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What is to be done?

What questions should econometricians work on?

I Incentives of the publication process:
I Appeal to referees from the same subfield.
I Danger of self-referentiality,

untethering from external relevance.
I Versus broader usefulness:

I Tools useful for empirical researchers, policy makers.
I Anchored in substantive applications,

broader methodological considerations.

I One way to get there:
Well defined decision problems.
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What is to be done?

Decision problems

I Objects to carefully choose:
I Objective function.
I Space of possible decisions / policy alternatives.
I Identifying assumptions.
I Prior information.
I Features the priors should be uninformative about.

I Once these are specified, coherent and well-behaved solutions
can be derived.

I Useful tool for tractable solutions without functional form
restrictions: Gaussian process priors.
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What is to be done?

Outline of this talk

I Brief introduction to Gaussian process regression
I Application 1: Optimal treatment assignment in experiments.

I Setting: Treatment assignment given baseline covariates
I General decision theory result:

Non-random rules dominate random rules
I Prior for expectation of potential outcomes given covariates
I Expression for MSE of estimator for ATE

to minimize by treatment assignment
I Application 2: Optimal insurance and taxation.

I Economic setting: Co-insurance rate for health insurance
I Statistical setting: prior for behavioral average response function
I Expression for posterior expected social welfare

to maximize by choice of co-insurance rate

4 / 33



What is to be done?

References

Williams, C. and Rasmussen, C. (2006). Gaussian processes
for machine learning. MIT Press, chapter 2.

Kasy, M. (2016). Why experimenters might not always want
to randomize, and what they could do instead. Political
Analysis, 24(3):324–338.

Kasy, M. (2017). Optimal taxation and insurance using
machine learning. Working Paper, Harvard University.

5 / 33



What is to be done?

Gaussian process regression

Brief introduction to Gaussian process regression

I Suppose we observe n i.i.d. draws of (Yi ,Xi), where Yi is real
valued and Xi is a k vector.

I Yi = f (Xi) + εi

I εi |X , f (·)∼ N(0,σ2)

I Prior: f is distributed according to a Gaussian process,

f |X ∼ GP(0,C),

where C is a covariance kernel,

Cov(f (x), f (x ′)|X) = C(x ,x ′).

I We will leave conditioning on X implicit.
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What is to be done?

Gaussian process regression

Posterior mean

I The joint distribution of (f (x),Y ) is given by(
f (x)
Y

)
∼ N

(
0,

(
C(x ,x) c(x)
c(x)′ C + σ2In

))
,

where
I c(x) is the n vector with entries C(x ,Xi ),
I and C is the n×n matrix with entries Ci,j = C(Xi ,Xj ).

I Therefore
E[f (x)|Y ] = c(x) ·

(
C + σ

2In
)−1 ·Y .

I Read: f̂ (·) = E[f (·)|Y ]
I is a linear combination of the functions C(·,Xi )
I with weights

(
C + σ2In

)−1 ·Y .
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What is to be done?

Gaussian process regression

Both applications use Gaussian process priors

1. Optimal experimental design
I How to assign treatment to minimize mean squared error for

treatment effect estimators?
I Gaussian process prior for the conditional expectation of potential

outcomes given covariates.

2. Optimal insurance and taxation
I How to choose a co-insurance rate or tax rate to maximize social

welfare, given (quasi-)experimental data?
I Gaussian process prior for the behavioral response function

mapping the co-insurance rate into the tax base.
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What is to be done?

Experimental design

Application 1
“Why experimenters might not always want to randomize”
Setup

1. Sampling:
random sample of n units
baseline survey⇒ vector of covariates Xi

2. Treatment assignment:
binary treatment assigned by Di = di(X ,U)
X matrix of covariates; U randomization device

3. Realization of outcomes:
Yi = DiY 1

i + (1−Di)Y 0
i

4. Estimation:
estimator β̂ of the (conditional) average treatment effect,
β = 1

n ∑i E[Y 1
i −Y 0

i |Xi ,θ ]
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What is to be done?

Experimental design

Questions

I How should we assign treatment?

I In particular, if Xi has continuous or many discrete components?

I How should we estimate β?

I What is the role of prior information?
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What is to be done?

Experimental design

Some intuition

I “Compare apples with apples”
⇒ balance covariate distribution.

I Not just balance of means!

I We don’t add random noise to estimators
– why add random noise to experimental designs?

I Identification requires controlled trials (CTs),
but not randomized controlled trials (RCTs).
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What is to be done?

Experimental design

General decision problem allowing for randomization
I General decision problem:

I State of the world θ , observed data X ,
randomization device U ⊥ X ,

I decision procedure δ (X ,U), loss L(δ (X ,U),θ).

I Conditional expected loss of decision procedure δ (X ,U):

R(δ ,θ |U = u) = E[L(δ (X ,u),θ)|θ ]

I Bayes risk:

RB(δ ,π) =
∫ ∫

R(δ ,θ |U = u)dπ(θ)dP(u)

I Minimax risk:

Rmm(δ ) =
∫

max
θ

R(δ ,θ |U = u)dP(u)
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What is to be done?

Experimental design

Theorem (Optimality of deterministic decisions)
Consider a general decision problem.
Let R∗ equal RB or Rmm. Then:

1. The optimal risk R∗(δ ∗), when considering only deterministic
procedures δ (X), is no larger than the optimal risk when allowing
for randomized procedures δ (X ,U).

2. If the optimal deterministic procedure δ ∗ is unique, then it has
strictly lower risk than any non-trivial randomized procedure.
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What is to be done?

Experimental design

Proof
I Any probability distribution P(u) satisfies

I ∑u P(u) = 1, P(u)≥ 0 for all u.
I Thus ∑u Ru ·P(u)≥minu Ru for any set of values Ru .

I Let δ u(x) = δ (x ,u).
I Then

RB(δ ,π) = ∑
u

∫
R(δ

u,θ)dπ(θ)P(u)

≥min
u

∫
R(δ

u,θ)dπ(θ) = min
u

RB(δ
u,π).

I Similarly

Rmm(δ ) = ∑
u

max
θ

R(δ
u,θ)P(u)

≥min
u

max
θ

R(δ
u,θ) = min

u
Rmm(δ

u).
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What is to be done?

Experimental design

Bayesian setup
I Back to experimental design setting.
I Conditional distribution of potential outcomes: for d = 0,1

Y d
i |Xi = x ∼ N(f (x ,d),σ2).

I Gaussian process prior:

f ∼ GP(µ,C),

E[f (x ,d)] = µ(x ,d)

Cov(f (x1,d1), f (x2,d2)) = C((x1,d1),(x2,d2))

I Conditional average treatment effect (CATE):

β =
1
n ∑

i
E[Y 1

i −Y 0
i |Xi ,θ ] =

1
n ∑

i
f (Xi ,1)− f (Xi ,0).
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What is to be done?

Experimental design

Notation

I Covariance matrix C, where Ci,j = C((Xi ,Di),(Xj ,Dj))

I Mean vector µ , components µi = µ(Xi ,Di)

I Covariance of observations with CATE,

C i = Cov(Yi ,β |X ,D)

=
1
n ∑

j
(C((Xi ,Di),(Xj ,1))−C((Xi ,Di),(Xj ,0))) .
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What is to be done?

Experimental design

Posterior expectation and risk

I The posterior expectation β̂ of β equals

β̂ = µβ + C
′ · (C + σ

2I)−1 · (Y −µ).

I The corresponding risk equals

RB(d, β̂ |X) = Var(β |X ,Y )

= Var(β |X)−Var(E[β |X ,Y ]|X)

= Var(β |X)−C
′ · (C + σ

2I)−1 ·C.
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What is to be done?

Experimental design

Discrete optimization

I The optimal design solves

max
d

C
′ · (C + σ

2I)−1 ·C.

I Possible optimization algorithms:
1. Search over random d
2. greedy algorithm
3. simulated annealing
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What is to be done?

Experimental design

Special case linear separable model
I Suppose

f (x ,d) = x ′ · γ + d ·β ,
γ ∼ N(0,Σ),

and we estimate β using comparison of means.
I Bias of β̂ equals (X

1−X
0
)′ · γ , prior expected squared bias

(X
1−X

0
)′ ·Σ · (X

1−X
0
).

I Mean squared error

MSE(d1, . . . ,dn) = σ
2 ·
[

1
n1

+
1
n0

]
+ (X

1−X
0
)′ ·Σ · (X

1−X
0
).

I ⇒Risk is minimized by
1. choosing treatment and control arms of equal size,
2. and optimizing balance as measured by the difference in covariate

means (X
1−X

0
).
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What is to be done?

Optimal insurance

Application 2
“Optimal insurance and taxation using machine learning”
Economic setting

I Population of insured individuals i .
I Yi : health care expenditures of individual i .
I Ti : share of health care expenditures covered by the insurance

1−Ti : coinsurance rate; Yi · (1−Ti): out-of-pocket expenditures
I Behavioral response to share covered: structural function

Yi = g(Ti ,εi).

I Per capita expenditures under policy t : average structural function

m(t) = E[g(t,εi)].
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What is to be done?

Optimal insurance

Policy objective
I Insurance provider’s expenditures per person: t ·m(t).

I Mechanical effect of increase in t (accounting):

m(t)dt.

I Behavioral effect of increase in t (key empirical challenge):

t ·m′(t)dt.

I Utility of the insured:
I Mechanical effect of increase in t (accounting):

m(t)dt.

I Behavioral effect: None, by envelope theorem.
I ⇒ effect on utility = equivalent variation = mechanical effect

I Assign relative value λ > 1 to a marginal dollar for the sick vs.
the insurer.
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What is to be done?

Optimal insurance

I Marginal effect of a change in t on social welfare:

u′(t) = (λ −1) ·m(t)− t ·m′(t) = λm(t)− ∂

∂ t (t ·m(t)). (1)

I Integrating and imposing the normalization u(0) = 0:

u(t) = λ

∫ t

0
m(x)dx− t ·m(t). (2)

I Special case λ = 1: “Harberger triangle” (not the relevant case)
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What is to be done?

Optimal insurance

Observed data and prior

I n i.i.d. draws of (Yi ,Ti)

I Ti was randomly assigned in an experiment, so that Ti ⊥ εi , and

E[Yi |Ti = t] = E[g(t,εi)|Ti = t] = E[g(t,εi)] = m(t).

I Yi is normally distributed given Ti ,

Yi |Ti = t ∼ N(m(t),σ2).

I Gaussian process prior for m(·),

m(·)∼ GP(µ(·),C(·, ·)).
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What is to be done?

Optimal insurance

Prior moments

I Linear functions of normal vectors are normal.

I Linear operators of Gaussian processes are Gaussian processes.

I Prior moments:

ν(t) = E[u(t)] = λ

∫ t

0
µ(x)dx− t ·µ(t),

D(t, t ′) = Cov(u(t),m(t ′))) = λ ·
∫ t

0
C(x , t ′)dx− t ·C(t, t ′),

Var(u(t)) = λ
2 ·
∫ t

0

∫ t

0
C(x ,x ′)dx ′dx

−2λ t ·
∫ t

0
C(x , t)dx + t2 ·C(t, t).
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What is to be done?

Optimal insurance

Posterior expectation of u(·)

I Covariance with data:

D(t) = Cov(u(t),Y |T ) = Cov(u(t),(m(T1), . . . ,m(Tn))|T )

= (D(t,T1), . . . ,D(t,Tn)).

I Posterior expectation of u(t):

û(t) = E[u(t)|Y ,T ]

= E[u(t)|T ] + Cov(u(t),Y |T ) ·Var(Y |T )−1 · (Y −E[Y |T ])

= ν(t) + D(t) ·
[
C + σ

2I
]−1 · (Y −µ).
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What is to be done?

Optimal insurance

Optimal policy choice
I Bayesian policy maker aims to maximize expected social welfare

(note: different from expectation of maximizer of social welfare!)
I Thus

t̂∗ = t̂∗(Y ,T ) ∈ argmax
t

û(t).

I First order condition

∂

∂ t û(t̂∗) = E[u′(t̂∗)|Y ,T ]

= ν
′(t̂∗) + B(t̂∗) ·

[
C + σ

2I
]−1 · (Y −µ) = 0,

where B(t) = (B(t,T1), . . . ,B(t,Tn)) and

B(t, t ′) = Cov
(

∂

∂ t u(t),m(t ′)
)

= ∂

∂ t D(t, t ′)

= (λ −1) ·C(t, t ′)− t · ∂

∂ t C(t, t ′).
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What is to be done?

Optimal insurance

The RAND health insurance experiment

I (cf. Aron-Dine et al., 2013)

I Between 1974 and 1981
representative sample of 2000 households
in six locations across the US

I families randomly assigned to
plans with one of six consumer coinsurance rates

I 95, 50, 25, or 0 percent
2 more complicated plans (we drop those)

I Additionally: randomized Maximum Dollar Expenditure limits
5, 10, or 15 percent of family income,
up to a maximum of $750 or $1,000
(we pool across those)
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What is to be done?

Optimal insurance

Table: Expected spending for different coinsurance rates

(1) (2) (3) (4)
Share with Spending Share with Spending

any in $ any in $
Free Care 0.931 2166.1 0.932 2173.9

(0.006) (78.76) (0.006) (72.06)
25% Coinsurance 0.853 1535.9 0.852 1580.1

(0.013) (130.5) (0.012) (115.2)
50% Coinsurance 0.832 1590.7 0.826 1634.1

(0.018) (273.7) (0.016) (279.6)
95% Coinsurance 0.808 1691.6 0.810 1639.2

(0.011) (95.40) (0.009) (88.48)
family x month x site X X X X

fixed effects
covariates X X
N 14777 14777 14777 14777
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What is to be done?

Optimal insurance

Assumptions

1. Model: The optimal insurance model as presented before

2. Prior: Gaussian process prior for m, squared exponential in
distance, uninformative about level and slope

3. Relative value of funds for sick people vs contributors:
λ = 1.5

4. Pooling data: across levels of maximum dollar expenditure

Under these assumptions we find:

Optimal copay equals 18%
(But free care is almost as good)
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What is to be done?

Optimal insurance
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What is to be done?

Optimal insurance
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What is to be done?

Optimal insurance

Conclusion

I Explicit decision problems are useful to focus econometric
research.

I Carefully choose:
I Objective function.
I Space of possible decisions / policy alternatives.
I Identifying assumptions.
I Prior information.
I Features the priors should be uninformative about.

I Gaussian process priors allow for tractable solutions.
I Two examples:

1. Optimal experimental design.
2. Optimal insurance and taxation.
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What is to be done?

Optimal insurance

Thank you!
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