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Abstract

Given a scarcity of journal space, what is the socially optimal rule for
whether an empirical finding should be published? If the goal of publication is
to inform the public about a policy-relevant state, journals should publish ex-
treme results. For specific objectives, the optimal rule takes the form of a one-
or two-sided test comparing the point estimate to the prior mean. Dynamic
considerations may additionally justify the publication of precise null results.
If one insists that standard inference remain valid conditional on publication,
however, publication must not select on the study’s findings (but may select on
the study’s design).
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1 Introduction

Not all empirical findings get published. Journals may be more likely to publish

findings that are statistically significant, as documented in studies such as Franco et al.

(2014), Brodeur et al. (2016), and Andrews and Kasy (2017). They may also be more

likely to publish findings that are surprising, or conversely ones that confirm some

prior belief. Whatever its form, selective publication distorts statistical inference. If

only estimates with large effect sizes were to be written up and published, say, then
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published studies would systematically overstate true effects. Such publication bias

has been offered as one explanation for the perceived replication crisis in the social

and life sciences.1

In response to these concerns, there have been calls for reforms in the direction

of non-selective publication. One proposal is to promote statistical practices that

de-emphasize statistical significance, for instance by banning “stars” in regression

tables. Another proposal is for journals adopt Registered Reports, in which pre-

registered analysis plans are reviewed and accepted prior to data collection (see Nosek

and Lakens (2014) or Chambers et al. (2014)). Registered Reports guarantee that

publication will not select at all on findings – after a plan is accepted, the journal is

committed to publishing the study and the researcher has no flexibility over which

results to write up.

In this paper we seek the optimal rule for determining whether a study should be

published, given both its design and its findings. Our analysis is from an instrumental

perspective: the value of a study is that it informs the public about some policy-

relevant state of the world before the public chooses a policy action. In this framework,

we will show that non-selective publication is not in fact optimal. Some findings are

more valuable to publish than others. Put differently, we will find a trade-off between

policy relevance and statistical credibility.

In a world without constraints, the first-best rule would be for all results – or even

better, all raw data – to be published. This paper solves for a second-best publication

rule. We take as given that there is some constraint on the share of studies that will be

published, or equivalently that there is some opportunity cost of publication. (After

formally presenting the model, we discuss further interpretations of this cost, e.g.,

as arising from a public with limited attention.) In our model, if a submitted study

is published, the public observes its findings and takes the optimal policy action

given its updated belief. If a study is not published, the public never observes the

study’s results, and does not necessarily know that a study was conducted; the public

then takes a default action. This default action in the absence of publication is

1Worries about selective publication go back at least to Sterling (1959). Discussions of publication
bias and other threats to the credibility and reproducibility of scientific output can be found in
Ioannidis (2005), Ioannidis (2008), and in reviews including Simmons et al. (2011), Gelman and
Loken (2014), and Christensen and Miguel (2016). Open Science Collaboration (2015) and Camerer
et al. (2016) conduct large-scale replications of experimental studies in psychology and economics,
giving insight into the extent to which published results are in fact reproducible.
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based on a default belief, where we allow for either a Bayesian public whose default

belief correctly accounts for publication bias or for a naive public whose default belief

always remains at its prior. The optimal publication rule is the one that maximizes

the public’s expected payoff from the eventual policy choice, minus the publication

cost.

The optimal publication rule defined in this manner selects on a study’s findings.

To understand why, note that there is no instrumental value from publishing a study

with a “null result” that doesn’t move the policy away from the default action. The

same policy would have been chosen even if the study weren’t published, so publishing

would incur a cost without a benefit. The studies that are worth publishing are the

ones that show that there is some payoff gain from taking an action other than the

default.

For two canonical policy environments, we give precise characterizations of the

optimal publication rules. In the first environment, the public makes a continuous

policy decision, such as the choice of a tax rate, and has quadratic losses in matching

the policy to its ideal point. The optimal publication rule then takes the form of

a “two-sided test:” the journal publishes estimates that are sufficiently far above or

below the prior mean. In the second environment, the public makes a binary policy

choice, such as whether to implement a job training program. Here the journal uses a

“one-sided test.” For instance, in the absence of publication, the default action might

be to not implement the program. The journal will then only publish studies with

high estimates of the program’s benefit, which convince the public to implement the

program. The critical values of these one- and two-sided “tests” come from a cost-

benefit calculation, rather than corresponding to a conventional level such as p = .05

against a null hypothesis of zero.

Moving beyond these two special cases, suppose that the public faces any “super-

modular” policy decision in which its preferred policy action is monotonic in the state

of the world. For example, the preferred investment in a public good increases in its

expected return. Then it is generally true that it is more valuable to publish studies

with more extreme results – that is, studies which lead to more extreme beliefs.

We wish to stress that the nature of our exercise is to solve for the socially optimal

rule regarding whether to publish a study that has some given set of results. That is,

our model does not consider the incentives of researchers or journals, and we are not

attempting to characterize the equilibrium publication rule arising from a strategic
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interaction of these agents. As discussed in Glaeser (2006), researcher incentives play

an important role in the publication process. Researchers make choices over the topics

they study and their study designs, and then may selectively submit or possibly even

manipulate their findings.2 We do explore one way in which researcher study design

choices may respond to journal publication rules in Appendix A.1.

After characterizing optimal publication rules, we return to the distortions caused

by selective publication. Consider a study that consists of a normally distributed

point estimate paired with a standard error. It is immediate that common forms of

inference are valid if the publication probability does not depend on the point estimate

given the standard error. We show that the inverse is also true: Under any policy in

which the publication probability depends on the point estimate, common forms of

frequentist inference will be invalid conditional on publication. Point estimates are

no longer unbiased, for instance, and uncorrected likelihood-based estimation will not

be accurate. Moreover, when a study is not published, a naive public that maintains

its prior will have a distorted belief relative to a Bayesian public that accounts for

publication bias. If we desire that standard inference or naive updating be valid, we

must impose a non-selective publication rule that does not depend at all on the point

estimate (although journals may still publish studies with small standard errors over

studies with large standard errors).

Putting these results together, we see that selectively publishing extreme results

is better for policy-relevance but leads to distorted inference. To the extent that the

current (selective) publication regime qualitatively resembles the optimal rules we

derive, then, a move towards non-selective publication in order to improve statistical

credibility might have costs as well as benefits.

An abstraction in the model described above is that it considers a “static” envi-

ronment with a single paper to be published and a single action to be taken. One may

also be interested in the longer-term implications of publication rules, as in McEl-

reath and Smaldino (2015) and Nissen et al. (2016).3 To get some insight into these

2Furukawa (2018) looks at a model (without journals) in which researcher decisions to publish
papers interact with a public policy choice, where in equilibrium researchers choose to publish papers
with extreme results. Müller-Itten (2017) looks at a competition between journals for prestige, in
which journals choose whether to publish a submitted study based on a signal of its quality while
researchers choose which journal to submit to.

3McElreath and Smaldino (2015) and Nissen et al. (2016) provide dynamic models to study
whether an academic publication process with publication bias will eventually converge to truthful
estimates. Akerlof and Michaillat (2017) performs a similar exercise for a more evolutionary form
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issues, we consider a dynamic extension to our model that appends a second period in

which exogenous information arrives before another action is taken. The publication

decision in the first period now affects the action in both periods. Just as before, we

find a benefit of publishing extreme results. But we also find a benefit of publishing

precise results – even precise null results that don’t change the current action. To wit,

publishing a precise result today helps avoid future mistakes arising from the noise in

the information that has yet to arrive. We show that publishing null results is most

valuable when this future information is neither too precise nor too imprecise.

Throughout the paper, our derivations of optimal publication rules rely on char-

acterizing the value of information for specified decision problems. Most theoretical

treatments of the value of information study the ex-ante value of an experiment, i.e.,

the expected value prior to the realization; see classic treatments in Blackwell (1953),

Lehmann (1988), or Persico (2000). These ex-ante comparisons are relevant for a char-

acterization of non-selective publication rules, as we explore in Section 4.3. However,

we allow for publication to select on a study’s findings. We are thus predominantly

concerned with the ex-post value of information given an experiment’s realization, as

studied in Frankel and Kamenica (2018). The decision to reveal a signal, at a cost,

based on its realization is also related to the analysis of the discretionary disclosure

of positive and negative news in Verrecchia (1983) and follow-up work.

The rest of the paper is structured as follows. Section 2 introduces our basic model

of publication. Section 3 shows how to solve for the optimal publication rules, and

provides some characterizations of the solution. Section 4 addresses the distortions

that arise from selective rather than non-selective publication. Section 5 presents a

two-period version of the model. Proofs and several extensions are discussed in the

Appendix, including the endogeneity of submitted study designs, the plausibility of

submitted results, and alternative social objectives.

2 The model of publication

In Sections 2.1-2.3 we present our benchmark model of publication and in Section 2.4

we discuss interpretations of the publication cost.

of the accumulation of academic knowledge.
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2.1 Timing of the game

There is an uncertain state of the world whose value is relevant to some public policy

decision. A study that reveals information about this state may or may not be

submitted to a journal. If a study is submitted, the journal will decide whether to

publish it. If it is published, the results of the study are observed by the public. Then

the public chooses a policy.

Let θ ∈ Θ ⊆ R denote the state of the world, and suppose that there is a common

prior π0 on this state shared by the public and the journal. The probability that a

study arrives is q ∈ (0, 1], independent of θ. A study can be summarized by the pair

of random variables (X,S). The variable S, with generic realization s ∈ S, represents

the study design and the variable X, with generic realization x ∈ X , represents the

study finding. The design S is drawn from the distribution FS, independently of

the state θ. The finding X is drawn from the distribution FX|θ,S, with pdf fX|θ,S

relative to some dominating measure. That is, the study design determines how the

distribution of the finding depends on the state. A leading example is that of a

normally distributed signal, with X in R, S in R++, and X|θ, S ∼ N (θ, S2).

If a study arrives, it will be evaluated by a journal which observes the finding

and design (X,S) and then decides whether to publish the study. The journal uses

a publication rule p : X × S → [0, 1] where p(X,S) describes the probability that

a study (X,S) is published. As a matter of terminology, we say that the journal or

publication rule publishes a study when p(X,S) = 1 and does not publish a study

when p(X,S) = 0. Let D be the random variable with generic realization d ∈ {0, 1}
indicating whether a study is ultimately published: D = 0 if no study is published

(because no study arrived, or because one arrived but was not published) and D = 1

if a study arrived and is published.

After a study is published or not, the public’s belief on θ updates to a posterior

π1. When no study has been published (D = 0), π1 is equal to some default belief π0
1.

When a study has been published (D = 1), its design S and finding X are publicly

observed, and π1 is instead equal to the belief π
(X,S)
1 . We describe the belief updating

process in Section 2.2.

Finally, given updated beliefs π1, the public takes a policy action a ∈ A ⊆ R
to maximize the expectation of a utility function U : A × Θ → R.4 Let a∗(π1) ∈

4While we maintain the assumption that states θ and actions a are real numbers in order to
facilitate economic interpretations of our results, our solution approach in Section 3.1 will apply to
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arg maxa Eθ∼π1 [U(a, θ)] indicate the chosen action when the public holds beliefs π1.

We assume existence of this argmax for any relevant utility functions and posterior

distributions, and we confirm existence for all of our examples. Let a0 = a∗(π0
1) be

the default action, i.e., the action taken under the default belief, whereas a∗(π
(X,S)
1 )

is the action taken if a study (X,S) is published.

Social welfare, corresponding to the shared objective of both the journal and

public, is the action payoff net of a publication cost. Let c > 0 indicate the social

cost of publication; we discuss interpretations of this cost in Section 2.4. The welfare

W (D, a, θ) induced by publication D, chosen action a, and state of the world θ, is

W (D, a, θ) = U(a, θ)−Dc. (1)

We take the study arrival and study design S to be exogenous. (Appendix A.1

explores an extension in which study arrival and design are endogenous to the pub-

lication rule.) The policy action a is mechanical given induced beliefs π1. Thus, the

key decision in the model is the choice of publication rule p. We will search for the

publication rule that maximizes the ex-ante expectation of welfare, which we call the

optimal publication rule.

2.2 Beliefs and belief updating

The public’s belief updating from the prior π0 to the posterior π1 depends on whether

a study is published or not.

Beliefs conditional on publication

If a study (X,S) is published, the posterior belief becomes π1 = π
(X,S)
1 . We assume

that π
(X,S)
1 is derived according to Bayes’ Rule given the signal X ∼ FX|θ,S. By Bayes’

Rule, and since θ is independent of S, the density of π
(X,S)
1 relative to the prior π0 is

given by

dπ
(X,S)
1

dπ0
(θ) =

fX|θ,S(X|θ, S)

fX|S(X|S)
, (2)

with fX|S the unconditional density of X under study design S and prior θ ∼ π0.

The belief π
(X,S)
1 also represents the journal’s interim belief when evaluating a

general spaces Θ and A.
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paper for publication,; the public adopts this belief if the paper is published, and the

default belief π0
1 otherwise.

Default beliefs in the absence of publication

If a study is not published – meaning that either no study arrived, or that a study

did arrive but was not published – then the public updates to a default belief π0
1. We

consider two distinct possibilities for updating in the absence of publication. Bayesian

updating is the sophisticated rule that accounts for any selection induced by the

publication process; naive updating is the unsophisticated rule which fails to account

for selection. While Bayesian updating is “correct” in the fully specified model, we

consider naive updating to be, in many cases, a realistic description of updating.5

Note that the default belief π0
1 depends on the publication rule p under Bayesian

updating, but does not depend on the publication rule under naive updating.

Bayesian updating is the updating rule for a public that understands the fully

specified model of the world and correctly accounts for unpublished studies.

When no study is published, the public understands that this event could have

occurred because no study arrived (probability 1−q) or because a study arrived

(probability q) and was unpublished (conditional probability 1− p(X,S) given

X and S, with θ ∼ π0, S ∼ FS, and X ∼ FX|θ,S). The public then updates

beliefs on θ to π0
1 according to Bayes rule.6 Denote the Bayesian default belief

under publication rule p by π0,p
1 ; its density relative to the prior is given by

dπ0,p
1

dπ0
(θ) =

1− qE[p(X,S)|θ]
1− qE[p(X,S)]

. (3)

Naive updating is the updating rule for a public that ignores the possibility of

unpublished studies. Under naive updating, the public’s default belief when it

does not see a publication, π0
1, is equal to its prior: π0

1 = π0. One can interpret

a naive public as having an incorrect model of the world – in the absence of

5Enke (2017) evaluates the extent to which people learn from the (informative) absence of a
signal, and finds in an experiment that subjects cluster around either fully accounting for selection
or entirely neglecting it. More people can be prompted to account for selection by making the
absence of a signal more salient, or by reducing cognitive distractions.

6If a publication rule publishes with probability one, and if the probability of study arrival q is
also one, then nonpublication is a zero probability event and beliefs are not pinned down by Bayes’
rule. As a convention, in that case we let the Bayesian default belief be equal to the prior π0.

8



seeing a publication, the public is unaware of the possibility that a study might

have been submitted and rejected. Alternatively, this updating rule arises as

the limiting Bayesian belief for the case of q → 0, i.e., a fully rational public

that did not expect a study to be submitted on this topic.

Leading examples of priors and signals

A typical state of the world θ estimated in an empirical economics study might be a

demand or supply elasticity, the magnitude of a treatment effect, or the net benefit

of implementing a program. Our leading example for a prior distribution will be the

normal prior, in which case Θ = R and π0 is N (µ0, σ
2
0), with µ0 ∈ R and σ0 ∈ R++.

Our leading example for the signal distribution is that of normal signals. Under

normal signals, we assume X = R and S ⊆ R++. The conditional distribution of

findings, FX|θ,S, is given by N (θ, S2). The finding X is interpreted as the point

estimate for θ, with standard error of S. FS then describes the ex-ante distribution

of standard errors.

When there is a normal prior and normal signals, the public’s posterior belief on

θ after publishing a study is given by

π
(X,S)
1 = N

(
σ2
0

S2+σ2
0
X + S2

S2+σ2
0
µ0,

S2σ2
0

S2+σ2
0

)
. (4)

Note that the study design S, as defined here, summarizes the informational con-

tent of the finding X. There are several reasons why the variable S in the normal

signals example might be larger than a study’s reported standard error, which only

captures sampling variation. One additional source of error is from limited external

validity, in which the estimated parameter differs from and is only partially informa-

tive about the policy parameter of interest. Another source of error is a violation

of the identifying assumptions required for the study’s internal validity. We discuss

some considerations that may arise when S is not fully observed by the journal in

Appendix A.2.

2.3 Welfare maximization

The value of publication in our model arises from a “policy relevance” objective.

The choice to publish rather than not publish a study (X,S) has a direct effect of
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switching the policy action from a0 to a∗(π
(X,S)
1 ) at a cost c. Under Bayesian updating,

the choice of a publication rule may also have an indirect effect on the default action

taken when no study is published.

The optimal publication rule p(X,S) is the one that maximizes the ex-ante ex-

pectation of welfare. The ex-ante expected welfare given a publication rule p and a

default action a0 is equal to

EW (p, a0) = E
[
qp(X,S)(U(a∗(π

(X,S)
1 , θ)− c) +

(
1− qp(X,S)

)
U(a0, θ)

]
, (5)

where the expectation is taken with respect to θ ∼ π0, S ∼ FS, and X ∼ FX|θ,S.7

Under naive updating, the optimal p maximizes expected welfare EW (p, a∗(π0)) over

the choice of p. Under Bayesian updating, the optimal p maximizes EW
(
p, a∗

(
π0,p
1

))
over the choice of p.

Leading examples of utility functions

Two leading utility functions we consider are quadratic loss and binary action utility.

The quadratic loss utility function has A = R and U(a, θ) = −(a − θ)2. This

is a canonical utility function for a public that makes a continuous policy decision

a, with the state θ representing the public’s uncertain ideal point. Under quadratic

loss utility, the maximizing action choice given belief π1 is a∗(π1) = Eθ∼π1 [θ]. The

subjective expectation of the action utility is Eθ∼π1 [U(a∗(π1), θ)] = −Varθ∼π1 [θ].

The binary action utility function has A = {0, 1} and U(a, θ) = a ·θ. Here there is

a binary decision, such as a choice to implement a program or not, where the state θ

represents the net benefit of implementation. In that case a∗(π1) = 1(Eθ∼π1 [θ] > 0),

where 1 is the indicator function (taking the action to be a = 0 at indifference). The

subjective expectation of the action utility is Eθ∼π1 [U(a∗(π1), θ)] = max{0,Eθ∼π1 [θ]}.
We see that for both of these example utility functions, action choices depend only

on mean beliefs. As a matter of notation, when working with either utility function,

let µ0, µ
0
1, and µ

(X,S)
1 denote the means of the distributions π0, π

0
1, and π

(X,S)
1 .

7If the publication rule p implies default belief π0
1 under a specified updating rule, then the

expected welfare it induces is EW (p, a∗(π0
1)). However, (5) also gives us the formula for calculating

the counterfactual payoff from an arbitrary default action a0 that may not be the one implied by p
and the updating rule.
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2.4 Interpretation of the publication cost

As mentioned in the introduction, this paper begins with the observation that not all

research findings get published. One can interpret our paper as solving for the optimal

publication rule conditional on a fixed share of studies to be published. Specifically, an

optimization problem with a constraint on the share of studies that can be published

would be equivalent to an unconstrained problem with an appropriate shadow cost

of publication; we can take c to be such a shadow cost.

Of course, there are real publication costs beyond any (presumably negligible)

physical costs of printing and/or web hosting. On the journal side, the editor or

referees may be responsible for verifying that the results are in fact as claimed. The

editor can decide whether to desk reject the paper based on its claimed results. But

if the editor wants to proceed, then before the paper can be published, peer reviewers

have to put in work to confirm that the analysis behind its results is correct and

should be trusted. On the researcher side, after one has determined the main results,

there still is a cost of writing an article and preparing it for submission. These social

costs would all be captured in the c term.

In a more “reduced form” manner, the publication cost might also represent an

opportunity cost of the public’s attention. For a public with limited ability to pro-

cess information, publishing one study can pull attention from others. Relatedly,

high-ranking journals do have a genuine limit on the number of papers they publish

and reject a large share of submissions (see Card and DellaVigna (2013)). To the

extent that publications in high-ranking journals receive disproportionate attention

and influence, one can interpret our analysis as characterizing which papers should

be published in these top journals.8

3 Optimal publication rules

This section begins with a general characterization of how to solve for optimal publi-

cation rules, covering both naive and Bayesian updating. We then apply this solution

8One can make this “top journal” interpretation of our model formally precise up to a rescaling
of costs. Assume that a study is first submitted to a top journal that has opportunity cost c of
publication. If that journal does not publish the study then it ends up published in a low-ranked
journal with publication cost 0. The public will become aware of a study at a top journal with
probability r ∈ (0, 1], and a study at a low-ranked journal with probability r < r. The public’s

beliefs go to π
(X,S)
1 if they become aware of a study, and π0

1 otherwise.
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to derive optimal rules for our two leading example utility functions. Finally, we

generalize the qualitative results to a broader class of utility functions.

3.1 Solving the model

Recall that after a paper has been submitted, the journal observes (X,S) and has

interim belief π given by π = π
(X,S)
1 . At this interim belief, the journal evaluates the

expected payoff from publication (leading to public belief π1 = π and action a∗(π))

and from nonpublication (leading to public belief π1 = π0 and action a0). Denote by

∆(π, a0) the gross interim benefit9 – not including publication costs – of publishing

a study that induces interim belief π given default action a0:

∆(π, a0) = Eθ∼π[U(a∗(π), θ)− U(a0, θ)]. (6)

The objective is to maximize the ex-ante welfare, not the interim welfare. But we can

rewrite ex-ante welfare EW (p, a0) of a publication rule p and default action a0 from

(5) as the expected utility under the default action, plus the expected net interim

benefit of publication:

EW (p, a0) = E
[
qp(X,S)(U(a∗(π

(X,S)
1 ), θ)− c) +

(
1− qp(X,S)

)
U(a0, θ)

]
= E[U(a0, θ)] + qE

[
p(X,S)(∆(π

(X,S)
1 ; a0)− c)

]
. (7)

Say that publication rule p is interim optimal given default action a0 if it (al-

most surely) publishes a study when ∆(π
(X,S)
1 , a0) > c and does not publish when

∆(π
(X,S)
1 , a0) < c. By linearity of the expectations operator, we see from (7) that wel-

fare is separable across realizations of (X,S). Hence, fixing the default action a0, a

publication rule maximizes expected welfare EW (p, a0) over choice of p if and only if

it is interim optimal.10 For concreteness, let pI(a
0) be the interim optimal publication

9Frankel and Kamenica (2018) provide general characterizations of these gross interim benefit
functions – the value of information, in an ex-post sense – across decision problems.

10In a game with different timing in which the journal could not commit to a publication rule, one
might define a publication rule p and default belief π0

1 as constituting a Bayes Nash equilibrium if
they jointly satisfy (i) p is interim optimal given default action a0 = a∗(π0

1), and (ii) the default belief
π0
1 is equal to π0,p

1 , the one induced by Bayesian updating given the publication rule p. Our notion
of optimality under Bayesian updating does not impose (i); nevertheless, Lemma 2 below clarifies
that (i) will in fact be satisfied for an optimal publication rule. Hence, any optimal publication rule
would induce a Bayes Nash equilibrium, but the converse need not hold.
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rule given a0 that deterministically publishes at indifference:

pI(a
0) =

1 if ∆(π
(X,S)
1 , a0) ≥ c.

0 otherwise
(8)

Under naive updating, the optimal publication rule solves maxpEW (p, a0) subject

to a0 = a∗(π0). In particular, a0 does not depend on p, so expected welfare is

maximized by choosing an interim optimal publication rule. That is, a publication

rule is optimal under naive updating if and only if it is interim optimal given default

action a0 = a∗(π0).

Under Bayesian updating, the optimal publication rule solves maxpEW (p, a0)

subject to a0 = a∗(π0,p
1 ). Solving this program requires taking into account the fact

that a0 changes with p. However, one can simplify the problem by observing that for

any fixed p, the induced Bayesian default action a0 = a∗(π0,p
1 ) maximizes expected

welfare EW (p, a0) over choice of a0. This is because

arg max
a0

EW (p, a0) = arg max
a0

E[(1− qp(X,S))U(a0, θ)] = arg max
a0

E[U(a0, θ)|D = 0]

= arg max
a0

Eθ∼π0,p
1

[U(a0, θ)],

where the last equality holds by Bayesian updating, because the conditional distri-

bution of θ given D = 0 is equal to π0,p
1 . Therefore the Bayesian optimal pub-

lication rule p equivalently solves maxp maxa0 EW (p, a0). This maximization pro-

gram corresponds to a sequential game of common interest, with both players aiming

to maximize the same objective. Moreover, it holds that maxp maxa0 EW (p, a0) =

maxa0 maxpEW (p, a0) = maxp,a0 EW (p, a0). Put differently, in a sequential game of

common interest, the value is the same regardless of which player moves first. The

value is also equal to the “planner’s solution” maximizing the objective over the joint

choice of p and a0.11 Lemma 1 formally states this conclusion.

Lemma 1. Under Bayesian updating, let p be an optimal publication rule and let

a0 = a∗(π0,p
1 ) be the induced default action. Then for any publication rule p′ and any

action a′, it holds that EW (p, a0) ≥ EW (p′, a′).

One immediate implication from Lemma 1 and the above discussion is that even

11In a simultaneous game of common interest, the planner’s solution is one equilibrium, but there
may also be lower-payoff equilibria.
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under Bayesian updating, p is interim optimal given the induced default action.

Hence, the optimal policy is interim optimal regardless of the updating rule:

Lemma 2. Under either naive or Bayesian updating, let p be an optimal publication

rule, π0
1 be the induced default belief, and a0 = a∗(π0

1) be the default action. Then p

is interim optimal given a0.

Lemma 2 tells us that in searching for optimal publication rules, it is sufficient

to consider only those rules that are interim optimal with respect to some default

action. Indeed, at a default action a0, it is without loss of generality to focus on

the specific interim optimal rule pI(a
0) – all interim optimal publication rules give

the same payoff.12 Going forward we adopt the convention of restricting attention to

pI(a
0) in the class of interim optimal rules, and referring to this rule as “the” interim

optimal publication rule given a0.

The following result provides a recipe for finding the optimal publication rule,

summarizing the implications of Lemmas 1 and 2.

Proposition 1.

1. Suppose that the updating rule is naive, in which case π0
1 = π0 and a0 = a∗(π0).

Then the interim optimal publication rule given this default action, pI(a
∗(π0)), is

optimal.

2. Suppose that the updating rule is Bayesian, in which case π0
1 = π0,p

1 and a0 =

a∗(π0,p
1 ) under publication rule p.

(a) Let â ∈ arg max
a∈A s.t. a=a∗

(
π0,pI(a)

1

)EW (
pI(a), a

)
. Then the interim opti-

mal publication rule given this default action, pI(â), is optimal.

(b) Let â ∈ arg maxa∈AEW
(
pI(a), a

)
. Then the interim optimal publication

rule given this default action, pI(â), is optimal.

12More precisely, EW (p, a0) is constant across all interim optimal p for a given a0. So for naive
updating, where the default action is fixed in advance, the payoff of all interim optimal publica-
tion rules is the same. For Bayesian updating, the default action varies with the publication rule.
However, for any optimal publication rule inducing some default action, it holds that all interim
optimal publication rules given that same default action are also optimal, even if they induce dif-
ferent default actions. To see this, let p be an optimal publication rule that induces default action
a0 (implying that p is interim optimal given a0). Let p′ be any other interim optimal rule given

a0 – for instance, p′ = pI(a
0) – and let a′ = a∗(π0,p′

1 ) be the default action induced by p′. Then
EW (p′, a0) ≥ EW (p, a0) by interim optimality of p′; EW (p′, a′) ≥ EW (p′, a0) by the fact that
a′ ∈ arg maxaEW (p′, a); and EW (p, a0) ≥ EW (p′, a′) by Lemma 1. Hence, these inequalities are
all equalities. The payoff from publication rule p′, EW (p′, a′), is equal to the payoff from the optimal
publication rule p, EW (p, a0), and so p′ is optimal as well.

14



Proposition 1 part 1 formally restates the solution under naive updating. The

optimal publication rule is the interim optimal rule given the naive default action.

For Bayesian updating, considered in Proposition 1 part 2, our characterization of

the optimal publication rule is less direct. We provide two alternative maximization

programs that can be solved to find the optimum. (Depending on the setting, one

or the other may be more straightforward to apply.) Rather than maximizing over

the original function space of publication rules, we are able to simplify the problem

by maximizing over the action space, or a subset thereof. Specifically, each action

induces an interim optimal publication rule, and the optimal publication rule is given

by the induced interim optimal rule that yields the highest payoff.

To understand part 2a of Proposition 1, recall that just as each action induces an

interim optimal publication rule, so too does each publication rule induce a Bayesian

default action. Lemma 2 establishes that the optimal publication rule is interim

optimal with respect to its induced default action. In other words, the default action

is a “fixed point” of the mapping from actions to publication rules and back to actions.

Therefore, when searching for an optimal publication rule, it is sufficient to maximize

over interim optimal rules that are induced by some fixed point default action.

Unfortunately, solving for the set of fixed point default actions might not be

straightforward. Part 2b of Proposition 1 gives us a version of the result that does

not require solving for fixed points. Instead, we can maximize over the full action

space. Moreover, while the payoff of the publication rule pI(a) that is interim optimal

with respect to action a is generally given by EW (pI(a), a∗(π0,pI(a)

1 )) – requiring us to

solve for the Bayesian default action induced by pI(a) – the proposition states that

we need only evaluate the simpler expression EW (pI(a), a). To see this, consider two

cases. In the case that a happens to be an action induced by some optimal policy,

the payoff of the optimal policy pI(a) is in fact given by EW (pI(a), a); see footnote 12.

And in the case that a is not an action induced by some optimal policy, the payoff

EW (pI(a), a) will be below that of the optimum; see Lemma 1. So this program

recovers the correct maximum.

3.2 Quadratic Loss Utility

Under quadratic loss utility, welfare is W (D, a, θ) = −(a− θ)2 −Dc for a ∈ A = R.

The public chooses an action equal to its posterior mean belief about the state. So
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when the default action is a0, the gross interim benefit of publishing a study (X,S)

inducing belief π
(X,S)
1 with mean µ

(X,S)
1 evaluates to (µ

(X,S)
1 −a0)2. The interim optimal

publication rule is therefore

pI(a
0)(X,S) =

1 if
∣∣∣µ(X,S)

1 − a0
∣∣∣ ≥ √c

0 otherwise
. (9)

Lemma 2 establishes that this is the form of the optimal publication rule for a0 equal

to µ0
1, the mean of the appropriate default belief. A study is published if and only if

its results move the posterior mean by a sufficient amount in either direction relative

to the default mean.

With naive updating, the optimal publication rule is given by plugging a0 = µ0

into (9); see Proposition 1 part 1. For Bayesian updating, the default action a0 is

endogenous to the publication rule. The following proposition provides a condition

that allows us to explicitly solve for the optimal publication rule under Bayesian

updating, which given this condition is the same as under naive updating.

Proposition 2. Suppose that there is quadratic loss utility, and that conditional on a

study arriving the distribution of the interim mean µ
(X,S)
1 is single-peaked and symmet-

ric about the prior mean µ0.13 Then the optimal publication rule under Bayesian up-

dating is the same as under naive updating: publish if and only if
∣∣∣µ(X,S)

1 − µ0

∣∣∣ ≥ √c.
To prove this result, we show that under single-peakedness and symmetry, the

prior mean is the only fixed point default action under Bayesian updating. So by

Proposition 1 part 2a it must be the default action for the optimal policy.

Under the publication rule p of Proposition 2, the induced Bayesian default belief

π0,p
1 will not be equal to the naive default belief π0. However, they will both have the

same mean, and therefore they lead to the same default action.

Normal prior and normal signals

We now explicitly characterize optimal publication rules under a normal prior and

normal signals. This prior and signal structure satisfies the hypotheses of Proposition

13To be precise, by single-peaked and symmetric, we mean that (i) the distribution of the random

variable µ
(X,S)
1 has a pdf that is symmetric about µ0; and (ii) for any µ′ < µ′′ ≤ µ0 it holds that if

the pdf evaluated at µ′ is strictly positive, then the pdf evaluated at µ′′ is strictly larger than at µ′.
(Symmetry implies the same result for µ0 ≤ µ′′ < µ′.)
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2: the distribution of posterior means is single-peaked and symmetric about µ0 for

each realized design S, and therefore across realizations of S as well. Hence, the

journal optimally publishes under either updating rule if and only if |µ(X,S)
1 −µ0| ≥

√
c.

In combination with the updating formula (4) we get the following corollary.

Corollary 1. Suppose that there is a normal prior, normal signals, and quadratic

loss utility. Then under either Bayesian or naive updating, the optimal publication

rule publishes if and only if |X − µ0| ≥
(

1 + S2

σ2
0

)√
c.

This publication rule corresponds to a “two-sided test” in which the journal pub-

lishes if the point estimate is sufficiently high or sufficiently low. Equivalently, we can

restate the publication rule in terms of a two-sided test for the t-statistic (X−µ0)/S:

the journal publishes if and only if |X−µ0|
S
≥
(

1
S

+ S
σ2
0

)√
c. See Figure 1.

The form of a two-sided test is of course familiar from the null-hypothesis sig-

nificance testing paradigm. However, we wish to highlight two ways in which our

policy is distinct from two-sided tests as they are traditionally applied. First, we

compare the point estimate X to the prior mean, not to some other point, e.g., a null

hypothesis of θ = 0. Second, the cutoff for publication is not given by a conventional

value, such as a t-statistic of 1.96 corresponding to a p-value of .05. The cutoff is

determined by a cost-benefit analysis. We can take comparative statics on the value

of this cutoff:

Figure 1: Optimal publication region (shaded) for quadratic loss utility, normal
prior, normal signals.

0
S

μ0

μ0+ c

μ0- c

X

0 σ0
S

0

2 c

σ0

- 2 c

σ0

t=(X-μ0)/S

(a) In terms of the point estimate X, as
a function of standard error S.

(b) In terms of the t-statistic (X −
µ0)/S, as a function of S.

Corollary 2. Under the publication rule from Corollary 1,
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1. The publication cutoff
(

1 + S2

σ2
0

)√
c in terms of the difference of the point esti-

mate from the prior mean is independent of the study arrival probability q and

the mean µ0. It is larger when the standard error S is larger, the prior variance

σ2
0 is smaller, or the cost of publication c is larger.

2. The publication cutoff
(

1
S

+ S
σ2
0

)√
c in terms of the magnitude of the t-statistic

is nonmonotonic and convex in the standard error S: it has a minimum at

S = σ0 and goes to infinity as S → 0 or S →∞.

A given point estimate of X moves beliefs more, and thus makes publication more

likely (in the sense of a smaller cutoff value for |X − µ0|), when the standard error

S is smaller or when the prior uncertainty σ0 is larger. Likewise, publication is more

likely when the cost of publication c is lower.

When deciding to publish at a given t-statistic, rather than point estimate, we

find a different and non-monotonic comparative static as a function of S. (For other

parameters, the comparative statics in terms of the t-statistic would be identical to

those on the point estimate.) For a precise study with a low standard error or an

imprecise one with a high standard error, the journal requires a high t-statistic to be

willing to publish; for a study of intermediate precision, the journal publishes at a

lower t-statistic. To gain intuition, suppose the prior mean of θ is µ0 = 0 and the

prior standard deviation is σ0 = 1. The journal will publish a study if it moves the

interim mean sufficiently far from 0. Consider studies that might arrive with a given

t-statistic t = X/S, say, t = 4 (corresponding to a standard two-sided p-value of

. .0001 against a null of θ = µ0). If a very precise study arrives with a t-statistic of

4, then it must have had a small point estimate, and so it moves the mean very little:

a study with a point estimate of X = .04 and a standard error of S = .01 moves the

interim mean to ' .039996. As we begin to scale up the point estimate and standard

error while keeping t = 4, the mean moves higher: X = 4 and S = 1 leads to a mean

of 2. However, when we increase the point estimate and standard error further, the

mean falls back towards 0, because the result becomes too noisy to move beliefs much.

With X = 400 and S = 100, the mean is back down to ' .039996. The journal would

be most inclined to publish the middle result out of these three possibilities.

In other words, fixing the “statistical significance” as measured by the t-statistic,

the change in mean first grows and then declines in the “practical significance” as

measured by the magnitude of the point estimate. Generally, fixing a t-statistic

t = (X − µ0)/S, the difference from the interim mean to the prior mean at standard
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error S (with a corresponding point estimate of X = µ0 + σ0t) is given by t
σ2
0S

σ2
0+S

2 .

The mean moves furthest at a standard error S equal to σ0, the standard deviation

of the prior. The change in mean falls towards zero at high standard errors because

the interim mean is a weighted average of the prior mean and the point estimate,

with weights proportional to the inverse of the variances. While the point estimate

increases linearly with the standard error at a given t-statistic, the weight on the

point estimate decreases quadratically.

One could easily incorporate additional parameters into the model to get further

comparative statics. For instance, consider the publication rule for research questions

that are more or less “important.” Modeling importance as a payoff coefficient v in

which U(a, θ) = −v ·(a−θ)2, a more important policy with higher v is mathematically

equivalent to a lower publication cost c. So, the more important a state of the world is

for policy, the more willing the journal should be to publish at a given point estimate

or t-statistic. Similarly, if one decomposes S into a combination of sampling error

and imperfect external validity, the journal is less willing to publish a point estimate

when either the sampling error is higher or when the external validity is worse.

3.3 Binary Action Utility

Under binary action utility, welfare is given by W (D, a, θ) = aθ − Dc for a ∈ A =

{0, 1}. The public chooses action a = 0 if its posterior mean belief about the state is

weakly less than 0, and action a = 1 if the posterior mean is positive. So when the

default action is a0, the gross interim benefit of publishing a study (X,S) inducing

belief π
(X,S)
1 with mean µ

(X,S)
1 evaluates to 0 if either a0 = 0 and µ

(X,S)
1 ≤ 0, or a0 = 1

and µ
(X,S)
1 ≥ 0; and to |µ(X,S)

1 | otherwise. The interim optimal publication rule is

therefore

pI(a
0)(X,S) =


1 if a0 = 0 and µ

(X,S)
1 ≥ c,

or a0 = 1 and µ
(X,S)
1 ≤ −c

0 otherwise

. (10)

Once again, Lemma 2 establishes that this is also the form of the optimal publication

rule, for the appropriate default action.

Here, a study is published only if it moves the posterior mean belief sufficiently far

in one direction. If the default action is low, then the journal only publishes studies
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that move beliefs up; if the default action is high, then the journal only publishes

studies that move beliefs down. Contrasting to the quadratic loss utility function,

the posterior mean must move sufficiently far not relative to the mean of the default

belief, but relative to the belief – normalized to 0 – at which the public is indifferent

between the two actions.

With naive updating, we get the optimal publication rule by plugging the naive

default action into (10): a0 = 0 if µ0 ≤ 0, and a0 = 1 if µ0 > 0. See Proposition 1

part 1. The following result gives a condition under which we can explicitly solve for

the Bayesian optimal policy, and for which it is equal to the naive optimal policy. For

the statement of the result, it is convenient to normalize the prior mean of θ to be

less than zero, meaning that the naive default action will be a0 = 0. The result then

holds when the ex-ante distribution of interim expectations on the state is sufficiently

“left-leaning” relative to θ = 0.14

Proposition 3. Let µ0 ≤ 0. Suppose that there is binary action utility, and that con-

ditional on a study arriving the distribution of the interim mean satisfies P (µ
(X,S)
1 ≤

−k) ≥ P (µ
(X,S)
1 ≥ k) for all k > 0. Then the optimal publication rule under Bayesian

updating is the same as under naive updating: publish if and only if µ
(X,S)
1 ≥ c.

The distributional assumption of Proposition 3 is strictly weaker than that of

Proposition 2: given a prior mean µ0 ≤ 0, any symmetric distribution of the interim

mean µ
(X,S)
1 is guaranteed to satisfy the condition of Proposition 3 even if it is not

single-peaked. That said, one can not establish this result by applying Proposition 1

part 2a and showing that the naive default action is the unique Bayesian fixed point

default action, as we did with Proposition 2. It can be the case – even under the

stricter distributional conditions of Proposition 2 – that both actions are fixed points.

In particular, it can be that with a low default action, the journal would only publish

high signals, and after nonpublication the public would take a low action in response;

while with a high default action, the journal would only publish low signals, and the

public would take a high action in response. To prove Proposition 3, we instead apply

Proposition 1 part 2b. We directly confirm that the interim optimal publication rule

with default action a0 = 0 gives a higher payoff than with default action a0 = 1.

Under this publication rule (and unlike the quadratic loss publication rule from

Proposition 2), the mean of the induced Bayesian default belief π0,p
1 will be lower than

14An analogous result for a0 = 1 and a sufficiently “right-leaning” distribution holds when the
prior mean is above zero.
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the mean of the naive default belief π0. High results are published and low results

are not, and so to a Bayesian the absence of publication is suggestive of a low state.

Regardless, though, both default beliefs lead to the same default action of a0 = 0 and

thus the same (interim) optimal publication rule.

Normal prior and normal signals

We next explicitly characterize optimal publication rules under a normal prior and

normal signals. Without loss of generality, assume that the prior mean is µ0 ≤ 0.

This prior and signal structure satisfies the hypotheses of Proposition 3, meaning that

the journal optimally publishes under either updating rule if and only if µ
(X,S)
1 ≥ c.

Plugging in the updating formula (4):

Corollary 3. Suppose that there is a normal prior with µ0 ≤ 0, normal signals,

and binary action utility. Then under either Bayesian or naive updating, the optimal

publication rule publishes a study if and only if X ≥
(

1 + S2

σ2
0

)
c− S2

σ2
0
µ0.

This publication rule corresponds to a “one-sided test” in which a paper is pub-

lished if the point estimate is sufficiently high. In terms of the t-statistic, the journal

publishes if and only if X−µ0
S
≥
(

1
S

+ S
σ2
0

)
(c− µ0). See Figure 2.

Figure 2: Optimal publication region (shaded) for binary action utility, normal prior,
normal signals.
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(a) In terms of the point estimate X, as
a function of standard error S.

(b) In terms of the t-statistic (X −
µ0)/S, as a function of S.

Corollary 4. Under the publication rule from Corollary 3,
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1. The publication cutoff
(

1 + S2

σ2
0

)
c− S2

σ2
0
µ0 in terms of the point estimate is inde-

pendent of the study arrival probability q. It is decreasing in the mean µ0. It is

larger when the standard error S is larger, the prior variance σ2
0 is smaller, or

the cost of publication c is larger.

2. The publication cutoff
(

1
S

+ S
σ2
0

)
(c−µ0) in terms of the t-statistic is nonmono-

tonic and convex in the standard error S: it has minimum at S = σ0 and goes

to infinity as S → 0 or S →∞.

The comparative statics of publication with respect to the standard error S, the

prior variance σ2
0, and the cost of publication c are essentially the same as those from

the quadratic loss publication rule (see Corollaries 1 and 2). However, the two policies

depend differently on the prior mean. Suppose we fix a point estimate X > 0 and

we consider prior means µ0 < 0. With quadratic loss utility, increasing µ0 towards

0 would make the journal less willing to publish: there will be a smaller difference

X − µ0, and therefore the posterior mean will be closer to the prior mean. With

binary actions, increasing µ0 towards 0 makes the journal more willing to publish:

the posterior mean will be higher in absolute terms, indicating that the benefit of

switching from a = 0 to a = 1 is higher.

3.4 General utility functions

In the above two examples of utility functions, we found that it was optimal to publish

results that were in some sense “extreme” or “surprising” – ones that moved beliefs

a lot. In this section we show that this conclusion generalizes beyond the examples

of quadratic loss and binary action utility.

We start with a simple observation: if a study is a “null result,” meaning that

it does not move the optimal action away from the default, then the gross interim

benefit of publication is zero. Thus, the optimal publication rule never publishes null

results.

Observation 1. Fix a default action a0 and an interim belief πI . If a∗(πI) = a0,

then ∆(πI , a0) = 0 < c.

Next, say that a utility function U : A×Θ→ R is supermodular if for all a < a and

θ < θ, it holds that U(a, θ) +U(a, θ) ≥ U(a, θ) +U(a, θ). Let ≥FOSD denote the first

order stochastic dominance partial ordering on distributions. Under supermodular
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utility functions, the public takes higher actions when it believes that the state is

higher (in the sense of FOSD); quadratic loss and binary action utilities are both

supermodular. Proposition 4 formalizes a sense in which it is generally optimal to

publish extreme results when utility is supermodular.

Proposition 4. Let U be supermodular. Let beliefs π′, π′′, and π′′′ satisfy π′′′ ≥FOSD
π′′ ≥FOSD π′. Then for any default action a0, it holds that ∆(·, a0) is quasiconvex in

the sense that ∆(π′′, a0) ≤ max{∆(π′, a0),∆(π′′′, a0)}.

Suppose that some subset of study realizations leads to FOSD ordered beliefs.

The proposition states that it is better to publish either a study that leads to a high

belief or to a low belief than a study that leads to an intermediate belief. By Lemma

2, then, the journal optimally publishes studies that lead to sufficiently low or high

beliefs, but not beliefs in the middle.15 (See Appendix B.1 for examples illustrating

how the conclusion of Proposition 4 can change when either supermodularity or FOSD

ordering of beliefs is relaxed.)

Combining Proposition 4 and Observation 1, we further see that the published

results will be ones that lead to extreme beliefs relative to the default. More precisely,

fix some updating rule and some optimal publication policy leading to default belief

π0
1. Plugging the unpublished low belief π′ = π0

1 into Proposition 4, we see that if

the journal publishes a study leading to the higher belief π′′, it must also publish

one leading to the even higher belief π′′′. Likewise, plugging in the unpublished high

belief π′′′ = π0
1, we see that if the journal publishes the lower belief π′′ then it also

publishes the even lower belief π′.

One sufficient condition for the interim belief from study realization (x′′, s′′) to be

FOSD higher than that of (x′, s′) is for the realizations to satisfy the monotone like-

lihood ratio property (MLRP) in θ. We say that (x′′, s′′) and (x′, s′) satisfy MLRP if

the ratio
fX|θ,S(x

′′|θ,s′′)
fX|θ,S(x′|θ,s′)

is increasing in θ. When findings at a given study design satisfy

MLRP, we can apply Proposition 4 to derive the following corollary characterizing

the study findings X that are optimally published. The corollary holds independently

of any assumptions on the prior belief π0.

Corollary 5. Fix either updating rule. Let the utility function U be supermodular.

Furthermore, suppose that X ⊆ R, and that at some given study design S = s it holds

15To be precise, no published study leads to beliefs that are in between those of two unpublished
studies. But on a given chain of ordered beliefs, the journal might publish only high results, only
low results, all results, or no results.
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that for any x′′ > x′ in X , (x′′, s) and (x′, s) satisfy MLRP. Then under the optimal

policy, at S = s a study is published if and only if X lies outside of an interval. That

is, given s, there exists an interval Is ⊆ R such that (X, s) is published if and only if

X ∈ X \ Is.16

Under normal signals, for instance, for any x′′ > x′ and any s, the realizations

(x′′, s) and (x′, s) satisfy MLRP. So regardless of the prior, if there are normal sig-

nals and a supermodular utility function, the optimal publication rule at any given

standard error will publish point estimates outside of an interval.

4 Selective and non-selective publication

In the previous section we characterized optimal publication rules from the perspective

of policy-relevance. A key conclusion was that these welfare-maximizing publication

rules tend to selectively publish extreme findings and do not publish moderate find-

ings. This conclusion contrasts with calls for reform aimed at eliminating selection;

such calls are motivated by the statistical distortions and the lack of replicability that

selective publication can cause.

Section 4.1 reviews how selective publication distorts standard inference in the

framework of our model. Selective publication leads to biased estimators, size distor-

tions of confidence sets and tests, and the invalidity of naive updating. This analysis

builds on earlier work on how standard inference from published results will be in-

accurate when publication is based on a statistical significance filter, for instance in

Rosenthal (1979) and Ioannidis (2005). Section 4.2 presents the novel result that, if

we desire that standard inference be valid, then the publication rule must not select

on findings at all.

The fact that selective publication distorts inference means that there is a trade-

off between policy-relevance and credibility. The policy-relevance criterion pushes

towards selectively publishing extreme results, while a desire to maintain the cred-

ibility of standard inference pushes instead towards non-selective publication. We

conclude the section by characterizing the publication rules that maximize (policy-

based) welfare subject to a constraint that publication may not select on findings.

16We do not rule out the possibility that the interval Is may be empty, in which case all studies
are published; or that Is may contain the full set X , in which no studies are published.
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4.1 Publication bias

Recall that the signal X is drawn from the distribution FX|θ,S with density fX|θ,S; our

leading example was X|θ, S ∼ N (θ, S2). Conventional statistical inference on θ using

the estimator X would be based on this distribution. However, under publication

rule p(X,S), the distribution of X conditional on publication (D = 1) is different.

The corrected density is

fX|θ,S,D=1(x|θ, s) =
p(x, s)

E[p(X,S)|θ, S = s]
· fX|θ,S(x|θ, s). (11)

Inference that ignores the selectivity of the publication rule will lead to distorted

conclusions.

To illustrate this point, consider the following example. Let X be a normal signal

with standard error of S = 1, so X|θ ∼ N (θ, 1). For this signal, the conventional

unbiased estimator of θ would be X, and the conventional confidence set with a

nominal 95% coverage probability would be [X − 1.96, X + 1.96]. But suppose that

results are only published when |X| > 1.96. Then, conditional on publication, X

is a biased estimator of θ, and the interval [X − 1.96, X + 1.96] does not have 95%

coverage probability at every θ. Indeed, the probability of θ ∈ [X − 1.96, X + 1.96]

is actually equal to zero at θ = 0. The top left panel of Figure 3 plots the bias of X

as a function of θ, defined as E[X − θ|θ,D = 1], and the top right panel of Figure 3

plots the coverage probability P (θ ∈ [X − 1.96, X + 1.96]|θ,D = 1).17

Selective publication similarly impacts any form of likelihood-based inference.

Maximum likelihood estimation conditional on S, likelihood ratio tests, and related

methods must be adjusted for selection if the ratio fX|θ,S,D=1(x|θ, s)/fX|θ,S(x|θ, s)
varies with θ. As we see from (11), this ratio varies with θ whenever the publi-

cation probability E[p(X,S)|θ, S = s] is not constant in θ. For the example with

X|θ ∼ N (θ, 1) in which a study is only published if |X| > 1.96, the publication

probability falls as θ gets closer to 0; see the bottom left panel of Figure 3.

Selective publication also implies that naive updating in the absence of publication

yields distorted beliefs. In general, recall that the ex-ante probability of observing no

publication conditional on θ is given by 1 − q · E[p(X,S)|θ]. So the relative density

17Similar figures for bias and coverage probability can be found in Andrews and Kasy (2017).
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Figure 3: Distortions due to selective publication.
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These plots are generated assuming X|θ ∼ N (θ, 1) and that the conditional publication
probability is given by 1(X > 1.96). The top left panel plots the bias of X as an estimator
of θ, conditional on publication. The top right panel plots the coverage probability of
[X − 1.96, X + 1.96] as a confidence set for θ, conditional on publication. The bottom left
panel plots the probability of publication conditional on θ and on a study being submitted.
The bottom right panel plots the Bayesian default belief relative to the naive default belief
in the absence of publication, further assuming a prior of θ ∼ N (0, 4) and a probability
q = 1 of study arrival.

of the Bayesian default belief to the prior is given by

dπ0,p
1

dπ0
(θ) =

1− q · E[p(X,S)|θ]
1− q · E[p(X,S)]

. (12)
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The naive default belief (equal to the prior) differs from the Bayesian default belief

whenever the publication probability E[p(X,S)|θ] varies with θ.

The bottom right panel of Figure 3 compares the density of the Bayesian default

belief (the posterior absent publication) to that of the naive default belief for our

running example, assuming a prior of θ ∼ N(0, 4) and a study arrival probability

of q = 1. When no publication is observed, a Bayesian who understands the data

generating process knows that there may have been a study with X ∈ [−1.96, 1.96]

that was submitted but went unpublished. Hence the Bayesian default belief places a

higher probability on θ close to 0, the center of the nonpublication interval, and a cor-

respondingly lower probability on θ far from 0. Indeed, Abadie (2018) demonstrates

how a failure to pass a standard statistical significance threshold can be extremely

informative when studies are precise. Hence, if publication is based on a statistical

significance test, the Bayesian default belief can greatly diverge from the naive one.

4.2 Characterizing validity and non-selectivity

Before turning to our main results in this section, our first result formalizes the

straightforward observation that, when publication does not select on findings, tradi-

tional inference goes through and naive updating is valid. Say that a publication rule

p is non-selective if p(x, s) is constant in x for each s.18 Note that non-selective pub-

lication rules do not condition publication on the finding X, but they may condition

publication on the design S, which is independent of the state.

Lemma 3. Suppose that the publication rule is non-selective and that P (D = 1) > 0.

Then fX|θ,S,D=1(x|θ, s) = fX|θ,S(x|θ, s), and thus the following properties hold.

1. Frequentist unbiasedness. If the estimator ĝ : X × S → R for the estimand

g : Θ × S → R satisfies E[ĝ(X,S)|θ, S = s] = g(θ, s) for all θ, s, then

E[ĝ(X,S)|θ, S = s,D = 1] = g(θ, s) for all θ, s.

2. Frequentist size control. Fix a level α ∈ (0, 1) and consider a confidence set C

mapping from X × S to subsets of Θ. If P (θ ∈ C(X,S)|θ, S = s) ≥ 1 − α for

all θ, s, then P (θ ∈ C(X,S)|θ, S = s,D = 1) ≥ 1− α for all θ, s.

3. Publication probability constant in state. The publication probability E[p(X,S)|θ, S =

s] is constant in θ for all s.

18Formally, we mean by this statement that p(x, s) is constant in x almost surely over realizations
of X, i.e., that P

(
p(X, s) = E[p(X, s)|S = s]|θ, S = s

)
= 1 for all θ. Nothing changes if p(x, s) may

vary with x on sets of X that can only occur with zero probability given θ, S = s.
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4. Bayesian validity of naive updating. The Bayesian default belief π0,p
1 is equal to

the naive default belief, i.e., the prior π0.

One interpretation of part 4 of the lemma, the Bayesian validity of naive updating,

is as follows. Consider a “partially sophisticated” public which is aware that studies

may sometimes go unpublished, but which does not know the study arrival rate q or

the distribution of study designs Fs (and may not even have a well-specified prior over

these objects). Such a public understands that naive updating can lead to distorted

beliefs but it does not know how to correct this distortion. Under a non-selective

publication rule, the public can in fact be confident in updating naively: for any q

and any FS, the Bayesian updating rule would be equal to the naive one.

Our next set of results establishes a sense in which, if one desires the above

properties, then a publication rule cannot select on findings. For these results, we

restrict to the class of normal signals.

First, we show that if the point estimate is an unbiased estimator for θ, or if

the publication probability is constant in the state for every realization of S, then

the publication rule must be non-selective. Likewise, if the public is not certain of

the distribution of study designs FS and it seeks a publication rule for which naive

updating is guaranteed not to yield distorted beliefs, then the publication rule must

be non-selective.19 Given that non-selective publication also implies these properties

(Lemma 3), it follows that non-selective publication is equivalent to any of these three

properties. We will return to the size control property below, in Proposition 6.

Proposition 5. Suppose that there are normal signals and suppose that there is an

open set Θ0 ⊆ R contained in the support of the prior distribution of θ. Then the

following statements are equivalent:

1. Non-selective publication. The publication decision p(x, s) is constant in x for

each s.

2. Frequentist unbiasedness. The expectation E[X|θ, S = s,D = 1] is equal to θ

for θ ∈ Θ0 and for all s.

3. Publication probability constant in state. The publication probability E[p(X,S)|θ, S =

s] is constant over θ ∈ Θ0 for each s.

19As discussed above, a partially sophisticated public might also be uncertain about the probability
of study arrival q. However, the value of q does not affect whether naive beliefs are distorted. The
Bayesian default belief is equal to the prior for some given value of q ∈ (0, 1] if and only if it is equal
to the prior for all values of q ∈ (0, 1].
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4. Bayesian validity of naive updating. For all distributions FS on S, the Bayesian

default belief π0,p
1 is equal to the prior π0.

Notice that, fixing a distribution FS of study designs, naive and Bayesian updating

are equal as long as the publication probability is constant in the state unconditional

on S. Part 3 of Proposition 5 imposes a stronger condition, that the publication

probability is constant conditional on any realization of S. This stronger condition is

equivalent to the requirement in part 4 that naive and Bayesian updating are equal

not just for a given distribution FS, but for all possible distributions FS. Under

this condition, a “partially sophisticated” public could confirm the validity of naive

updating without knowing the distribution of study designs.

The first main step in proving Proposition 5 is to establish that non-selective

publication is implied by the publication probability being constant in the state (part

3). This result follows from the completeness of distributions in the normal location

family; see, for instance, Theorem 6.22 in Lehmann and Casella (1998). One formu-

lation of completeness for our setting is that for any fixed standard error S = s and

any function g(x) for which E[g(X)|θ, S = s] is constant in θ (over an open set), it

holds that g(x) is almost everywhere constant. Applying this result to the function

g(x) = p(x, s), we see that if the conditional publication probability at state θ is con-

stant in θ, then the publication probability p(x, s) cannot vary with x, establishing

non-selectivity.

The next step is to show that the Bayesian validity of naive updating (part 4)

implies a constant publication probability in the state, which holds for general signal

structures. Finally, we show that unbiasedness of the point estimate X (part 2) also

implies a constant publication probability, which is a result more specific to normal

signals.

Completeness holds for all exponential families of full rank (Lehmann and Casella,

1998, Theorem 6.22). Thus, constant publication probability in the state is equivalent

to non-selective publication for signal distributions FX|θ,S derived not just from the

normal but also, for instance, the Binomial, Poisson, Beta, Dirichlet, Chi-squared,

and Gamma distributions.

For signal distributions outside of the exponential families, the result need not

hold. For instance, consider a uniform signal distribution in whichX|θ, S ∼ Uniform[θ−
S, θ+S]. Then any publication rule that is periodic with period 2S, such as p(X,S) =

0.5 + 0.5 · cos(πX/S), will have publication probability E[p(X,S)|θ, S = s] constant
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over θ even though p(x, s) varies with x. Moreover, even with normal signals, we

require an open set of states for the results to hold. If the set of states is Θ = {0, 1},
then any publication rule that is symmetric in X about 1/2 will lead to a constant

publication probability across the two states.

Turning to frequentist size control of confidence sets, we get a weaker result than

the equivalences of Proposition 5. We show that any publication rule that publishes

point estimates outside of an interval – as do the publication rules of Corollary 1,

Corollary 3, and (more generally) Corollary 5 – will necessarily fail to control the size

of confidence sets. In particular, conditional on publication, there will be some state θ

for which the coverage probability of the standard confidence interval [X−zS,X+zS]

is lower than the nominal level of Φ(z)− Φ(−z).

Proposition 6. Suppose that Θ = R, there are normal signals, and that the publica-

tion rule is given by p(x, s) = 1(x /∈ I(s)) for some nondegenerate interval I(s) ( R.

Fix z > 0. Then for any s ∈ S, there exists θ′ ∈ Θ such that

P
(
θ′ ∈ [X − z · s,X + z · s]|θ = θ′, S = s,D = 1

)
< Φ(z)− Φ(−z).

The restriction to rules that publish outside of an interval is necessary for this

result. In Appendix B.2 we show that for any fixed z > 0 there do in fact exist

other forms of selective publication rules for which the coverage probability of [X −
zS,X + zS] is equal to the nominal level. Note that if one required that the coverage

probability of [X − zS,X + zS] be equal to Φ(z) − Φ(−z) for all z, rather for a

single level of z > 0, it would immediately follow that the publication rule must be

non-selective.

4.3 Optimal non-selective publication rules

One interpretation of Proposition 7 is that, under our leading example of normal

signals, if we wish standard inference to remain valid, then we must restrict ourselves

to non-selective publication rules. What is the optimal non-selective publication rule

– the rule that maximizes the policymaker’s utility subject to the constraint of being

non-selective?

When the journal is not allowed to screen on the point estimate X, the only

remaining option is to screen on the standard error S. In that case, regardless of the

30



prior or the utility function, the journal should publish studies with smaller standard

errors over those with larger standard errors. The result follows from the fact that,

conditional on a standard error S = s, it holds that X ∼ N (θ, s2) is a Blackwell more

informative signal of the state θ when s is smaller.

Proposition 7. Suppose that there are normal signals. Then there exists s̄ ≥ 0

for which the optimal non-selective publication rule publishes a study if and only if

S ≤ s̄.20 The rule is the same under naive and Bayesian updating.

Extending beyond normal signals, any time study designs S can be ordered by

Blackwell informativeness, the optimal non-selective publication rule would be to

publish all studies with a sufficiently informative design.

Under a normal prior and quadratic loss utility – and maintaining the assumption

of normal signals – we can explicitly solve for the optimal non-selective publication

rule. If σ2
0 ≥ c (high prior uncertainty, low costs), then a study is published if S ≤ s̄,

with s̄ = σ0

√
σ2
0

c
− 1; and if σ2

0 < c (low prior uncertainty, high costs) then no study

is published.21 See Figure 4.

5 A dynamic model

The model of Section 2 takes there to be a single source of information about the state

of the world: a study that may be published or not. After the publication decision

is made, a policy action is taken, and the game is over. By contrast, if additional

studies were to arrive in the future, the public might eventually receive information

that would convince it to change its policy. The journal would have to make the

decision of whether to publish a study today based on its expectations of what these

future studies might reveal.

In order to explore some of these dynamic considerations, this section considers a

two-period model. As before, there is an unknown policy-relevant state of the world θ,

which we take to be persistent over time. The original model of publication and policy

choice is the first period of the game. The new second period captures, in reduced

20For s̄ = 0, no study would be published, not even an arbitrarily precise one.
21If a non-selective publication rule is used and no publication is observed, then the default belief

will be π0 (under either updating rule) and so the expected welfare will be −Varθ∼π0
[θ] = −σ2

0 . The

expected welfare of non-selectively publishing conditional on S can be solved for as σ2
0 · S2

S2+σ2
0
− c.

So the optimal non-selective publication rule publishes a study if σ2
0 · S2

S2+σ2
0
− c ≥ −σ2

0 .
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Figure 4: Optimal non-selective publication region (shaded) for quadratic loss utility,
normal prior, normal signals.
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(a) In terms of the point estimate X, as
a function of standard error S.

(b) In terms of the t-statistic (X −
µ0)/S, as a function of S.

If c < σ2
0 , as pictured, then for s̄ = σ0

√
σ2
0/c− 1 a study is published if and only if S ≤ s̄.

If instead c ≥ σ2
0 , no studies are published.

form, the impact of future studies: additional exogenous information arrives and the

public takes another action.22 That is, only in the first period is there a publication

decision to be made, and it is made before the second period information is realized.

If the study is published then it affects the beliefs, and therefore the actions, in both

periods.

Set-up of the two-period model. At the start of the game, the common prior

over θ is π0. In the first period, a study is submitted to a journal with probability q. If

the study arrives, it has finding and design (X1, S1) with S1 ∼ FS1 and X1 ∼ FX1|θ,S1 .

The study is published with probability p(X1, S1), and the public’s induced belief is

π1. Belief updating to π1 = π
(X1,S1)
1 given publication outcome D = 1 or to π1 = π0

1

given publication outcome D = 0 is as before, with the possibility of either naive or

Bayesian updating in the absence of a publication. Then the action a1 is taken, with

a1 = a∗(π1) ∈ arg maxa Eθ∼π1 [U(a, θ)].

Next, in the second period, an exogenous signal X2 ∼ FX2|θ (independent of

(X1, S1) given θ) is publicly observed. Beliefs update according to Bayes’ Rule from

prior π1 to posterior π2. (The information structure in period 2, summarized by FX2|θ,

22Solving a richer dynamic model with a sequence of publication decisions, in which the information
revealed at later periods is endogenous to what has been previously published, is beyond the scope
of this paper.
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is commonly known at the start of the game.) Finally, the action a2 is taken, with

a2 = a∗(π2) ∈ arg maxa Eθ∼π2 [U(a, θ)].

Social welfare is a weighted sum of action payoffs, minus a cost of publication

c > 0 which is incurred if a study is published:

W (D, a1, a2, θ) = αU(a1, θ)−Dc+ (1− α)U(a2, θ). (13)

The parameter α ∈ [0, 1) describes the first-period payoff weight, relative to a 1− α
weight on the second period. The dynamically optimal publication rule p maximizes

the ex-ante expectation of the above welfare.

In this section, we will restrict attention to quadratic loss utility; we explore

binary action utility in Appendix B.3. Moreover, we restrict attention to normal

signals. As before, normal signals means that the first period signal takes the form

X1 ∼ N (θ, S2
1) for X1 ∈ R, and S1 ∈ R++. It also now means that the second-period

signal distribution is normal, with FX2|θ equal to N (θ, s22) for s2 ∈ R++.

Let us reiterate that, under this model, the standard error of the second-period

signal s2 is a parameter that is known at the start of the game. Our interpretation is

that s2 would be low (i.e., precise) when the journal expects that other high quality

studies on the topic in question will soon be performed. The parameter s2 would

be high (i.e., imprecise) when the journal expects future studies on the topic to be

performed infrequently, or to be of low quality.

Characterizing the optimal publication rule. We begin our analysis by deriv-

ing the dynamically optimal publication rule under normal priors and naive updating.

For this special case we can get an explicit formula for the optimum; see an illustration

of what this publication rule can look like in Figure 5.

Proposition 8. In the two-period model with normal priors, normal signals, quadratic

loss utility, and naive updating, the dynamically optimal publication rule is to publish

a study (X1, S1) if and only if the gross interim benefit is greater than or equal to c.

The gross interim benefit is given by

σ4
0(s42 + 2ασ2

0s
2
2 + ασ4

0)

(σ2
0 + S2

1)2(σ2
0 + s22)

2
(X1 − µ0)

2 + (1− α)
σ8
0s

4
2

(σ2
0 + S2

1)(σ2
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2(σ2
0S

2
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0s
2
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1s
2
2)
.

(14)
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Figure 5: Dynamically optimal publication region (shaded) for quadratic loss utility,
normal prior, normal signals; naive updating.
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(a) In terms of the point estimate X1,
as a function of standard error S1.

(b) In terms of the t-statistic (X1 −
µ0)/S1, as a function of S1.

As pictured, parameters are such that sufficiently precise results are published. Under
different parameter values such as a higher cost c, a study with a null result of X1 = µ0

would not be published even with a perfectly informative design of S1 ' 0.

The dynamic benefit of publication expressed in (14) is a sum of two terms. The

first term in (14) scales with (X1−µ0)
2. This term represents a benefit of publishing

extreme findings, similar to the benefit of publication in the single-period problem.

These findings move the public’s mean beliefs – and therefore its policy actions –

further from the prior.

The second term in (14) expresses a benefit of publication that is new to the two-

period model. This term does not depend on X1 and it is decreasing in the standard

error S1: it gives a benefit of publishing precise results, independently of their point

estimate. The value comes from the fact that publishing a precise result in period 1

can help reduce mistakes in period 2. (The benefit of publishing extreme findings,

given by the first term of (14), is also higher for more precise studies.)

To gain intuition about this benefit of publishing precise results, consider the

benefit of publishing a “null result,” i.e., a study with a point estimate exactly equal

to the prior mean: X1 = µ0. Publishing such a study doesn’t change the period 1

action payoff because the period 1 action will be a1 = µ0 either way. But there is a

period 2 benefit. The period 2 posterior mean will be some convex combination of

µ0 (the mean of π1) and X2. If the study at period 1 is not published then the belief

π1 will be less precise, leading the period 2 mean to place a lower weight on µ0 and

a higher weight on X2. Since X2 ∼ N (θ, s22) is an imperfect, noisy signal, failing to
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publish a null result in period 1 leads to excess variance of the second period action.

We next give comparative statics on the benefit of publishing null results.

Corollary 6. Under the hypotheses of Proposition 8, the gross interim benefit of

publishing a result (X1, S1) with X1 = µ0, given by

(1− α)
σ8
0s

4
2

(σ2
0 + S2

1)(σ2
0 + s22)

2(σ2
0S

2
1 + σ2

0s
2
2 + S2

1s
2
2)
,

is:

1. decreasing in α, going to 0 as α→ 1;

2. increasing in σ0, going to 0 as σ0 → 0;

3. decreasing in S1, going to 0 as S1 →∞;

4. nonmonotonic and quasiconcave in s2, approaching 0 as s2 → 0 or s2 →∞.

The comparative static on α is straightforward. The benefit of publishing a null

result – which increases payoffs only in the second period – is larger when the relative

weight on the second period is larger. To understand the comparative statics on σ0

and S1, recall that the benefit arises from reducing second-period mistakes by making

π1 more precise relative to the prior π0. There is a smaller benefit to increasing the

precision of π1 when the prior uncertainty (as measured by σ0) is lower. And there is

a larger increase in precision, and therefore a bigger benefit of publication, when the

first period study is itself more precise (smaller S1). Indeed, the journal might publish

precise null results in the two-period model, but it will still not publish imprecise nulls.

The more subtle part of Corollary 6 is the comparative static on s2, the informa-

tiveness of the second-period signal, in part 4. The benefit of publishing a null result

is that it helps prevent the noisy signal X2 from moving the public’s mean belief to

an incorrect value. But when the second-period signal is extremely precise (s2 ' 0),

there is no problem to be solved: the signal X2 will reveal the state very precisely,

and so to the extent that X2 moves beliefs, it moves them to the truth. And when

the second-period signal is extremely imprecise (s2 ' ∞), there is also no problem:

with high probability, observing X2 will barely move beliefs. The period 2 studies

that may cause mistakes by moving the public’s belief to an incorrect value are those

with an intermediate level of precision.

Moving beyond naive updating and normal priors, we do not have an explicit

characterization of the dynamically optimal publication rule. But we can generalize
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some of the key implications of the two-period model to an arbitrary prior and up-

dating rule. First, we establish that there is a positive value of publishing any result

that changes the public’s belief distribution from the default – even a null result that

doesn’t move the mean. Second, we show that the value of publishing null results

goes to zero when the future information, parametrized by s2, becomes very precise

or very imprecise.

To guarantee this last result, we impose a mild sufficient condition on the distri-

bution π0. Say that a belief π is bounded by Pareto tails with finite variance if there

exist K > 0, C > 0, and γ > 3 such that for θ outside of the interval [−K,K], π

admits a density, and this density is bounded above by C|θ|−γ.23

Proposition 9. Consider the two-period model with normal signals and quadratic loss

utility. Given some prior π0 with finite variance, let π0
1 be the induced default belief

either from naive updating, or from Bayesian updating under some publication rule

and some q < 1. Consider the gross interim benefit of publishing a study (X1, S1) =

(x1, s1) that induces period-1 interim belief of πI1 = π
(x1,s1)
1 .

1. For any fixed s2, this benefit is strictly positive as long as πI1 6= π0
1.

2. Suppose further that π0
1 and πI1 have the same mean. Then:

(a) This benefit goes to zero as s2 goes to 0.

(b) Under the additional assumption that π0 is bounded by Pareto tails with

finite variance, this benefit goes to zero as s2 goes to infinity.

Assuming that the study arrival probability is q < 1 imposes some regularity on

the Bayesian default belief by guaranteeing that it places some weight on π0. This

condition is not invoked for part 1, but is useful in the proof of part 2.

6 Conclusion

In Sections 2-5, we analyzed optimal publication rules supposing that the social value

of publication was derived from a policy-relevance objective. Broadly speaking, we

argued for the publication of extreme results. Extreme results are more valuable to

publish than moderate results because they move public beliefs, and therefore public

23As indicated by the terminology, the Pareto distribution with pdf decaying at a rate of θ−γ has
finite variance if and only if γ > 3 (corresponding to a standard Pareto shape parameter, usually
denoted α, strictly greater than 2). Any distribution with compact support, with normal tails, or
with exponentially decaying tails is bounded by Pareto tails with finite variance.
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policies, further from the defaults in the absence of publication. To conclude the

paper, we discuss how our analysis might change if we were to reconsider some of our

main assumptions.

One assumption maintained throughout the paper was that the arrival of studies

submitted to journals is exogenous. Appendix A.1 considers an extension in which

researchers may alter their study designs in response to the publication rule. Specifi-

cally, the researcher chooses whether to perform a study, and if so, at what precision.

The researcher receives a benefit if the study is published. Her cost of performing

the study depends on its precision, e.g., a higher cost for an experiment with a larger

sample size. Given the researcher’s incentives, we find that the journal optimally ad-

justs the publication rule in two ways: the journal rejects imprecise studies regardless

of their findings, and it becomes more willing to publish studies that are sufficiently

precise. This modified publication rule induces the researcher to conduct studies at

an increased precision.

In Appendix A.2, we discuss the possibility that study designs may not be perfectly

observed – a study may be a less reliable signal of the state than is indicated by its

reported standard error. If that is the case, we may need to qualify our claim about

publishing extreme results: it would still be optimal to publish results that moved

beliefs further, but those results might not be the ones with the most extreme point

estimates. Extreme point estimates may be considered to be “implausible,” suggesting

problems with the study rather than an extreme state.

Finally, Appendix A.3 looks for publication rules that maximize social objectives

other than policy-based welfare. When the social objective is to learn the true state of

the world, independently of any policy problem, we show that the form of the optimal

publication rule may be essentially unchanged from our earlier analysis. However,

when the social objective is to publish accurate results that are as close as possible

to the truth, the publication rule can flip; the journal now wants to publish moderate

rather than extreme results.
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A Extensions

A.1 A model with researcher incentives

Thus far, we have taken submissions to the journal to be exogenous. In reality
submissions come about from a sequence of decisions by researchers: which topics
to work on, what designs S to choose, and which findings X to actually write up
and submit. In solving for an optimal journal publication rule, one ought to take into
account the researchers’ endogenous response to the incentives provided. To illustrate,
this section presents a stylized model with incentives that explores a publication-
motivated researcher’s choices of whether to conduct a study and how to design that
study.

Our analysis here complements some other recent theoretical investigations of how
researcher or experimenter design choices may respond to incentives. In our example,
the researcher’s type will be commonly known and the design of a (submitted) study
will be publicly observable, as in Henry and Ottaviani (2017) or the main analysis of
McClellan (2017). Tetenov (2016) and Yoder (2018) study how a principal can screen
across heterogeneous experimenters with privately known types. Libgober (2015)
considers a setting in which study findings are observable, but the study design that
led to a finding may be obscured.

Set-up. There is a single researcher who takes a research topic as given. There is
a common prior θ ∼ π0 shared by all parties: the researcher, the journal, and the
public.

The timing of the game is as follows. First, the journal publicly commits to a
publication rule p for studies on this topic. Then the researcher chooses whether to
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conduct a study and, if so, what study design S to use; the researcher will submit the
results of any study to a journal. Then the game proceeds as in Section 2. If a study
(X,S) is submitted it is published with probability p(X,S), and finally the public
updates its belief and takes a policy action. The key distinction from the original
model is that the study submission probability q and the distribution of study designs
FS are now endogenous to the publication rule p.

To keep the analysis simple, we will restrict attention to naive updating. We
will also focus on a normal signal structure, with S ∈ R++ and X|θ, S ∼ N (θ, S2).
Outside of the normal signal structure, our results would qualitatively hold for any
class of signals in which study designs S were ordered by Blackwell informativeness.

The researcher’s problem. The researcher observes the publication rule p and
then decides whether to conduct a study. If she does conduct a study then she chooses
its standard error S ∈ (0,∞).

Normalize the researcher’s outside option payoff from not conducting a study to
0. If a study is conducted, the researcher values its publication, but pays a cost that
depends on the precision of the study. Specifically, the researcher gets a benefit of 1
for getting a study published, independently of the study’s results. The researcher
pays a cost κ(S) for conducting a study with standard error S, with κ : (0,∞)→ R+.
(Assumptions such as κ′(S) < 0 would be natural – the researcher pays more for an
experiment with a larger sample size, say – but we do not actually need to impose
any conditions on the cost function for the results that follow.) So the researcher’s
ultimate payoff if she conducts a study with standard error S and publication outcome
D is

D − κ(S).

Denote the researcher’s expected payoff from conducting a study with standard error
S = s, given journal publication rule p, by V (s, p):

V (s, p) = Eθ∼π0,X∼N (θ,s2)[p(X, s)]− κ(s).

The researcher’s participation constraint for being willing to conduct a study is

max
s∈(0,∞)

V (s, p) ≥ 0, (P)

where we assume that the maximum is attained. Conditional on conducting a study,
the researcher’s choice of standard error S is determined by the incentive compatibility
condition

S ∈ arg max
s∈(0,∞)

V (s, p). (IC)

As before, we will assume that an argmax exists for any relevant p, without giving
explicit conditions on primitives to guarantee that this will be the case.
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The journal’s problem. Let the journal maximize the expectation of welfare W
given by the policy payoff minus any cost of publication:

W = U(a, θ)−Dc.

That is, we suppose that the journal does not place any weight on the researcher’s
utility. Furthermore, assume that the public updates naively, so that the public’s
default action is fixed at a0 = a∗(π0).

The journal’s objective function takes the same form as in the original model,
with the key distinction that the arrival of studies is no longer exogenous to the
publication rule p. First, the study submission probability q depends on p: q = 1
if the participation constraint (P) is satisfied, and q = 0 otherwise. Second, con-
ditional on participation, the standard error S depends on p through the incentive
compatibility condition (IC). As is standard, assume that the researcher resolves
indifferences in favor of the journal’s preferences. The journal’s problem is to choose
an incentive-optimal publication rule p that maximizes expected welfare subject to
these endogenous responses.

Observe that, conditional on the arrival of a study, the journal’s gross interim
benefit of publication is unchanged from its earlier definition in (6). A study that

induces a journal interim belief of π
(X,S)
1 when the public’s default action is a0 = a∗(π0)

yields gross interim benefit of ∆(π
(X,S)
1 , a∗(π0)).

In the original model with exogenous study submission, the journal’s optimal
policy was given by the interim-optimal publication rule in which a study is published
if and only if ∆(π

(X,S)
1 , a∗(π0)) ≥ c. Let us impose the assumption that the researcher

would in fact be willing to participate if the journal were to use this interim-optimal
publication rule and would submit a study with S = sint. This assumption will
simplify both the solution and the exposition of our results.

Assumption 1. The participation constraint (P) is satisfied under the interim-
optimal publication rule p = pI(a

∗(π0)). Let sint ∈ arg maxs V
(
s; pI(a

∗(π0))
)

be the
researcher’s choice of study design in response to the interim-optimal publication rule.

Characterizing the optimal publication rule.

Proposition 10. Consider the model with incentives under normal signals and naive
updating, and suppose that Assumption 1 holds. Then there exist s ≤ sint, λ ≥ 0, and
ρ ∈ [0, 1] such that the following rule p is incentive-optimal:

p(X,S) =


1 if S = s and ∆(π

(X,S)
1 , a∗(π0)) > c− λ,

or if S < s and ∆(π
(X,S)
1 , a∗(π0)) ≥ c

ρ if S = s and ∆(π
(X,S)
1 , a∗(π0)) = c− λ

0 otherwise

.

43



Given this rule, the researcher chooses to conduct a study with S = s.

The form of the optimal rule – at least at the chosen study design S = s – is very
similar to the interim-optimal rule that was used in the model without incentives. A
study is published if the gross interim benefit is sufficiently high.

However, the journal distorts publication from the interim-optimal rule in two
ways. First, the journal does not publish any studies with standard error S > s.
The researcher is therefore induced to invest additional resources into the precision
of studies and to reduce S from sint to s. Second, at S = s the journal relaxes
the interim benefit threshold for publication from c to c − λ in order to encourage
researcher participation. Without that relaxation, a researcher might decide that
a study at S = s would be too costly to conduct given its low likelihood of being
published. (While in equilibrium the researcher never chooses S < s, the journal has
no reason to distort the publication rule at those more precise designs.)

In the original model without incentives, a journal which internalized all costs
and benefits of publication would not need commitment power: ex-ante payoffs were
maximized by publishing according to what was interim-optimal after receiving a
study. Having added researcher incentives, the two distortions now require two forms
of journal commitment. The journal commits not to publish imprecise studies, even if
such a study was conducted and turned out to have extremely striking results. This
commitment is never actually tested on the equilibrium path, though – imprecise
studies are not conducted. The journal also commits to publish studies with weak
findings when they have the appropriate precision. This second form of commitment
is tested, as these studies are submitted (and published) in equilibrium.

One key simplification of this model of incentives is the assumption that there
is no heterogeneity across researchers. This fact guarantees that researchers would
always choose to conduct a study with a single standard error, known in advance. In a
richer model, we would expect publication rules to reward more precise studies with
higher publication probabilities in a more continuous manner than what we found
here.

A.2 Imperfectly observed study designs

In determining whether to publish a study, a journal cares about the study’s true
information content. It may not be enough to treat the reported standard error as
the variable S in our model of normal signals. As previously discussed, one concern is
external validity: the parameter being estimated in the study may only be a proxy for
the policy parameter of interest. Another concern is that the study may be internally
flawed: a study with a misspecified model or an unconvincing identification strategy
may report a very small standard error without actually being close to the truth.

When the study design is imperfectly observed, the point estimate can itself be
informative as to the study’s precision. To be concrete, assume that there are normal
priors with mean normalized to 0 and there are normal signals, so that θ ∼ N (0, σ2

0)
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and X ∼ N (θ, S2). But now assume that the realization of S ∼ FS is unobserved
by the journal and the public. As noted in Subramanyam (1996), observing a point
estimate with a larger magnitude |X| leads to higher beliefs on the unobserved noise
S. In our application, a small point estimate would suggest that the study design was
precise, while a large point estimate would be suggestive of some hidden noise. The
extreme realization might be attributed to a violation of the identifying assumptions,
to a coding error, or to some other unseen flaw.

Continuing the example with X but not S observed by the journal and public,
and with θ ∼ N (0, σ2

0) and X ∼ N (θ, S2), suppose further that there is quadratic
loss utility. The journal makes a publication decision based on the posterior mean of
θ, now conditional on X but not S:

µ
(X)
1 = E[θ|X] = E[E[θ|X,S]|X] = E

[
σ2
0

S2+σ2
0
|X
]
·X.

The journal wants to publish if the interim benefit (µ
(X)
1 −µ0

1)
2 exceeds the publication

cost c. A higher belief on S due to a larger point estimate |X| translates into a lower

weight E
[

σ2
0

S2+σ2
0
|X
]

on the point estimate. Indeed, when the prior on S is sufficiently

dispersed, E
[

σ2
0

S2+σ2
0
|X
]

can decrease fast enough that E[θ|X] is nonmonotonic and

falls to 0 as X goes to infinity. (In addition to Subramanyam (1996), see discussion
of this issue in Dawid (1973), O’Hagan (1979), and Harbaugh et al. (2016).) An
intermediate point estimate would therefore move an observer’s mean belief more
than a very large, “implausible,” point estimate would. Let us restate that our results
in Section 3 support publishing “extreme results” in the sense of results that lead to
extreme beliefs. If extreme signal realizations are written off as implausible, then they
would not lead to extreme beliefs and thus should not be published.

A related possibility is that the study design S, capturing the true informational
content of the study’s findings, is better observed by the journal than by the public.
After all, the journal editor and referees are experts who are charged with carefully
evaluating the quality of a paper; a policymaker reading the study might not have
this expertise. Consider a model where the journal observes (X,S) when making a
publication decision, while if a paper is published the public sees only X. In such a
model, the public can make an inference on the quality of the study design from the
fact that the study was published. Publication implies that the journal had chosen to
certify the study as clearing the bar of peer review. Suppose additionally that even
unpublished studies are publicly available as working papers or preprints. In this case
the only role of “publication” by a journal is certification or signaling value. A formal
analysis of optimal publication rules in such an environment is an interesting topic
for future research.
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A.3 Alternative objectives

A.3.1 A Learning Objective

Separate from any decision problem, the public might value more precise knowledge of
the state of the world out of purely academic interest. One natural way of measuring
the precision of beliefs is by looking at the variance. We formalize a learning objective
by supposing that the public seeks a publication rule that minimizes the expected
variance of the posterior beliefs π1. Formally, under the learning objective we replace
the earlier relevance welfare function W (D, a, θ) from (1) with

W (D, π1) = −Varθ∼π1 [θ]−Dc, (15)

where c > 0 continues to represent the social opportunity cost of publication. The
learning-optimal publication rule p is the one which maximizes the ex-ante expecta-
tion of (15).

When considering learning, we restrict to Bayesian updating by the public. There-
fore the subjective distribution of beliefs is consistent with the distribution under the
true model, and the public’s subjective variance is indeed accurate given its informa-
tion.

There is a clear connection between learning and relevance under Bayesian up-
dating. The posterior expectation of the quadratic loss relevance utility, which is
correct in expectation, is minus the posterior variance. That corresponds to the
learning welfare. So the learning-optimal policy is exactly the policy that maximizes
the quadratic loss relevance objective under Bayesian updating, as in Section 3.2,
regardless of assumptions about signals or priors. In order to maximize learning and
minimize uncertainty over the state of the world, then, it remains optimal to pub-
lish only those studies which induce extreme posteriors. This gives an alternative
interpretation of the previous results that were motivated by decision problems.

A.3.2 An Accuracy Objective

When there are normal signals, we naturally interpret the finding X as a point es-
timate of the state θ. Under an accuracy objective, a journal seeks to publish point
estimates that are as close as possible to the true state of the world. These estimates
can be thought of as the ones that would be the most “replicable” by future studies.
Letting Θ = X = R, we formalize our accuracy objective by replacing welfare from
(1) with

W (D, θ,X) = D · (−(X − θ)2 + b), (16)

where b > 0 indicates the shadow benefit of publication; if no study arrives, welfare is
normalized to zero. For simplicity, we assume a quadratic loss from publishing values
of X further from θ. (We consider a generalized loss function below.)
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If the goal is to publish accurate or replicable results, a non-selective rule will do
better than publishing only extreme values – but a different selective rule can do even
better. Let the accuracy-optimal publication rule be the one maximizing the ex-ante
expectation of this welfare function.

Under the accuracy objective, publication depends only on the belief π
(X,S)
1 . The

accuracy-optimal rule publishes a study (X,S) = (x, s) if the interim expected welfare
from (16) is greater than 0, i.e., if

E
θ∼π(x,s)

1
[(x− θ)2] ≤ b. (17)

We can explicitly solve for this rule when there are normal signals and normal

priors: publish if (X − µ0)
2 ≤

(
1 +

σ2
0

S2

)(
b+ b

σ2
0

S2 − σ2
0

)
.24 At any standard error S,

it is accuracy-optimal to publish studies with the point estimate X in a symmetric
interval about µ0; see Figure 6. (At sufficiently high standard errors, it may be the
case that no studies are published.)

In other words, the accuracy-optimal publication rule has the opposite form as
the publication rule maximizing quadratic loss relevance: at a given standard error,
it publishes moderate findings and does not publish extreme ones. By the same
token, publishing only extreme findings at a given standard error would minimize
accuracy. This is because point estimates closer to the prior mean are thought (under
the interim belief) to be closer to the true state. For intuition, recall that the distance

of the point estimate from the interim mean, X − µ(X,S)
1 , is linear in the distance of

the point estimate from the prior mean, X − µ0. Of course, the accuracy-optimal
publication rule is still partially aligned with the earlier (relevance-)optimal rules in
that it publishes a larger range of point estimates when standard errors are smaller.

Just as the relevance-optimal rule is bad for accuracy, so too is the accuracy-
optimal rule bad for relevance. For a fixed standard error and for a fixed share of
studies to be published, the rule of publishing only moderate point estimates would
actually minimize quadratic loss utility – and would therefore also be the worst for
the learning objective.25 A non-selective publication rule would be intermediate on
both quadratic loss relevance and on accuracy.

Without giving an explicit characterization, the same qualitative result of pub-
lishing moderate results to maximize accuracy would hold if we were to generalize the
accuracy objective (16) beyond a quadratic cost of distance. Consider a generalized

24As a first step, one can rewrite (17) as Var
θ∼π(x,s)

1
[θ] + (x− E

θ∼π(x,s)
1

[θ])2 ≤ b. We then plug in

the variance and expectation from (4) to derive the publication rule above.
25As described in Section 3.1, we solved for the rule that maximized quadratic loss utility for

Bayesian updating by first showing that the problem was equivalent to maxp maxa0 EW (p, a0);
rearranging the order of maximization let us conclude that the globally optimal p was also interim-
optimal given a0. To solve for the policy that minimizes quadratic loss utility (at a fixed and
commonly known standard error), one solves minp maxa0 EW (p, a0). By a minimax theorem, one
can rearrange the order of minimization and maximization and conclude that the globally pessimal
p is also interim-pessimal given a0, and the interim-pessimal policy is to publish moderate results.
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Figure 6: Accuracy-optimal publication region (shaded) for quadratic distance, nor-
mal prior, normal signals.

0 s
S
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0 s
S
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(a) In terms of the point estimate X, as
a function of standard error S.

(b) In terms of the t-statistic (X −
µ0)/S, as a function of S.

If b < σ2
0 , as pictured, then no studies are published for S > s̄, with s̄ = σ0

√
b√

σ2
0−b

. If instead

b ≥ σ2
0 , then an interval of X containing [µ0 − (b − σ2

0), µ0 + (b − σ2
0)] would be published

for any S.

accuracy objective of

W (D, θ,X) = D · (−δ((X − θ)2) + b), (16′)

for a strictly increasing function δ(·). (An arbitrary increasing function of (X− θ)2 is
equivalent to an arbitrary increasing function of |X−θ|.) One can establish that under
normal signals and normal priors, the generalized accuracy-optimal policy maximizing
(16′) takes the same form as with a quadratic cost: at a given standard error, either
point estimates in a symmetric interval around µ0 are published, or no point estimates
are published. See Appendix B.4 below.

B Additional Results

B.1 Optimal publication without supermodularity and FOSD

Proposition 4 argues that extreme results should be the ones to be published, assum-
ing that the utility function is supermodular. Extreme results are defined in relation
to the FOSD ordering of the induced beliefs. In this subsection we demonstrate the
importance of the two conditions of supermodularity and FOSD ordering. First, we
provide a simple example to show that when the utility function does not satisfy su-
permodularity, the publication region can consist of beliefs inside rather than outside
of an interval. Second, we illustrate that even under a supermodular utility function,
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it is not necessarily the case that beliefs inducing more extreme actions are more
valuable to publish when the beliefs are not ordered by FOSD.

B.1.1 Without supermodularity

Let A = {0, 1} and Θ = R. Let the utility function be given by U(0, θ) = 0 and
U(1, θ) = k−θ2 for some constant k > 0.26 This utility function is not supermodular,
as action 0 is optimal at (known) states θ for which θ ≤ −

√
k or θ ≥

√
k while action

1 is optimal at states θ in [−
√
k,
√
k].

Assume that there is a normal prior and normal signals, so that the interim belief
after observing a signal X is given by π

(X,S)
1 = N (µ1, σ

2
1), with

µ1 =
σ2
0

S2+σ2
0
X + S2

S2+σ2
0
µ0

σ2
1 =

S2σ2
0

S2+σ2
0
.

At any given standard error S = s, these interim beliefs are FOSD ordered in X.
The expected utility of action a = 1 after observing study (X,S) is therefore given
by E

θ∼π(X,S)
1

[k − θ2] = k − µ2
1 − σ2

1. Action a = 1 would be taken if µ2
1 + σ2

1 < k, and

action a = 0 would be taken if µ2
1 + σ2

1 > k.

So, if the default action is a0 = 0, take some S = s such that σ2
1 =

s2σ2
0

s2+σ2
0
< k.

Then the gross interim benefit of publishing a study (X, s) will be

∆(π
(X,s)
1 , 0) = max

{
k −

(
σ2
0

s2+σ2
0
X + s2

s2+σ2
0
µ0

)2
− s2σ2

0

s2+σ2
0
, 0

}
.

For a low enough cost c that the journal would publish some result at S = s, the
interim optimal publication rule would be to publish only those values of X inside of
a bounded interval. If the absolute value of the default mean is larger than

√
k, then

the default action is in fact guaranteed to be a0 = 0. Thus, in this case the optimal
publication rule also publishes findings inside of an interval.

B.1.2 Supermodularity without FOSD

One might conjecture that as long as the utility function satisfies supermodularity,
then the conclusion of Proposition 4 applies not just to beliefs π′, π′′, π′′′ ordered by
FOSD, but to beliefs that are ordered by the induced actions a∗(π). The following
provides a counterexample.

Let the state space and action space both be given by A = Θ = {0, 1, 2}. Define

26Note that while the action space here is binary, this utility function differs from the “binary
action” utility. That utility function was without loss of generality on the binary action space only
until one adds assumptions on priors and signal distributions.
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the utility function U by

U(a, θ) =

θ

a

0 1 2
0 0 0 0
1 −10 10 11
2 −15 6 20

This utility function is supermodular. Higher beliefs lead to higher actions, and if
the state is known to be θ with certainty, then the corresponding optimal action is
a = θ.

Next, let a0 = 0; let π′ be state θ = 0 with certainty; let π′′ be state θ = 1 with
certainty; and let π′′′ be a 50% probability of θ = 0 and a 50% probability of θ = 2. It
holds that a∗(π′) = 0, a∗(π′′) = 1, and a∗(π′′′) = 2, but these beliefs are not ordered
by FOSD. The gross interim benefits of publishing studies leading to these beliefs are
given by ∆(π′, 0) = 0, ∆(π′′, 0) = 10, and ∆(π′′′, 0) = 2.5. Hence, it is most valuable
to publish the study leading to the belief π′′ that induces the intermediate action.

B.2 Size control for selective publication rules

Let there be normal signals, and fix z > 0. In this subsection we show how to construct
selective publication rules for which the coverage probability of the confidence interval
[X − zS,X + zS] is equal to Φ[z]− Φ[−z] for all θ. This exercise demonstrates that
while non-selectivity is sufficient for confidence intervals (at a fixed standard error
radius about the point estimate) to control size, it is not necessary.

Case of S=1: Normalizing S = 1, let the distribution of the finding X be given by
X ∼ N (θ, 1) and the publication probability be given by p(X). Then the coverage
probability of a confidence interval of the form [X − z,X + z] is given by

P (θ ∈ [X − z,X + z]) =

∫
p(θ + ε)1(ε ∈ [−z, z])ϕ(ε)dε∫

p(θ + ε)ϕ(ε)dε
.

This coverage probability is equal to its nominal level, Φ(z)−Φ(−z), for all θ, if and
only if ∫

p(θ + ε) [1(ε ∈ [−z, z])− (Φ(z)− Φ(−z))]ϕ(ε)dε = 0 for all θ.

Taking the Fourier transform F of this expression, and recalling that the Fourier
transform maps convolutions into products, the above expression is equivalent to the
condition

F (p(·)) ·F ([1(· ∈ [−z, z])− (Φ(z)− Φ(−z))]ϕ(·)) ≡ 0.
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If the coverage probability is equal to its nominal level, we thus get that F (p(·)) has to
equal zero everywhere except possibly at points where F ([1(· ∈ [−z, z])− (Φ(z)− Φ(−z))]ϕ(·)) =
0. Reversely, by the Fourier inversion theorem,27 this condition is also sufficient for
the coverage probability to be equal to its nominal level.

The Fourier transform F ([1(· ∈ [−z, z])− (Φ(z)− Φ(−z))]ϕ(·)) is real-valued,
even, and continuous. Let t∗ be any zero of this Fourier transform. Then for any
publication rule of the form p(x) = r0 + r1 · sin(t∗ · x) + r2 · cos(t∗ · x) we get that
nominal size control is satisfied. (Of course, one must ensure that the publication
probability is bounded between 0 and 1.) We can also take linear combinations of
these functions over different roots t∗. These are the only publication rules with
nominal size control.

While we cannot obtain analytic solutions, at any z we can numerically solve
for such roots. For instance, for z = 1.96, solutions include t∗ ' 2.11045, 3.49544,
etc. So under either of the publication rules p(x) = .5 + .5 cos(2.11045x) or p(x) =
.5+.5 cos(3.49544x), for example, the probability of θ ∈ [X−1.96, X+1.96] conditional
on publication would be 95% at all θ.

General case: Fixing z, suppose that p(x) is some publication rule that satisfies
nominal coverage for S = 1. Then p(x, s) = p(x/s) achieves nominal coverage for
S = s.

B.3 Two-period model with binary actions

Consider the two-period model with normal priors, normal signals, and naive updat-
ing. Recall that we assumed that social welfare is given by

αU(a1, θ)−Dc+ (1− α)U(a2, θ),

where αU(a1, θ) is the t = 1 payoff of action a1 (taken after X1 might or might not
have been published), and (1−α)U(a2, θ) is the t = 2 payoff of action a2 (taken after
the observation of X2).

Proposition 8 in Section 5 presented the gross interim benefit of publication – and
therefore the optimal publication rule – for that setting under quadratic loss utility.
Here, we will illustrate how some conclusions can change under binary action utility.
We focus on characterizing how the interim benefit of publication varies as a function
of the point estimate of the first-period study, X1.

First, recall the quadratic loss analysis. With quadratic loss utility, the benefit of
publishing towards the t = 1 payoff – that is, the expected increase in αU(a1, θ) – is
quadratic in (X1−µ0), giving a symmetric benefit of publishing more extreme results
in either direction. The benefit of publishing towards the t = 2 payoff – the expected
increase in (1−α)U(a2, θ) – has one term that is quadratic in (X1−µ0) and another

27https://en.wikipedia.org/wiki/Fourier_inversion_theorem
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term that is positive and constant in X1. There is a benefit of publishing any result,
including a null result with X1 = µ0, and an additional benefit of publishing more
extreme results. These disaggregated benefits are illustrated in panel (a) of Figure 7.

Now consider the model with binary action utility. The public’s optimal action
is a = 0 when its posterior mean is negative and a = 1 when its posterior mean is
positive. Assume that µ0 < 0, and recall that we consider the case of naive updating,
so the default action at t = 1 under nonpublication is a = 0. In that case the benefit
towards the t = 1 payoff is αµ

(X1,S1)
1 if µ

(X1,S1)
1 > 0 and is 0 otherwise.28 Since µ

(X1,S1)
1

increases linearly with X1, the benefit is zero at every X1 from minus infinity through
some positive number, and it increases linearly for larger X1. See the blue curve in
panel (b) of Figure 7.

Conditional on (X1, S1) and on X2, the realized benefit of publication towards the

t = 2 payoff is (1 − α)|µ(X1,S1),(X2)
2 | if µ

(X1,S1),(X2)
2 and µ

0,(X2)
2 are of different signs,

and is zero otherwise. The publication decision is made at t = 1, and so the benefit
is evaluated by taking expectation over X2 (under the t = 1 interim beliefs π

(X1,S1)
1 ).

See the orange curve in panel (b) of Figure 7 for an illustration of this expected t = 2
benefit. As we see, this t = 2 benefit is somewhat subtle.

The first thing to note is that the expected t = 2 payoff is strictly positive every-
where except X1 = 0. The t = 2 benefit of publishing a result with X1 = 0 is zero
(as is the t = 1 benefit) because a study reporting X1 = 0 never changes the period 2
action. The action depends on the sign of the mean, and a study with X1 = 0 moves
the posterior mean closer to zero without changing the sign.

Moving away from X1 = 0, there is a positive t = 2 benefit of publishing a result
X1 with an intermediate positive or negative value. Publishing a positive finding
avoids the public’s mistake of taking the action a = 0, in accord with its priors, when
the unpublished period-1 study would actually indicate that the state is positive.
Publishing a negative finding avoids the public’s mistake of taking a = 1 after a
positive finding in the second period, when the period-1 study would have indicated
a negative state. Figure 7 shows that these costs are asymmetric (a conclusion we see
in other numerical examples): there is a larger cost of failing to publish a study with
a positive result, one that goes against the public’s prior.

Finally, as X1 gets more extreme in either direction, the t = 2 payoff benefit
approaches zero. This is because “t = 2” is defined as the time after some additional
information has arrived.29 And an extreme X1 is suggestive of an extreme state,
meaning that the period 2 signal is very likely to reveal whether the state is positive
or negative. For instance, if X1 has a very large positive value, then we expect X2

28We follow the notational convention of the proof of Proposition 8 here, in which µ
(X1,S1)
1 is the

period 1 mean belief conditional on observing the period 1 study; µ
(X1,S1),(X2)
2 is the period 2 mean

conditional on observing both studies; and µ
0,(X2)
2 is the period 2 mean after observing the second

study if the first was not published.
29If there is a longer expected wait before new studies arrive and actions are updated, that

corresponds in our model to a larger weight α on the t = 1 payoff.
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to have a very large positive value as well. So publishing this study would give a
t = 1 benefit by moving the first period action from a1 = 0 to a1 = 1. But the public
will take a2 = 1 in the second period regardless of whether the first period study is
published.

Figure 7: Dynamic interim payoffs

t=1

t=2

μ0 0
X1

Benefit

t=1

t=2

μ0 0
X1

Benefit

(a) Quadratic loss utility (b) Binary action utility

For both examples, we set S1 = 2, σ0 = 2, µ0 = −1, and s2 = 2. The relative weight
coefficient on the first period, α, is chosen to make the curves of similar scale as graphed;
increasing α scales up the t = 1 benefit relative to that at t = 2. For quadratic loss utility,
we have chosen α = .3, with X1 ranging from −5 to 3. For binary action utility, we have
chosen α = .05, with X1 ranging from −10 to 15.

B.4 Generalized accuracy objectives

The generalized accuracy objective was defined in Appendix A.3.2 as

W (D, θ,X) = D · (−δ((X − θ)2) + b) (16′)

for δ some increasing function. To maximize this objective under normal priors and
normal signals, it is optimal to publish studies with moderate results, i.e., ones with
point estimates X inside of an interval centered at the prior mean µ0:

Proposition 11. Let there be normal priors and normal signals. The publication
rule maximizing the generalized accuracy objective (16′) takes the following form: at
S = s, either no studies (X, s) are published, or there exists k such that a study (X, s)
is published if and only if (X − µ0)

2 ≤ k.
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C Proofs

Proof of Lemma 1. Follows from arguments in the text.

Proof of Lemma 2. Follows from arguments in the text.

Proof of Proposition 1. Follows from arguments in the text.

Proof of Proposition 2. By Proposition 1 part 2a, it suffices to show that a = a∗(π0,pI(a)

1 )
is uniquely solved by a = µ0 – in other words, that a0 = µ0 is the unique fixed point
when we map default actions to interim optimal publication rules, and then map
publication rules back to default actions.

Conditional on a study arriving when the default action is a0, the journal will not
publish a study if µ(X,S) lies in the interval (a0 −

√
c, a0 +

√
c) (see Equation 9).

Let µ̄(a0) indicate E[θ|µ(X,S)
1 ∈ (a0−

√
c, a0 +

√
c)], the expected state conditional on

a study arriving and not being published. If this expectation is undefined due to the
event µ

(X,S)
1 ∈ (a0 −

√
c, a0 +

√
c) occurring with zero probability, let µ̄(a0) = µ0.

The mean of the default belief – and therefore the implied default action – condi-
tional on nonpublication will be a convex combination of µ̄(a0) (with weight q) and
µ0 (weight 1 − q). Therefore, to show that a0 = µ0 is the unique fixed point, it is
sufficient to show the following three items: (i) for a0 = µ0, it holds that µ̄(a0) = a0;
(ii) for any a0 < µ0, it holds that µ̄(a0) > a0; and (iii) for any a0 > µ0, it holds that
µ̄(a0) < a0. (If we had assumed q < 1 then it would be sufficient to show (ii) and (iii)
with weak inequalities.)

Item (i) follows from the fact that µ
(X,S)
1 is symmetric about µ0, and therefore

it remains symmetric when this random variable is truncated outside of the interval
(µ0 −

√
c, µ0 +

√
c). The proofs of items (ii) and (iii) will be identical to each other,

up to the direction of inequalities, so let us focus on proving (ii). Fix a0 < µ0. First,

if there is a zero probability that µ
(X,S)
1 ∈ (a0 −

√
c, a0 +

√
c), then µ̄(a0) = µ0 > a0

and we are done. Otherwise, notice that symmetry about µ0 combined with single-
peakedness means that the pdf of µ

(X,S)
1 is larger at a0 + k than at a0 − k for any

k > 0, with the inequality being strict for any ε such that either pdf value is nonzero.
Hence the mean of µ

(X,S)
1 conditional on being in the interval (a0 −

√
c, a0 +

√
c) is

strictly above the midpoint a0. That completes the proof of item (ii).

Proof of Corollary 1. As discussed in the text, this prior and signal structure satisfy
the hypotheses of Proposition 2, and so the optimal rule is to publish if |µ(X,S)

1 −
µ0| ≥

√
c. By the normal updating formula (4), µ

(X,S)
1 =

σ2
0

S2+σ2
0
X + S2

S2+σ2
0
µ0, and so

|µ(X,S)
1 − µ0| = σ2

0

S2+σ2
0
|X − µ0| =

(
1 + S2

σ2
0

)−1
|X − µ0|.

Proof of Corollary 2. The only comparative static that is not immediate is that for

the t-statistic cutoff,
(

1
S

+ S
σ2
0

)√
c, with respect to S. Taking straightforward limits

confirms that the cutoff goes to infinity as S → 0 and S →∞. The derivative of the
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cutoff with respect to S is
(
− 1
S2 + 1

σ2
0

)√
c, and the second derivative is 2

√
c

S3 . Since

the second derivative is positive, the cutoff is convex over S ∈ R++ and is minimized
at the point where the first derivative is 0, which is S = σ2

0.

Proof of Proposition 3. By Proposition 1 part 2b, it suffices to show that the payoff
under default action a0 = 0 is higher than under default action a0 = 1, i.e., that
EW

(
pI(0), 0

)
≥ EW

(
pI(1), 1

)
. The interim optimal publication rule pI(a

0) is given

by (10): for a0 = 0, publish if µ
(X,S)
1 ≥ c, and for a0 = 1, publish if µ

(X,S)
1 ≤ −c.

Expanding out EW (p, a0) from (5) for each possible value of a0,

EW (pI(0), 0) = qE

[{
µ
(X,S)
1 − c if µ

(X,S)
1 ≥ c

0 if µ
(X,S)
1 < c

]

EW (pI(1), 1) = qE

[{
µ
(X,S)
1 if µ

(X,S)
1 > −c

−c if µ
(X,S)
1 ≤ −c

]
+ (1− q)µ0.

Taking the difference,

EW (pI(0), 0)− EW (pI(1), 1) = qE



−c if µ

(X,S)
1 ≥ c

−µ(X,S)
1 if µ

(X,S)
1 ∈ (−c, c)

c if µ
(X,S)
1 ≤ −c

− (1− q)µ0.

(18)

We seek to show that this difference is nonnegative. Since µ0 ≤ 0 by assumption, it
is sufficient to show that the expectation term is nonnegative.

To show that the expectation term is nonnegative, first define a weakly increasing
function l : R→ R+ as follows:

l(k) =


0 if k ≤ 0

k if k ∈ (0, c)

c if k > c

.

The expectation term in (18) can be rewritten as E[l(−µ(X,S)
1 )]− E[l(µ

(X,S)
1 )], and so

it is sufficient to show that this difference is nonnegative.
Next, observe that the distribution of −µ(X,S)

1 first order stochastically dominates

that of µ
(X,S)
1 :

P (−µ(X,S)
1 ≤ k) = 1− P (µ

(X,S)
1 ≤ −k)

≤ 1− P (µ
(X,S)
1 ≥ k)

= P (µ
(X,S)
1 ≤ k),
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where the inequality comes from the assumption of P (µ
(X,S)
1 ≤ −k) ≥ P (µ

(X,S)
1 ≥ k).

By FOSD, then, the expectation of l(−µ(X,S)
1 ) is weakly larger than the expectation

of l(µ
(X,S)
1 ), completing the proof.

Proof of Corollary 3. As discussed in the text, this prior and signal structure satisfy
the hypotheses of Proposition 3, and so the optimal rule is to publish if µ

(X,S)
1 ≥ c.

By the normal updating formula (4), µ
(X,S)
1 =

σ2
0

§2+σ2
0
X + S2

S2+σ2
0
µ0. Rearranging, we

see that
σ2
0

§2+σ2
0
X + S2

S2+σ2
0
µ0 ≥ c if and only if X ≥

(
1 + S2

σ2
0

)
c− S2

σ2
0
µ0.

Proof of Corollary 4. The only comparative static that is not immediate is that for

the t-statistic cutoff,
(

1
S

+ S
σ2
0

)
(c − µ0), with respect to S. The argument for this

result follows identically as the argument for the analogous result in the proof of
Corollary 2.

Proof of Proposition 4. Let a′ = a∗(π′), a′′ = a∗(π′′), and a′′′ = a∗(π′′′). Moreover,
recall that for any actions a ≤ a and any distributions π ≤FOSD π, supermodularity
implies that

Eθ∼π[U(a, θ)] + Eθ∼π[U(a, θ)] ≤ Eθ∼π[U(a, θ)] + Eθ∼π[U(a, θ)]. (19)

Now consider the two exhaustive cases of a0 ≤ a′′ and a0 ≥ a′′.
If a0 ≤ a′′, then

Eθ∼π′′′ [U(a0, θ)] + Eθ∼π′′ [U(a′′, θ)] ≤ Eθ∼π′′ [U(a0, θ)] + Eθ∼π′′′ [U(a′′, θ)]

≤ Eθ∼π′′ [U(a0, θ)] + Eθ∼π′′′ [U(a′′′, θ)]

⇒ Eθ∼π′′ [U(a′′, θ)]− Eθ∼π′′ [U(a0, θ)] ≤ Eθ∼π′′′ [U(a′′′, θ)]− Eθ∼π′′′ [U(a0, θ)]

⇒ ∆(π′′, a0) ≤ ∆(π′′′, a0),

where, on the first line, the first inequality follows from (19) and the second inequality
follows from the fact that a′′′ = a∗(π′′′). The second line then rearranges terms from
the left-hand side and the right-hand side of the first line.

Alternatively, if a0 ≥ a′′, then by a similar argument

Eθ∼π′ [U(a0, θ)] + Eθ∼π′′ [U(a′′, θ)] ≤ Eθ∼π′′ [U(a0, θ)] + Eθ∼π′ [U(a′′, θ)]

≤ Eθ∼π′′ [U(a0, θ)] + Eθ∼π′ [U(a′, θ)]

⇒ Eθ∼π′′ [U(a′′, θ)]− Eθ∼π′′ [U(a0, θ)] ≤ Eθ∼π′ [U(a′, θ)]− Eθ∼π′ [U(a0, θ)]

⇒ ∆(π′′, a0) ≤ ∆(π′, a0).

Proof of Corollary 5. Follows from arguments in the text.

Proof of Lemma 3. As stated, when publication is non-selective, the distribution of
X|θ, S = s,D = 1 is identical to the distribution X|θ, S = s for every s. Parts 1

56



and 2 follow immediately from that observation. Part 3 follows from the definition
of non-selective publication: p(x, s) constant in x implies that E[p(X,S)|θ, S = s]
is equal to that same constant. To show part 4, recall that the independence of S
and θ implies that if E[p(X,S)|θ, S = s] is constant for each s, then it is constant in
expectation across S, and so E[p(X,S)|θ] is constant as well. The result then follows
from (12).

Proof of Proposition 5.
• Part 1 ⇒ all other parts: Non-selectivity of part 1 implies the other parts by

Lemma 3. Specifically, part 1 ⇒ part 2 by part 1 of Lemma 3 (plugging in
ĝ(X,S) = X and g(θ, S) = θ); part 1⇒ part 3 by part 3 of Lemma 3; and part
1 ⇒ part 4 by part 4 of Lemma 3.
• Part 3 ⇒ part 1: Fixing S = s, recall that X is a complete statistic for θ in

the normal location model when Θ0 contains an open set in R; see for instance
Theorem 6.22 in Lehmann and Casella (1998). Completeness means that for
any measurable function g : X → R, if E[g(X)|θ, S = s] = 0 for all θ ∈ Θ0,
then P (g(X) = 0|θ, S = s) = 1 for all θ ∈ Θ0. Apply this definition to g(x) =
p(x, s)−E[p(X, s)|S = s]. Assuming part 3, that the publication probability is
constant over θ ∈ Θ0, it holds that the expectation of g(X) is 0 for all θ ∈ Θ0,
and hence that p(X, s) = E[p(X, s)|S = s] with probability 1 given θ and S = s,
establishing part 1.
• Part 2 ⇒ part 3: To simplify notation, consider without loss of generality the

case s = 1. Then the unbiasedness condition E[X|θ, S = 1, D = 1] can be
written as ∫

xϕ(x− θ)p(x, 1)dx∫
ϕ(x− θ)p(x, 1)dx

= θ.

Equivalently, using the fact that ϕ′(x) = −x · ϕ(x),

0 =

∫
(x− θ)ϕ(x− θ)p(x, 1)dx

= −
∫
ϕ′(x− θ)p(x, 1)dx

= ∂θ

[∫
ϕ(x− θ)p(x, 1)dx

]
= ∂θE[p(X,S)|θ, S = 1].

If the last line is equal to 0 then E[p(X,S)|θ, S = 1] is constant over θ in any
open set contained in the support. The same argument applies for all other
values of S.
• Part 4 ⇒ part 3: Restating (12), the relative density of the Bayesian default
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belief to the prior is given by

dπ0,p
1

dπ0
(θ) =

1− q · E[p(X,S)|θ]
1− q · E[p(X,S)]

.

The Bayesian default belief is equal to the prior when, under the prior θ ∼ π0,
this relative density is almost surely constant in θ (in which case the ratio is
identically equal to 1). In other words, it holds when E[p(X,S)|θ] is almost
surely constant in θ. Moreover, note that E[p(X,S)|θ] must be continuous in θ
since the signal density function fX|θ,S(x|θ, s) is a smooth function of θ for all
x, s. Hence, if the Bayesian default belief is equal to the prior, then E[p(X,S)|θ]
must be constant in θ over the support of the prior.
Now, highlighting the dependence of this publication probability on the distri-
bution FS,

E[p(X,S)|θ] =

∫
s∈S

E[p(X,S)|θ, S = s]dFS(s).

We see that the LHS of this equation is constant over θ in the support of the
prior for all distributions FS if and only if, for all s, E[p(X,S)|θ, S = s] is
constant over θ in the support. (If there exists s′ such that E[p(X,S)|θ, S = s′]
varies in θ, then the distribution FS placing all probability mass on s′ will have
E[p(X,S)|θ] vary in θ.) So if the Bayesian default belief is equal to the prior
for all FS, then the publication probability is constant over θ in Θ0 for all s.

Proof of Proposition 6. Without loss of generality, fix s = 1. First consider the case
of a bounded interval I(1). Then there exist θ′ (the midpoint of the interval) and
y > 0 (the radius) such that I(1) = [θ′ − y, θ′ + y]. If y > z,

P (θ′ ∈ [X − z,X + z]|θ = θ′, S = 1, D = 1) = 0,

and the result follows. If y ≤ z, applying the law of iterated expectations and letting
C = 1 denote the event of study submission,

Φ(z)− Φ(−z) = P (θ′ ∈ [X − z,X + z]|θ = θ′, S = 1, C = 1)

= P (D = 0|θ = θ′, S = 1, C = 1) · P (θ′ ∈ [X − z,X + z]|θ = θ′, S = 1, C = 1, D = 0)

+ P (D = 1|θ = θ′, S = 1, C = 1) · P (θ′ ∈ [X − z,X + z]|θ = θ′, S = 1, C = 1, D = 1).

Conditional on a study submitted but not published, it holds that X ∈ [θ′−y, θ′+y],
and therefore since y ≤ z that θ′ ∈ [X − z,X + z]:

P (θ′ ∈ [X − z,X + z]|θ = θ′, S = 1, C = 1, D = 0) = 1.

Therefore Φ(z)− Φ(−z) is equal to a weighted average of 1 and P (θ′ ∈ [X − z,X +
z]|θ = θ′, S = 1, D = 1, C = 1) – with positive weights on both – and hence P (θ′ ∈
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[X − z,X + z]|θ = θ′, S = 1, D = 1, C = 1) < Φ(z) − Φ(−z), yielding the desired
result.

Consider finally the case of unbounded I(1). If I(1) = (−∞, y] for some y, then
for θ′ < y − z,

P (θ′ ∈ [X − z · s,X + z · s]|θ = θ′, S = s,D = 1) = 0 < Φ(z)− Φ(−z).

A symmetric argument holds for I(1) = [y,∞) and θ′ > y + z, concluding our
proof.

Proof of Proposition 7. As stated in the text, the result follows from the fact that
the signal X|S = s distributed according to N (θ, s2) is a Blackwell more informative
signal of θ when s is smaller. Blackwell more informative signals have higher expected
value to a decisionmaker regardless of utility function U or prior π0. Moreover, as
s → ∞, the signal becomes uninformative and the expected benefit of publication
goes to 0, which is below c > 0.

Proof of Proposition 8. As with the one-period problem, the optimal publication rule
is the one that is interim optimal given the naive default belief π0

1 = π0.
Suppose a study (X1, S1) arrives at period 1. Let µ0

1 indicate the posterior mean

at period 1 in the absence of publication, and µ
(X1,S1)
1 the posterior mean at period

1 if the study is published. Let µ
0,(X2)
2 indicate the posterior mean at period 2 if the

study had not been published and then the second period signal is observed to be
X2, and µ

(X1,S1),(X2)
2 the posterior mean at period 2 if the study had been published.

We can calculate these posterior means as follows:

µ0
1 = µ0

µ
(X1,S1)
1 =

1
1
σ2
0

+ 1
S2
1

(
µ0

σ2
0

+
X1

S2
1

)
µ
0,(X2)
2 =

1
1
σ2
0

+ 1
s22

(
µ0

σ2
0

+
X2

s22

)
µ
(X1,S1),(X2)
2 =

1
1
σ2
0

+ 1
S2
1

+ 1
s22

(
µ0

σ2
0

+
X1

S2
1

+
X2

s22

)
Consider the interim stage, at which (X1, S1) has been observed by the journal

and not yet published, and hence at which the journal has interim belief π1
1(X1, S1).

From this interim perspective, publication has a cost of c. It then delivers a benefit
towards the first-period action payoff, and a benefit towards the second-period action
payoff.

The benefit of publication towards the first-period payoff is α(µ
(X1,S1)
1 −µ0

1)
2, which
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simplifies to

α(µ
(X1,S1)
1 − µ0

1)
2 = α

σ4
0

(σ2
0 + S2

1)2
(X1 − µ0)

2 (20)

The period 2 action if the study is published is µ
(X1,S1),(X2)
2 , and is µ

0,(X2)
2 otherwise.

Hence, conditional on X2, the benefit of first-period publication towards the second-
period payoff is (1−α)(µ

(X1,S1),(X2)
2 −µ0,(X2)

2 )2. At the interim stage, then, the expected
second-period payoff is the expectation of that value over the random variable X2,
given beliefs θ ∼ π

(X1,S1)
1 and X2 ∼ N (θ, s22). Writing out this expectation and

simplifying,

E
[
(1− α)

(
µ
(X1,S1),(X2)
2 − µ0,(X2)

2

)2
|X1, S1

]
= (1− α)

(
E
[
µ
(X1,S1),(X2)
2 − µ0,(X2)

2 |X1, S1

]2
+ Var

[
µ
(X1,S1),(X2)
2 − µ0,(X2)

2 |X1, S1

] )
(21)

Next observe that, given X1 and S1, the conditional distribution of X2 is

X2|(X1, S1) ∼ N

(
µ
(X1,S1)
1 ,

1
1
σ2
0

+ 1
S2
1

+ s22

)
.

Plugging this conditional distribution into the various terms of (21) and simplifying,

(1− α)E
[
µ
(X1,S1),(X2)
2 − µ0,(X2)

2 |X1, S1

]2
= (1− α)

(
σ2
0s

2
2

(σ2
0 + S2

1)(σ2
0 + s22)

)2

(X1 − µ0)
2

(22)

(1− α) Var
[
µ
(X1,S1),(X2)
2 − µ0,(X2)

2 |X1, S1

]
= (1− α)

σ8
0s

4
2

(σ2
0 + S2

1)(σ2
0 + s22)

2(σ2
0S

2
1 + σ2

0s
2
2 + S2

1s
2
2)

(23)

The gross interim payoff of publication is the sum of the right-hand sides of (20),
(22), and (23). To get the form stated in the proposition, we add up the coefficients
on (X1 − µ0)

2 in (20) and (22):

α
σ4
0

(σ2
0 + s21)

2
+ (1− α)

(
s22σ

2
0

(σ2
0 + s21)(σ

2
0 + s22)

)2

=
σ4
0(s42 + 2ασ2

0s
2
2 + ασ4

0)

(σ2
0 + S2

1)2(σ2
0 + s22)

2
.

Proof of Corollary 6.
1. This result is immediate.
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2. The derivative of the benefit with respect to σ0 evaluates to

(1− α)
2s42σ

7
0(S4

1σ
4
0 + 2s42(S

2
1 + σ2

0)(2S2
1 + σ2

0) + s22(5S
4
1σ

2
0 + 4S2

1σ
4
0))

(s22 + σ2
0)3(S2

1 + σ2
0)2(S2

1σ
2
0 + s22S

2
1 + s22σ

2
0)2

which is positive. As σ0 → 0, the numerator goes to 0 while the denominator
goes to a positive limit.

3. The derivative of the benefit with respect to S1 evaluates to

−(1− α)
2s42S1σ

8
0(2S2

1σ
2
0 + σ4

0 + 2s22S
2
1 + 2s22σ

2
0)

(s22 + σ2
0)2(S2

1 + σ2
0)2(S2

1σ
2
0 + s22S

2
1 + s22σ

2
0)2

which is negative. As S1 →∞, the numerator is constant while the denominator
goes to infinity.

4. The derivative of the benefit with respect to s2 evaluates to

(1− α)
2σ8

0s
3
2(−s42(S2

1 + σ2
0) + s22σ

2
0(S2

1 + σ2
0) + 2S2

1σ
4
0)

(s22 + σ2
0)3(S2

1 + σ2
0)(S2

1σ
2
0 + s22S

2
1 + s22σ

2
0)2

.

This has the sign of −s42(S2
1 + σ2

0) + s22σ
2
0(S2

1 + σ2
0) + 2S2

1σ
4
0. This expression

is a concave quadratic in s22, which is positive at s22 = 0 and maximized at

s22 =
σ2
0

2
> 0. In particular, the derivative in s2 is positive and then negative.

As s2 → 0, the numerator goes to zero while the denominator goes to a positive
limit. As s2 →∞, the numerator increases at a rate of s42 while the denominator
increases at a rate of s62, so the ratio goes to 0.

Proof of Proposition 9. The proof of part 1 holds for any distributions πI1 6= π0. For
part 2, the proofs rely on the fact that both distributions arise from the same prior
π0 (implying, for instance, that they share a common support), and that q < 1 if
updating is Bayesian.

1. Write mean beliefs at the first period when a study (X1, S1) is published or not

by µ
(X1,S1)
1 and µ0

1, and in the second period conditional on X2 by µ
(X1,S1),(X2)
2

and µ
0,(X2)
2 . The gross interim benefit of publishing a study (X1, S1) can be

expressed as follows as the first-period action benefit plus the expected second-
period action benefit:

α(µ
(X1,S1)
1 − µ0

1)
2 + (1− α)E

θ∼π(X1,S1)
1 ,X2∼N (θ,s22)

[(µ
(X1,S1),(X2)
2 − µ0,(X2)

2 )2]

The first term, the first-period action benefit, is nonnegative (and strictly pos-

itive when the means µ
(X1,S1)
1 and µ0

1 differ). So it suffices to show that when

π
(X1,S1)
1 6= π0

1, the second term, the expected second-period action benefit, is

strictly positive. In turn, it suffices to show that when π
(X1,S1)
1 6= π0

1, there
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exists X2 for which µ
(X1,S1),(X2)
2 6= µ

0,(X2)
2 . The second-period action benefit is

nonnegative and is continuous in X2, and X2 has full support given any first-
period interim belief π

(X1,S1)
1 . So if the second-period action benefit is strictly

positive at some X2, then it is strictly positive in expectation.
The claim thus follows if we can show that, if µ

(X1,S1),(X2)
2 = µ

0,(X2)
2 holds for all

X2, then π
(X1,S1)
1 = π0

1.
Without loss of generality, normalize s2 = 1, so that X2 ∼ N (θ, 1). Define

m(x; π) = Eθ∼π[θ|X2 = x]

as the posterior mean of θ under π when X2 = x. We seek to show that if
m(x; π) = m(x; π̃) for almost all x ∈ R, then π = π̃.
Taking ϕ to be the PDF of the standard normal, define π ∗ϕ to be the marginal
density of X2 given θ ∼ π, which always exists:

(π ∗ ϕ)(x) =

∫
R
ϕ(x− θ)dπ(θ).

It then holds that

∂ log((π ∗ ϕ)(x))

∂x
=

1

(π ∗ ϕ)(x)

∂(π ∗ ϕ)(x)

∂x
=

∫
R ϕ
′(x− θ)dπ(θ)∫

R ϕ(x− θ)dπ(θ)
=

∫
R(θ − x)ϕ(x− θ)dπ(θ)∫

R ϕ(x− θ)dπ(θ)

= Eθ∼π[θ|X2 = x]− x = m(x; π)− x (24)

where the last equality on the first line follows from the identity ϕ′(x) = −xϕ(x).
(This equation is also known as “Tweedie’s formula.”) Integrating the left- and
right-hand sides yields

(π ∗ ϕ)(x) = C · exp

(∫ x

0

(m(x; π)− x)dx

)
for a constant of integration C pinned down by the fact that π∗ϕ integrates to 1.
The same formula holds for π̃∗ϕ, replacing π by π̃ on the right-hand side. We can
therefore conclude that if m(x; π) = m(x; π̃) for all x, then (π∗ϕ)(x) = (π̃∗ϕ)(x)
for all x as well.
So, suppose that m(x, π) = m(x, π̃) for all x ∈ R, and hence that (π ∗ ϕ)(x) =
(π̃∗ϕ)(x). For any distribution π of θ, denote its characteristic function (Fourier
transform) by ψπ(t) = Eθ∼π[exp(itθ)]. The fact that π ∗ ϕ = π̃ ∗ ϕ implies

ψπ(t) · exp(−t2/2) = ψπ̃(t) · exp(−t2/2)

for all t, where exp(−t2/2) is the characteristic function of the standard normal
distribution. This holds because the Fourier transform maps convolutions of
random variables into products of their characteristic functions. It immediately
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follows that ψπ(·) = ψπ̃(·), since exp(−t2/2) is different from 0 for all t, so
that the characteristic function of π is equal to the characteristic function of π̃.
Equality of their characteristic functions implies equality of π and π̃, by Lemma
2.15 in Van der Vaart (2000).

2. Let µ1 denote the shared mean of π0
1 and of πI1 . Throughout this proof, it will

be convenient to highlight the dependence of the distribution of the signal X2

on the standard error parameter s2, and so we will write the signal as X
(s2)
2 . In

particular, X
(s2)
2 |θ ∼ N (θ, s22). Furthermore, let

m(x; π, s2) = Eθ∼π[θ|X(s2)
2 = x]

be the public’s period-2 expectation of θ given period-1 belief π followed by
period-2 observation X

(s2)
2 = x. As a final notational point, in this proof and

the proofs of the corresponding Lemmas, any integral is to be interpreted as a
definite integrals over the domain R unless otherwise specified.
Since the two beliefs π0

1 and of πI1 yield the same period 1 action of a1 = µ1,
the interim gross benefit of publishing the study is the expected benefit in the
second-period, which can be written as

(1− α)Eθ∼πI1

[(
m(X

(s2)
2 ; πI1 , s2)−m(X

(s2)
2 ; π0

1, s2)
)2]

. (25)

We seek to show that, under the appropriate conditions, the expression (25)
goes to zero as s2 → 0 (for part 2a) and as s2 →∞ (for part 2b).

Lemma 4. If distribution π has a finite mean and variance, then

lim
s2→0

Eθ∼π
[(
m(X

(s2)
2 ; π, s2)−X(s2)

2

)2]
= 0.

Lemma 5. If distribution π has mean µ1 and is bounded by Pareto tails with
finite variance, then

lim
s2→∞

Eθ∼π
[(
m(X

(s2)
2 ; π, s2)− µ1

)2]
= 0. (26)

We will apply Lemma 4 to show part 2a of the Proposition and Lemma 5 to
show part 2b.
Before proceeding, it is valuable to establish one other preliminary result.

Lemma 6. Given any π0
1 and πI1 as derived under the hypotheses of Proposition

9, there exists C ′ > 0 such that for all s2 > 0 and all functions y : R+ → R+,

it holds that Eθ∼πI1
[
y
(
X

(s2)
2

)]
≤ C ′Eθ∼π0

1

[
y
(
X

(s2)
2

)]
.

We now proceed to the proofs of each part.
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(a) First observe that the distributions π0
1 and πI1 both have a finite vari-

ance. To see that this holds for πI1 , recall that πI1 = π
(x1,s1)
1 is a posterior

distribution updated after observing a normal signal (X1, S1) = (x1, s1).
The posterior distribution (from any prior) after observing a normal signal
has a finite variance. To see that this holds for π0

1, recall that π0
1 arises

as a default belief from the prior π0 with a finite variance. In the case
of naive updating, π0

1 = π0, so the result is immediate. In the case of

Bayesian updating, observe from (3) that
dπ0

1

dπ0
(θ) ≤ 1

1−q for all θ, and there-

fore π0 ≥ (1 − q)π0
1; so if π0

1 had an infinite variance, then so too would
π0.
Plugging π = πI1 into Lemma 4, we have that

lim
s2→0

Eθ∼πI1

[(
m(X

(s2)
2 ; πI1 , s2)−X

(s2)
2

)2]
= 0.

Applying Lemma 6, we also have that there exists a constant C ′ > 0 such
that

0 ≤ lim
s2→0

Eθ∼πI1

[(
m(X

(s2)
2 ; π0

1, s2)−X
(s2)
2

)2]
≤ lim

s2→0
C ′Eθ∼π0

1

[(
m(X

(s2)
2 ; π0

1, s2)−X
(s2)
2

)2]
.

Plugging π = π0
1 into Lemma 4, we have that the right-hand expression is

equal to 0. Hence,

lim
s2→0

Eθ∼πI1

[(
m(X

(s2)
2 ; π0

1, s2)−X
(s2)
2

)2]
= 0.

In other words, both m(X
(s2)
2 ; πI1 , s2) and m(X

(s2)
2 ; π0

1, s2) converge to X
(s2)
2

in mean-square as s2 → 0 under θ ∼ πI1 . Therefore they converge to each
other in mean-square, establishing the desired conclusion that the expres-
sion (25) goes to 0 as s2 → 0, as long as the three variables m(X

(s2)
2 ; πI1 , s2),

m(X
(s2)
2 ; π0

1, s2), and X
(s2)
2 are all square-integrable under θ ∼ πI1 .

The three variables are indeed square-integrable, as they each have fi-
nite means and variance. To see that, observe that the posterior mean
m(X

(s2)
2 ; πI1 , s2) has mean equal to µ1 and, by the Law of Total Variance,

variance less than Varθ∼πI1 : the variance of the posterior mean given some
signal is bounded above by the variance of the prior. The other posterior
mean variable m(X

(s2)
2 ; π0

1, s2) has a finite mean and variance under the
distribution θ ∼ π0

1 by the same arguments, and therefore finite mean and
variance under the distribution θ ∼ πI1 by Lemma 6.30 Finally, the mean

30To see that m(X
(s2)
2 ;π0

1 , s2) has a finite mean under θ ∼ πI1 , recall Eθ∼π0
1
[m(X

(s2)
2 ;π0

1 , s2)] is

finite if and only if Eθ∼π0
1
[
∣∣∣m(X

(s2)
2 ;π0

1 , s2)
∣∣∣] is finite; and the latter being finite implies by Lemma
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of X
(s2)
2 is µ1 and the variance is Varθ∼πI1 (θ) + s22.

(b) First observe that the distributions π0
1 and πI1 are both bounded by Pareto

tails with finite variance since they arise from the prior π0 that is bounded
by Pareto tails with finite variance. To see that this holds for πI1 , recall that

πI1 = π
(x1,s1)
1 is a posterior distribution updated after observing a normal

signal (X1, S1) = (x1, s1). It holds that
dπI1(θ)

dπ0(θ)
is equal to a constant times

ϕ(x1−θ
s1

), and hence the tails of πI1 decay at a rate at least as fast as those

of π0. To see that this holds for π0
1 in the case of naive updating, π0

1 = π0,
and so the result is immediate. To see that this holds for π0

1 in the case

of Bayesian updating, observe from (3) that
dπ0

1

dπ0
(θ) ≤ 1

1−q for all θ, and

therefore π0 ≥ (1 − q)π0
1; so if π0

1 were not bounded by Pareto tails with
finite variance, then neither would π0.
Plugging π = πI1 into Lemma 5, we have that

lim
s2→∞

Eθ∼πI1

[(
m(X

(s2)
2 ; πI1 , s2)− µ1

)2]
= 0.

Applying Lemma 6, we also have that there exists a constant C ′ > 0 such
that

0 ≤ lim
s2→∞

Eθ∼πI1

[(
m(X

(s2)
2 ; π0

1, s2)− µ1

)2]
≤ lim

s2→∞
C ′Eθ∼π0

1

[(
m(X

(s2)
2 ; π0

1, s2)− µ1

)2]
.

Plugging π = π0
1 into Lemma 5, we have that the right-hand expression is

equal to 0. Hence,

lim
s2→∞

Eθ∼πI1

[(
m(X

(s2)
2 ; π0

1, s2)− µ1

)2]
= 0.

In other words, both m(X
(s2)
2 ; πI1 , s2) and m(X

(s2)
2 ; π0

1, s2) converge to µ1

in mean-square as s2 → 0 under θ ∼ πI1 . Therefore they converge to
each other in mean-square, establishing the desired conclusion that the
expression (25) goes to 0 as s2 → 0, as long as they are both square-
integrable under θ ∼ πI1 ; that was established in the proof of the previous
part.

6 that Eθ∼πI
1
[
∣∣∣m(X

(s2)
2 ;π0

1 , s2)
∣∣∣] and hence Eθ∼πI

1
[m(X

(s2)
2 ;π0

1 , s2)] are finite. Call µ̃ the mean of

m(X
(s2)
2 ;π0

1 , s2) under θ ∼ πI1 ; the fact that m(X
(s2)
2 ;π0

1 , s2) has a finite variance under θ̃ ∼ π0
1

means that Eθ∼π0
1
[m(X

(s2)
2 ;π0

1 , s2)−µ̃)2] is finite, and thus by Lemma 6 Eθ∼πI
1
[m(X

(s2)
2 ;π0

1 , s2)−µ̃)2]
is also finite.

65



Proof of Lemma 4. First observe that

Eθ∼π[(X
(s2)
2 − θ)2] = s22

⇒ lim
s2→0

Eθ∼π[(X
(s2)
2 − θ)2] = 0. (27)

Next recall that for any s2 and any realization X
(s2)
2 = x, the posterior mean of

the updated belief, m(x; πI1 , s2), minimizes the expected square distance to θ:

m(x; π, s2) ∈ arg min
gs2 :R→R

Eθ∼π[(gs2(x)− θ)2|X(s2)
2 = x]

⇒ Eθ∼π[(m(x; π, s2)− θ)2|X(s2)
2 = x]

≤ Eθ∼π[(gs2(x)− θ)2|X(s2)
2 = x] ∀gs2 .

Since this inequality holds for each realization X
(s2)
2 = x, it also holds in expectation:

Eθ∼π[(m(X
(s2)
2 ; π)− θ)2] ≤ Eθ∼π[(gs2(X

(s2)
2 )− θ)2] ∀gs2 .

Plugging in gs2(x) equal to the identity function x,

0 ≤ Eθ∼π[(m(X
(s2)
2 ; π, s2)− θ)2] ≤ Eθ∼π[(X

(s2)
2 − θ)2].

Taking the limit as s2 → 0 as in (27), the right-hand side of the above expression
converges to 0, and hence

lim
s2→0

Eθ∼π[(m(X
(s2)
2 ; π, s2)− θ)2]→ 0. (28)

So we see that m(X
(s2)
2 ; π, s2) and X

(s2)
2 both converge to θ in mean-square as

s2 → 0. We can conclude that m(X
(s2)
2 ; π, s2) converges to X

(s2)
2 in mean-square,

and hence we have proven our result, if m(X
(s2)
2 ; π, s2), X

(s2)
2 , and θ are all square-

integrable under θ ∼ π. In turn it suffices to show that these random variables all
have a finite mean and a variance. By assumption, the mean and variance of θ under
π are finite. Then X

(s2)
2 and m(X

(s2)
2 ; π, s2) also share the mean of θ under π for all s2.

The variance of X2 is given by Varθ∼π(θ) + s22. Finally, the variance of m(X2; π, s2)
is bounded above by Varθ∼π(θ) by the Law of Total Variance: the variance of the
posterior mean given some signal is bounded above by the variance of the prior.

Proof of Lemma 5. Applying a transformation with λ = 1/s2, let X̂
(λ)
2 = λX

(1/λ)
2 ;

X
(λ)
2 is equal to the t-statistic X

(s2)
2 /s2. That is, X̂

(λ)
2 |θ ∼ N (λθ, 1), where X̂

(λ)
2 |θ has

pdf at x̂ of ϕ(x̂− λθ). Correspondingly, let

m̂(x̂; π, λ) = Eθ∼π[θ|X̂(λ)
2 = x̂]
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be the public’s period-2 expectation of θ given period-1 belief π followed by period-2
observation X̂

(λ)
2 = x̂, i.e., given X

(1/λ)
2 = x̂/λ. This transformation will be convenient

because as s2 → ∞ and λ = 1/s2 → 0, the variable X̂(λ)|θ approaches a standard

normal, whereas X
(s2)
2 |θ approaches an improper distribution with infinite variance.

We seek to show that for any π with mean µ1 that is bounded by Pareto tails with
finite variance, it holds that

lim
λ→0

Eθ∼π[(m̂(X̂(λ); π, λ)− µ1)
2] = 0. (29)

Writing the expectation from (29) out in integral form,

Eθ∼π[(m̂(X̂(λ); π, λ)− µ1)
2] =

∫ ∫
(m̂(x̂; π, λ)− µ1)

2ϕ(x̂− λθ)dπ(θ)dx̂.

By Lebesgue’s dominated convergence theorem, to show (29), it suffices to show
(i) for all x̂, limλ→0

∫
(m̂(x̂; π, λ) − µ1)

2ϕ(x̂ − λθ)dπ(θ) = 0; and (ii) there exists a
“dominating” function g : R+ → R+ that is Lebesgue-integrable, i.e.,

∫
g(x̂)dx̂ is

finite, such that for λ sufficiently small,
∫

(m̂(x̂; π, λ)−µ1)
2ϕ(x̂−λθ)dπ(θ) ≤ g(x̂) for

all x̂.
Step 1: Show that for all x̂, limλ→0

∫
(m̂(x̂; π, λ)− µ1)

2ϕ(x̂− λθ)dπ(θ) = 0.
It holds that∫

(m̂(x̂; π, λ)− µ1)
2ϕ(x̂− λθ)dπ(θ) = (m̂(x̂; π, λ)− µ1)

2

∫
ϕ(x̂− λθ)dπ(θ)

≤ (m̂(x̂; π, λ)− µ1)
2

∫
ϕ(0)dπ(θ)

= (m̂(x̂; π, λ)− µ1)
2ϕ(0).

So to show the desired result that
∫

(m̂(x̂; π, λ)− µ1)
2ϕ(x̂− λθ)dπ(θ) converges to 0

for all x̂, it suffices to show that (m̂(x̂; π, λ)− µ1)
2 converges to 0 for all x̂. In turn,

it suffices to show that m̂(x̂; π, λ) converges to µ1 for any fixed x̂. Writing m̂(x̂; π, λ)
in integral form,

m̂(x̂; π, λ) =

∫
θϕ(x̂− λθ)dπ(θ)∫
ϕ(x̂− λθ)dπ(θ)

(30)

In the denominator of (30), for all θ, ϕ(x̂ − λθ) → ϕ(x̂) as λ → 0. Moreover,
ϕ(x̂ − λθ) ≤ ϕ(0) for all θ and λ, and

∫
ϕ(0)dπ(θ) = ϕ(0) < ∞. So ϕ(0) is a

dominating function for ϕ(x̂−λθ) that is integrable with respect to π0, and hence by
the dominated convergence theorem the denominator approaches

∫
ϕ(x̂)dπ(θ) = ϕ(x̂).

In the numerator of (30), for all θ, θϕ(x̂ − λθ) → θϕ(x̂) as λ → 0. Moreover,
|θϕ(x̂ − λθ)| ≤ |θ|ϕ(0) for all θ and λ, and

∫
θϕ(0)dπ(θ) = ϕ(0)

∫
|θ|dπ(θ) < ∞

because π has a finite mean. So |θ|ϕ(0) is a dominating function for θϕ(x̂− λθ) that
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is integrable with respect to π, and hence by the dominated convergence theorem the
numerator approaches

∫
θϕ(x̂)dπ(θ) = µ1ϕ(x̂).

Taking the ratio, we have that m̂(x̂; π, λ) converges to µ1ϕ(x̂)/ϕ(x̂) = µ1 as λ→ 0,
completing this step.
Step 2: Show that there exists a dominating function g : R+ → R+ that is Lebesgue-
integrable, such that for λ sufficiently small,

∫
(m̂(x̂; π, λ)−µ1)

2ϕ(x̂−λθ)dπ(θ) ≤ g(x̂)
for all x̂.

First, observe that∫
(m̂(x̂; π, λ)− µ1)

2ϕ(x̂− λθ)dπ(θ) = (m̂(x̂; π, λ)− µ1)
2

∫
ϕ(x̂− λθ)dπ(θ)

=

(∫
θϕ(x̂− λθ)dπ(θ)∫
ϕ(x̂− λθ)dπ(θ)

− µ1

)2

·
∫
ϕ(x̂− λθ)dπ(θ)

≤
∫

(θ − µ1)
2ϕ(x̂− λθ)dπ(θ)∫

ϕ(x̂− λθ)dπ(θ)
·
∫
ϕ(x̂− λθ)dπ(θ)

=

∫
(θ − µ1)

2ϕ(x̂− λθ)dπ(θ) (31)

where the inequality in the third line follows from Jensen’s inequality: (E[θ|X̂(λ) =
x̂]− µ1)

2 = (E[θ − µ1|X̂(λ) = x̂])2 ≤ E[(θ − µ1)
2|X̂(λ) = x̂].

So it suffices to find an integrable function g for which g(x̂) is everywhere larger
than (31) for all λ ∈ (0, 1].
• Constructing g for x̂ ∈ [−2K, 2K].

The expression (31) is uniformly bounded above by
∫

(θ − µ1)
2ϕ(0)dπ(θ) =

ϕ(0) Varθ∼π(θ). So, let

g(x̂) = ϕ(0) Varθ∼π(θ) for x̂ ∈ [−2K, 2K].

It holds that
∫ 2K

−2K g(x̂)dx̂ = 4Kϕ(0) Varθ∼π(θ) <∞.
• Constructing g for x̂ > 2K.

Expanding out (31), we have∫
(θ − µ1)

2ϕ(x̂− λθ)dπ(θ) =

∫ x̂
2λ

−∞
(θ − µ1)

2ϕ(x̂− λθ)dπ(θ)︸ ︷︷ ︸
A

+

∫ ∞
x̂
2λ

(θ − µ1)
2ϕ(x̂− λθ)dπ(θ)︸ ︷︷ ︸
B

(32)

First let us bound the term labeled A in (32). For θ ≤ x̂
2λ

, it holds that
x̂ − λθ ≥ x̂/2. Therefore, assuming further that x̂ ≥ 2K – and in particular
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that x̂ ≥ 0 – it holds that ϕ(x̂− λθ) ≤ ϕ(x̂/2). Hence,∫ x̂
2λ

−∞
(θ − µ1)

2ϕ(x̂− λθ)dπ(θ)︸ ︷︷ ︸
A

≤
∫ x̂

2λ

−∞
(θ − µ1)

2ϕ(x̂/2)dπ(θ)

≤
∫ ∞
−∞

(θ − µ1)
2ϕ(x̂/2)dπ(θ)

= ϕ(x̂/2) Varθ∼π(θ).

Now we move to the term labeled B in (32). By the fact that π is bounded by
Pareto tails with finite variance,∫ ∞

x̂
2λ

(θ − µ1)
2ϕ(x̂− λθ)dπ(θ)︸ ︷︷ ︸
B

≤
∫ ∞
x̂
2λ

Cθ−γ(θ − µ1)
2ϕ(x̂− λθ)dθ

≤
∫ ∞
x̂
2λ

Cθ−γ(θ + |µ1|)2ϕ(x̂− λθ)dθ

≤ C
( x̂
2λ

+ |µ1|)2

( x̂
2λ

)γ

∫ ∞
x̂
2λ

ϕ(x̂− λθ)dθ

= C
( x̂
2λ

+ |µ1|)2

( x̂
2λ

)γ
1

λ
(1− Φ(− x̂

2
))

= 2γ−2Cλγ−3
(x̂+ 2λ|µ1|)2

x̂γ
Φ(
x̂

2
)

≤ 2γ−2C
(x̂+ 2|µ1|)2

x̂γ
for λ ∈ (0, 1]

The inequality in the third line follows because θ−γ(θ + |µ1|)2 is decreasing in
θ over θ > 0 for any γ > 2, so we increase the expression when we plug in
the lowest value of θ, i.e., θ = x̂/(2λ). The inequality in the last line follows
because λγ−3(x̂ + 2λ|µ1|)2 is increasing in λ over λ > 0 for any γ > 3, so we
increase the expression relative to λ ≤ 1 when we plug in λ = 1; and we also
increase the expression when we replace Φ( x̂

2
) by 1. These two observations

about increasing and decreasing functions can be straightforwardly confirmed
by taking derivatives.31

Putting the bounds on terms A and B together, let

g(x̂) = ϕ(x̂/2) Varθ∼π(θ) + 2γ−2C
(x̂+ 2|µ1|)2

x̂γ
for x̂ > 2K.

31The derivative of θ−γ(θ + |µ1|)2 with respect to θ evaluates to −θ−(1+γ)(θ + |µ1|)(|µ1|γ + (γ −
2)θ) < 0. The derivative of λγ−3(x̂+ 2λ|µ1|)2 with respect to λ evaluates to λγ−4(x̂+ 2|µ1|λ)((γ −
3)x̂+ 2|µ1|(γ − 1)λ) > 0.

69



As established, g(x̂) is larger than (31) for all λ ≤ 1. Moreover,
∫∞
2K
g(x̂)dx̂ is

finite: the first term is an integral of a normal pdf, and the second term is an
integral of an expression that decays to zero as x̂ goes to infinity at a rate of
x̂2−γ, with the exponent 2− γ < −1.
• Constructing g for x̂ < −2K.

This case proceeds symmetrically to the construction for x̂ > 2K, now taking

g(x̂) = ϕ(x̂/2) Varθ∼π(θ) + 2γ−2C
(|x̂|+ 2|µ1|)2

|x̂|γ
for x̂ < 2K.

Just as with x̂ > 2K, when x̂ < −2K we have that g(x̂) is an upper bound for

(31) when λ ≤ 1, and
∫ −2K
−∞ g(x̂)dx̂ is finite.

We have now established that g(x̂) is an upper bound for (31) for all λ ≤ 1 and for
all x̂, and that

∫
g(x̂)dx̂ <∞, concluding the proof.

Proof of Lemma 6. Define f I
X

(s2)
2

(x) = 1
s2

∫
ϕ(x−θ

s2
)dπI1(θ) and f 0

X
(s2)
2

(x) = 1
s2

∫
ϕ(x−θ

s2
)dπ0

1(θ)

to be the marginal densities of X
(s2)
2 under the respective distributions on θ of πI1 and

π0
1.

Step 1: Show that there exists C ′ > 0 such that
fI
X

(s2)
2

(x)

f0
X

(s2)
2

(x)
≤ C ′ for all s2.

First observe that

f I
X

(s2)
2

(x)

f 0

X
(s2)
2

(x)
=

∫
ϕ(x−θ

s2
)dπI1(θ)∫

ϕ(x−θ
s2

)dπ0
1(θ)

=

∫
ϕ(x−θ

s2
)
dπI1(θ)

dπ0
1(θ)

dπ0
1(θ)∫

ϕ(x−θ
s2

)dπ0
1(θ)

≤ sup
θ

dπI1(θ)

dπ0
1(θ)

.

Next, recall that πI1 = π
(x1,s1)
1 , which is a posterior belief on θ given prior θ ∼ π0

and some fixed signal realization (X1, S1) = (x1, s1). Hence

dπI1(θ)

dπ0(θ)
=

ϕ(x1−θ
s1

)∫
ϕ(x1−θ

′

s1
)dπ0(θ′)

⇒ sup
θ

dπI1(θ)

dπ0(θ)
≤ ϕ(0)∫

ϕ(x1−θ
′

s1
)dπ0(θ′).

Under naive updating, π0
1 = π0, and thus supθ

dπI1(θ)

dπ0
1(θ)

= supθ
dπI1(θ)

dπ0(θ)
, bounded by

the finite constant C ′ = ϕ(0)∫
ϕ(

x1−θ′
s1

)dπ0(θ′)
. (Recall that x1 and s1 are taken as con-

stants here.) Under Bayesian updating with study arrival probability q < 1, (3)

implies that dπ0(θ)

dπ0
1(θ)
≤ 1

1−q for all θ, and therefore that supθ
dπI1(θ)

dπ0
1(θ)

= supθ
dπI1(θ)

dπ0(θ)
dπ0(θ)

dπ0
1(θ)
≤

1
1−q supθ

dπI1(θ)

dπ0(θ)
. Hence for Bayesian updating we have a bound C ′ = 1

1−q
ϕ(0)∫

ϕ(
x1−θ′
s1

)dπ0(θ′)
.
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In either case C ′ gives an upper bound on
fI
X

(s2)
2 2

(x)

f0
X

(s2)
2

(x)
.

Step 2: Show that Eθ∼πI1
[
y
(
X

(s2)
2

)]
≤ C ′Eθ∼π0

1

[
y
(
X

(s2)
2

)]
.

Rewriting expectations in integral form,

Eθ∼πI1
[
y
(
X

(s2)
2

)]
=

∫
y
(
X

(s2)
2

)
f I
X

(s2)
2

(x)dx

=

∫
y
(
X

(s2)
2

) f I
X

(s2)
2

(x)

f 0

X
(s2)
2

(x)
f 0

X
(s2)
2

(x)dx

≤
∫
y
(
X

(s2)
2

)
C ′f 0

X
(s2)
2

(x)dx (by Step 1)

= C ′Eθ∼π0
1

[
y
(
X

(s2)
2

)]
.

Proof of Proposition 10. We first state a lemma that does not depend on Assumption
1.

Lemma 7. In searching for an incentive-optimal publication rule, it is without loss
of generality to restrict to rules p(X,S) satisfying

p(X,S) =



1 if S = s and ∆(π
(X,S)
1 , a∗(π0)) > c− λ,

or if S < s and ∆(π
(X,S)
1 , a∗(π0)) ≥ c

0 if S > s,

or if S = s and ∆(π
(X,S)
1 , a∗(π0)) < c− λ

or if S < s and ∆(π
(X,S)
1 , a∗(π0)) > c

for some s ∈ (0,∞) and λ in R ∪ {−∞,∞} in which the researcher chooses S = s if
she conducts a study.

It remains only to show that in the incentive-optimal contract of the form in
Lemma 7, the researcher chooses to conduct a study; that s ≤ sint; and that λ ≥ 0.

The facts that the researcher conducts a study and that s ≤ sint both follow from
Assumption 1.

First, Assumption 1 guarantees that the journal prefers to follow the interim-
optimal rule – at which the researcher conducts a study with S = sint, and the
journal only publishes studies with a nonnegative interim net benefit – than any rule
that publishes nothing at all. (In the model without incentives in which q = 1 and
S is deterministically equal to sint, publishing no studies is feasible, but the interim-
optimal rule is preferred.) So the incentive-optimal rule will induce the researcher to
conduct a study, meaning that the researcher must be choosing S = s.

Second, fix any publication rule of the form in Lemma 7 with s = sh and λ = λh,
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for sh > sint. We claim that the publication rule of the same form with s = sint and
λ = 0 weakly improves payoffs. To see why this claim holds, note that the publication
rule with s = sh and λ = λh would be weakly improved upon by one with s = sint and
λ = 0, supposing researcher participation. Recall that normal signals are Blackwell
ordered by their standard errors: at standard error S = sint, the findings X can be
garbled into something informationally equivalent to findings from S = sh. So some
stochastic publication rule at S = sint, combined with a garbling of these signals to
the public, replicates the distribution of outcomes32 that occur when a study arrives
with S = sh and is published under the publication rule given by s = sh and λ = λh.
But the journal’s payoffs given a study with S = sint are improved by removing the
garbling to the public. Payoffs are further improved by publishing under the interim-
optimal publication rule at S = sint, which is exactly that given by a rule of the form
in Lemma 7 with s = sint and λ = 0. Finally, by Assumption 1, the publication rule
with s = sint and λ = 0 does indeed get researcher to conduct a study, since the
interim outcome satisfies the researcher’s participation constraint.

The final step is to show that λ ≥ 0. This is because, for any publication rule of the
form of Lemma 7, increasing λ increases the publication probability at S = s. Hence,
it makes the researcher better off if she chooses S = s and slackens her incentive
constraints. Moreover, starting from λ < 0, increasing λ to 0 improves the journal’s
payoff, since again λ = 0 is interim optimal and hence optimal conditional on a study
being submitted at S = s.

Proof of Lemma 7. Take an arbitrary publication rule p̃. We will show that it can be
replaced by a rule p of the desired form that weakly increases the journal’s payoff.

First suppose that p̃ does not induce the researcher to conduct a study. Then
define some p of the form in the statement of the Lemma by setting s arbitrarily and
setting λ = 0. If the publication rule p induces the researcher not to participate,
then the journal’s payoffs are unchanged from p̃. If the rule p induces the researcher
to conduct a study with standard error S = s, then the journal’s payoffs are weakly
higher than before, since under p the journal never publishes studies that give negative
net interim payoff.

So, for the rest of the proof, assume that p̃ does in fact induce the researcher to
conduct a study with S equal to some level s. We show that there exists λ such
that we can replace p̃ with a publication rule p satisfying the following properties and
weakly improve the journal’s payoff:

1. At s > s, p(x, s) = 0:
Let p(x, s) = p̃(x, s) at s ≤ s and 0 at x > s. The publication rule p gives
the researcher the same payoff from choosing S = s and weakly reduces her
payoff from choosing other values of S, and so under p the researcher’s behavior
is unchanged. She continues to conduct a study with S = s and the journal’s

32I.e., the probability of publication at each state, and the joint distribution over public actions
and states conditional on publication.
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payoff given the choice of S = s is also unchanged.
2. At s = s, p(X, s) = 1 if ∆(π

(X,s)
1 , a∗(π0)) > c−λ, and p(X, s) = 0 if ∆(π

(X,s)
1 , a∗(π0)) <

c− λ:
Let p(x, s) = p̃(x, s) at all s 6= s. Denote the probability of publication under p̃
at S = s, given by E[p̃(X,S)|S = s], by y ∈ [0, 1]. If y = 0 then p̃ is equivalent
to a publication rule p of the appropriate form with λ =∞. If y = 1 then p̃ is
equivalent to a publication rule p of the appropriate form with λ = −∞.
For interior y, define p(·, s) so as to maximize the journal’s payoff subject to
accepting a share y of papers at this standard error. To do so, first set λ ∈ R
as the supremum over values of l such that P (∆(π

(X,s)
1 , a∗(π0)) > c − l|S =

s] ≤ y. Next, let p(x, s) = 0 if ∆(π
(x,s)
1 , a∗(π0)) < c − λ and let p(x, s) = 1 if

∆(π
(x,s)
1 , a∗(π0)) > c − λ. Finally, if ∆(π

(x,s)
1 , a∗(π0)) = c − λ, set p(x, s) such

that the publication probability at S = s, E[p(X,S)|S = s], is equal to y. (This

last step is only relevant if ∆(π
(X,s)
1 , a∗(π0)) = c−λ with positive probability at

S = s.)
The publication rules p and p̃ publish with the same probability as each other
conditional on any choice S by the researcher. Hence, the researcher continues
to be willing to pick S = s. Moreover, given the constraint of publishing with
probability y at S = s, the journal’s expected payoff given a researcher choice
of S = s is maximized by p. Hence, the journal weakly prefers p to p̃ if the
researcher is to choose S = s.

3. At s < s, p(x, s) = 1 if ∆(π
(x,s)
1 , a∗(π0)) ≥ c and p(x, s) = 0 if ∆(π

(x,s)
1 , a∗(π0)) <

c:
Let p(x, s) = p̃(x, s) at s ≥ s; at s < s, let p(x, s) = 1 if ∆(π

(x,s)
1 , a∗(π0)) ≥ c

and p(x, s) = 0 if ∆(π
(x,s)
1 , a∗(π0)) < c.

Under publication rule p, the researcher will either continue to choose S = s
or will switch to s′ < s. If the researcher continues to choose S = s, then the
journal’s payoffs are as before. If the researcher now chooses s′ < s, we claim
that the journal must be weakly better off. (This argument exactly follows an
argument in the proof of Proposition 10.) To show the claim, recall that normal
signals are Blackwell ordered by their standard errors: at standard error S = s′,
the finding X can be garbled into something informationally equivalent to a
finding from S = s. So some stochastic publication rule at S = s′, combined
with a garbling of these signals to the public, replicates the distribution of
outcomes (probability of publication at each state, and joint distribution over
public actions and states conditional on publication) that occur when a study
arrives with S = s and is published under the publication rule given by p(X, s).
But the journal’s payoffs given a study that has been published with S = s′ are
improved by removing the garbling to the public. Payoffs are further improved
by publishing under the interim-optimal publication rule at S = s′, which is
exactly that under p.

The only remaining item to prove is that it is without loss of generality to suppose
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that if the researcher chooses to conduct a study, she chooses S = s; applying step
3 above could possibly have changed the researcher’s choice of S to something below
s. However, iterating step 1 (with s redefined to the new choice of S) recovers a
publication rule of the appropriate form in which the researcher does choose S =
s.

Proof of Proposition 11. Recall that under normal priors and normal signals, the vari-
ance of π

(X,S)
1 is independent of X. So fix S = s, and without loss of generality nor-

malize the variance of π
(X,s)
1 to 1. Then given X = x and θ ∼ π

(x,s)
1 , the distribution

of a random variable Y = (x− θ)2 is a noncentral chi-squared distribution with non-
centrality parameter λ (equal to (x − E

θ∼π(x,s)
1

[θ])2) that increases in (x − µ0)
2. The

variable Y has CDF over realizations y given by 1−Q1/2(
√
λ,
√
y) for Q the Marcum

Q-function.33 By Sun et al. (2010) Theorem 1(a), Q1/2(
√
λ,
√
y) strictly increases in

its first term
√
λ, implying that the distribution of (x− θ)2 under π

(x,s)
1 increases in

the sense of FOSD as (x − µ0)
2 increases. Hence E

θ∼π(x,s)
1

[δ((x − θ)2)] increases in

(x−µ0)
2. A study (X,S) = (x, s) is published if and only if E

θ∼π(x,s)
1

[δ((x− θ)2)] ≤ b,

so at standard error S = s studies are published only if (X − µ0)
2 is sufficiently

small.

33See Wikipedia for details: https://en.wikipedia.org/wiki/Noncentral_chi-squared_

distribution.
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