 1.01
200 4 0.5 1.0 0.5 14.94 1.05 1.00
200 16 0.5 1.0 0.5 15.28 1.01 1.00
5 4 10 1.0 1.0 4.14 1.19 1.00
50 16 1.0 1.0 1.0 2.90 1.07 1.01
200 4 1.0 1.0 1.0 15.08 1.05 1.00
200 16 1.0 1.0 1.0 15.21 1.01 1.00
50 4 05 1.0 1.0 7.34 1.09 1.00
50 16 0.5 1.0 1.0 5.53 1.02 1.01
200 4 05 1.0 1.0 29.42 1.03 1.00
200 16 0.5 1.0 1.0 29.92 1.00 1.00

Notes: This table compares the performance of alternative estimators based on
5,000 Monte Carlo draws given . For details, see the description in Section
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work well as it has a small variance and does not shrink toward the incorrect struc-
tural model. Nonetheless, we do find that unrestricted estimation never dominates
empirical Bayes for any of the designs considered.

Over almost the entire range of the simulations considered, empirical Bayes per-
forms very well and better than either of the alternatives: structural / unrestricted
estimation. For designs where 72 is large, estimation based on the structural model
yields estimates that perform very poorly relative to empirical Bayes, as to be ex-
pected. And for all designs considered, the variance reduction achieved by empirical
Bayes implies that empirical Bayes performs better than unrestricted estimation,
sometimes significantly so.

The last column of Table 2| shows, for purposes of comparison, the infeasible oracle
empirical Bayes estimator, where 72 is assumed to be known rather than estimated.
As this column shows, knowledge of 72 does not appear to result in improvements of
performance.

C.2 DMonte Carlo results, fixing 1, drawing from the distribution of
Y

In Section we considered simulations where 6 was fixed, but 7 was drawn repeat-
edly, an approach that corresponds to the empirical Bayes paradigm. We shall now
turn to simulations in the spirit of the frequentist paradigm, where 7 is fixed, and we
repeatedly sample from the distribution of Y.

Specifically, we are considering coefficient matrices of the form

B = Boo - Mjo + Bor - My1 + Boz2 - Mo,

where M jg is equal to M in the first J/4 columns and zero elsewhere, M, is equal
to My in the last J/4 columns and zero elsewhere, and M j; is equal to M in the
middle J/2 columns, and zero elsewhere. This design implies that the structural
model is correct if and only if Sgg = Bo1 = Bo2- Table [3] shows the results of these
simulations. The values for n, J, and o2 are the same as considered before, as are
the distributions of X;; and of the residuals. For each combination of these values,
we consider different combinations of Byg, Bo1, and Boo.

Structural estimation dominates empirical Bayes when the structural model is
correctly specified, that is when Bgg = 891 = Bo2. Not very surprisingly, the reduction
in MSE by imposing the structural model relative to empirical Bayes estimation can
be made arbitrarily large when the model is exactly right, the number of parameters J
is large, and estimates are noisy (small sample size n, large residual variance o2). On
the other hand, structural estimation performs significantly worse when the structural
model is violated, and the variance of unrestricted estimation is not too large.

C.3 Calibrated Monte Carlo simulations

We conclude this section by presenting some simulations similar to those discussed
before, but calibrated to our empirical results. We first estimate the model via
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Table 3: Mean Squared Error of alternative estimators relative to empirical Bayes
conditional on 7

Sesign parameters mean squared error
n J o2 Bowo PBoi Po2 Structural Unrestricted
50 4 10 1.0 1.0 1.0 0.25 2.13
50 16 1.0 1.0 1.0 1.0 0.02 1.32
200 4 10 1.0 10 1.0 0.18 1.47
200 16 1.0 1.0 10 1.0 0.04 2.30
5 4 05 1.0 1.0 1.0 0.19 1.70
50 16 0.5 1.0 1.0 1.0 0.02 1.32
200 4 05 1.0 10 1.0 0.16 1.27
200 16 0.5 1.0 10 1.0 0.09 5.39
50 4 1.0 1.0 1.0 6.0 3.86 1.13
50 16 1.0 1.0 1.0 6.0 0.61 1.20
200 4 1.0 1.0 1.0 6.0 14.69 1.04
200 16 1.0 1.0 1.0 6.0 3.10 1.12
50 4 05 1.0 1.0 6.0 7.09 1.05
50 16 0.5 1.0 1.0 6.0 1.14 1.13
200 4 05 1.0 10 6.0 28.66 1.02
200 16 0.5 1.0 1.0 6.0 5.81 1.05
5 4 1.0 0.0 1.0 6.0 4.60 1.05
50 16 1.0 0.0 1.0 6.0 0.81 1.18
200 4 1.0 0.0 1.0 6.0 18.74 1.00
200 16 1.0 0.0 1.0 6.0 4.07 1.08
50 4 05 0.0 1.0 6.0 8.76 1.00
50 16 0.5 0.0 1.0 6.0 1.51 1.11
200 4 0.5 00 10 6.0 37.35 1.01
200 16 0.5 0.0 1.0 6.0 7.73 1.03

Notes: This table compares the performance of alternative estimators based on
5,000 Monte Carlo draws given 7. For details, see the description in Section
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empirical Bayes as in our empirical application, using the US panel of states_and
controlling for time and state fixed effects, to obtain estimates 8°, 72, and §F5.
We then perform two_sets of simulations. For the first, we repeatedly draw values
for § conditional on %, 72, and values of J, conditional on . These simulations
are analogous to those of Section “conditional on #.” For the second set of
simulations, we fix § equal to the estimated 6”5, and draw values of §, from the
corresponding sampling distribution. These simulations are analogous to those of
Section “conditional on 7n.” Each simulation is repeated 5000 times, and for
each repetition we calculate structural, unrestricted, and empirical Bayes estimates
based on d,.. We then calculate the mean squared errors of each of these and normalize
them relative to the MSE of empirical Bayes estimation.

We do this for both of the following cases. First, we consider shrinkage toward
the J-type CES model. Simulations conditional on 8 and conditional on n are shown
in Table 6] We second consider shrinkage toward the 2-type CES model of a demand
system for 8 types of workers. Simulations conditional on 8 and conditional on 7 are
shown in Table B

These simulations show that our proposed empirical Bayes approach, in these
empirical settings, performs consistently better than both unrestricted estimation and
structural estimation. These simulation results support using our proposed estimator.

Table 4: Mean Squared Error of alternative estimators relative to empirical Bayes,
calibrated specifications, 8-type CES model

Specification Mean squared error

Def of supply | Structural Unrestricted
Given n 3.06 3.14
Given 6 644.72 590.35

Notes: This table compares the performance of alternative estimators based on
5,000 Monte Carlo draws, based on specifications calibrated to our empirical results.
For details, see description in Section
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Table 5: Mean Squared Error of alternative estimators relative to empirical Bayes,
calibrated specifications, 2-type CES model

Specification Mean squared error

Def of supply | Structural Unrestricted
Given 7 5.21 3.21
Given 6 2.71 3.60

Notes: This table compares the performance of alternative estimators based on
5,000 Monte Carlo draws, based on specifications calibrated to our empirical results.
For details, see the description in Section
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D Labor demand and CES production functions

We next review the structural models of labor demand justifying the restricted wage
regressions considered in section 3.1 of the manuscript. Assume that wages equal
marginal productivity for some aggregate production function f,

Ofi(Nit, ..., Niy)
ON;; ’

’U)Z'j = (25)

and that the aggregate production function takes a constant elasticity of substitution
(CES) form,

J 1/p
filNaa, ..., Nig) = Z’YjNZ : (26)
j=1
These two assumptions together imply
7 1/p—1
Ofi(Nity. ..y Nig _
wij = z( zaN” i ) _ Z,yjNZ/ "Yj'N]p 1
k =1

We get that the relative wage between groups j and 5’ is equal to
Wy _ <N)
’UJ,L]/ ’7]/ Nl]/

Yij — Yij = log(v;) — log(v;r) + 8% - (Xi5 — Xijr),

where 80 = p — 1.

Taking logs yields

This result motivates regressions of the following form (see for instance [Autor
et al.|2008 and |Card [2009):

Yvij — Y:L'j/ =40 + 50 . (XU — Xij’) + €ij57- (27)

The coefficient B° in this regression is interpreted as the negative of the inverse
elasticity of substitution between labor types 7 and j’ H The constant -, j captures
factors unaffected by labor supply which do affect relative wages. In practice, such
regressions usually include additional controls for observables and/or time trends,
as well as labor market fixed effects in panel data, and might be estimated using
instrumental variables to account for the endogeneity of labor supply. More general

5The elasticity of substitution o is defined as the relative change in the demand for different
factors induced by a given change in their relative prices.
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specifications might also include additional terms for aggregate types of labor as
motivated by nested CES models.

Let us briefly discuss the economic content of the restrictions on S imposed by
the structural model relative to an unrestricted regression of the form

Yij=qa; +7;+ Z/Bjj/Xij/ + €55.
j/

First, 5 -e = 0 for e = (1,...,1). Proportionally increasing the labor supply of
every group by the same factor does not affect wages. This is a restriction implied by
constant returns to scale, if wages are assumed to correspond to marginal productivity
based on an aggregate production function. Second, f;;; = B;;» for j',j" # j. The
elasticity of substitution between different groups is the same for all groups. The CES
model imposes that there are only two possible degrees of substitutability between
different workers — either they are perfect substitutes when they are the same type,
or they have an elasticity of substitution of o = —1/4%. Third, Bj; = Bjj. The own-
elasticity of demand is the same for all types of labor. In combination, these three
restrictions in fact imply the CES regression model. The CES model additionally
implies that changes in labor supply do not affect within-type inequality of wages.
Given the small number of types usually imposed, this is a strong restriction.

D.1 2-type CES

In the manuscript, we also consider the canonical 2-type CES production function
model. Assume that the production function takes the form

2 1/p
= (252)
k=1
Niy = Z ¥ Nij-
kj=k

Then

af 9 1/p—1
' S Sp—1
e (;ﬁ@ e VA

and thus, using the same notation as before,

~ p—1
wij _ v N )
Wi 5 Nik,,

Taking logs suggests the regression specification.

Yij=Ya=(y—-—m)+ 50 : (Xikj — Xi1) + (€5 — €1).
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The 2 type CES model thus imposes the restriction § = 0 on the unrestricted model
for labor demand given by

Yij =Y = (v —m) + > 05 Xiy + 8% (Xin, — Xin) + (€35 — €in).
j/

E Numerical implementation for marginal maximum like-
lihood in the Multinomial-Dirichlet setting

In section 3.3 of the manuscript, we consider estimation of conditional choice prob-
abilities, shrinking toward the prediction of general theories of choice. In order to
calculate the structural maximum likelihood estimator proposed in this section, we
need to solve the constrained optimization problem

p°® = argmax Z nzc - log(pzc)
p CxeC
st.p=D -
m e A.

Note that 7 itself is in general not identified when the theory is correct (p € &), but
the pseudo-true 7 is generically unique and given by a corner of & otherwise. This
corner solution is the projection of the true p onto & with respect to the Kulbach-
Leibler divergence; similarly, the structural estimator is given by a projection of
the unrestricted estimator onto &?. We can solve this problem by searching for a
(potentially non-unique) maximizer in A. Since this is a convex optimization prob-
lem,numerical maximization is fairly straightforward, using for instance the barrier
method, and any solution satisfies

P=D-7

= argmax Z ngc - log((D - m)ec) + A7
™24 Td=1 ¢ zec

-7 =0,

=)

for Lagrange multipliers A > 0.

Let us now turn to the empirical Bayes estimator. The difficult step in solving
for the empirical Bayes estimator is estimating the hyper-parameters o and p. Our
proposed algorithm builds on the iterative procedure suggested by Minka (2000)),
section 4. This iterative procedure alternates maximizing the likelihood with respect
to a and with respect to p. The first order condition for maximization with respect
to « is given by

> (wa) ~W(atne)+ Y (VB +na0)) - ¥la -pm(;))) =0, (28)

C zeC
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where U := 0, log(I'(x)) is the so-called digamma function. As shown by Minka
(2000), the solution to this FOC can be found by fixed-point iteration of the form

Yo Yaee (Ve Bac +nuc) = Wla - Byc))
| > (@)~ ¥(a+nc) |

Faster second-order methods are available, as well.
The likelihood for p given o and the data is proportional to

H H I'(a-pye + nxC)' (29)

« =«

Using the fact that U(z + 1) = ¥U(z) + 1/z, the derivative of the logarithm of this
expression with respect to p,~ can be written as

Ngyc—1

1
a-(@a-ﬁ +nz0)) — V(a-p ): _
( zC x )) ( zC) ]z; pxC+]/a
Define the notation

m—1

v, q) = a- (g +m) = ¥(a) = 3 1

= 1+ila

Were there no constraint on p then we could find the maximum likelihood estimator
by a simple fixed point iteration, setting pI'¢" proportional to v(nzc, « - P,c), appro-
priately normalized to ensure summing to 1 for each C, cf. [Minka| (2000)), section 5.
Imposing the constraints of theory, we again obtain a convex optimization problem
which might be solved using the barrier method.
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