JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS VOL. 24, NO. 3, SEPTEMBER 1989

Consistent Covariance Matrix Estimation with Cross-
Sectional Dependence and Heteroskedasticity in
Financial Data

Froot, K. A. "Consistent Covariance Matrix Estimation with
Cross-Sectional Dependence and Heteroskedasticity in Cross-
Sectional Financial Data." Journal of Financial and
Quantitative Analysis 24, no. 3 (September 1989): 333-355.
(Revised from NBER Technical Working Paper No. 62.)

It is accessible via the journal’s website at http://www.jfqa.org
Print one copy for individual use only

Kenneth A. Froot*

Abstract

This paper provides a simple method to account for heteroskedasticity and cross-sectional
dependence in samples with large cross sections and relatively few time-series observa-
tions. The method is motivated by cross-sectional regression studies in finance and ac-
counting. Simulation evidence suggests that these estimators are dependable in small sam-
ples and may be useful when generalized least squares is infeasible, unreliable, or
computationally too burdensome. We also consider efficiency issues and show that, in
principle, asymptotic efficiency can be improved using a technique due to Cragg (1983).

I. Introduction

Practically every empirical study in accounting and finance using cross-sec-
tional data must come to grips with the problem of contemporaneous correlation
across firms (or portfolios). Such studies present special estimation problems be-
cause they employ panel data with a large number of firms but relatively few
time-series observations. With data sets of these dimensions, it is often impracti-
cal to implement standard techniques for the entire cross section and correct for
contemporaneous correlation. Even when these techniques can be used, they of-
ten require homoskedasticity, a strong assumption in stock-based-return studies.
Indeed, in spite of a rapidly growing literature documenting the severity of and
proposing alternative solutions to these problems, there are no techniques de-
signed for large cross sections that address both contemporaneous correlation and
heteroskedasticity, and that effectively cope with the relative paucity of time-
series data.

This paper outlines two relatively simple estimators to account for contem-
poraneous correlation and heteroskedasticity in the cross section as well as het-
eroskedasticity over time. The first technique, which combines elements of
method-of-moments estimation pioneered by Hansen (1982) and the treatment of
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heteroskedasticity introduced by Eicker (1967) and White (1980a, b), is consis-
tent and asymptotically efficient within the class of one-step estimators. The sec-
ond technique uses a two-step instrumental variable estimator, similar to that in
Cragg (1983). It can provide greater asymptotic efficiency than the more straight-
forward method-of-moments approach. Small-sample Monte Carlo simulations
are performed for each of the estimators.

Il. A Discussion of Alternative Estimation Techniques

It is worth stressing the broad range of studies that must conduct inference
in the presence of contemporaneous correlation and heteroskedasticity. Contem-
poraneous correlation appears most prominently in cross-sectional tests of the
CAPM, going back to Black, Jensen, and Scholes (1972) and continuing on
through Gibbons (1982) and Brown and Weinstein (1983). These tests, which
use generalized least-squares (GLS) or iterative GLS techniques, are extremely
constrained in the time-series dimension.! Often cross-sectional data must be
aggregated, either because of the lack of time-series data or because of the com-
putational difficulty in diverting very large contemporaneous covariance ma-
trices. Both contemporaneous correlation and heteroskedasticity are significant
problems in the rapidly growing ‘‘event study’’ and °‘‘cross-sectional-return
study’’ literatures. In these areas, the difficulty of accounting for both problems
has resulted in some authors using techniques that ignore contemporaneous cor-
relation (Brown and Warner (1980), (1985), Christie (1985), and Malatesta and
Thompson (1985)) and others using techniques that ignore heteroskedasticity
(Collins and Dent (1984), Shipper and Thompson (1982), (1983), (1985), and
Malatesta (1986)).

In the absence of heteroskedasticity, it is well known that GLS techniques
(such as seemingly unrelated squares or multivariate regressions) in principle of-
fer first-best solutions to problems of cross-sectional dependence. In practice,
however, GLS is often infeasible, either because it requires estimation of too
many parameters in the error covariance matrix, or because it involves the inver-
sion of a very large matrix of contemporaneous correlations. When the cross
section is small enough to make GLS feasible, inferences based on the
asymptotic distribution of the regression coefficients are appropriate only if the
error covariance matrix is a function of a relatively small number of parameters.2

When the cross section is, for whatever reason, ‘‘too large,’’ results are
usually obtained by aggregating individual firms into a small enough number of
portfolios to permit estimation by GLS. Although this approach allows efficient
estimation in the subsample, the associated loss in efficiency from aggregation
removes any a priori argument for choosing GLS over less efficient estimators.

! The putative interval over which parameters of the market model are reasonably constant is
five years. This five-year limit usually necessitates the use of a small cross section (less than 30 firms
or portfolios). The number of monthly time periods in five years is 60. Thus, the error covariance
matrix will be nonsingular only if the.cross section (N) is composed of fewer than 60 portfolios. GLS,
however, uses the inverted error covariance matrix. The expectation of this matrix exists only if N <
(T—-1)/2,i.e.,if N < 30. See Press (1972).

2 The finite-sample bias in the variance of the regression coefficients is of the order of the num-
ber of observations. See Rothenberg (1984).
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Thus, while the estimators below are less efficient than GLS with an unlimited
supply of time-series data, they nevertheless may have more power because they
may be applied to data sets for which GLS is infeasible, unreliable, or computa-
tionally too burdensome.

In many empirical studies in finance, the problem is not so much that the
cross section is ‘‘too large,’’ but that the time series is ‘too short:”’ no amount of
aggregation will make GLS a reasonable procedure. This frequently occurs in
what Bernard (1986b) terms ‘‘cross-sectional return’’ studies that use firm-spe-
cific information available on an annual or quarterly basis only. In these studies,
it is clearly most difficult to correct for cross-sectional correlation. Yet, at the
same time, they seem to have a disproportionate need for such a correction. Ber-
nard shows that the usual OLS standard errors of the coefficient estimates, which
are biased in the presence of contemporaneous correlation, may be extremely
misleading for these cases. In addition, he demonstrates that this bias can only
increase as the cross section is expanded. Unfortunately, no general method of
accounting for cross-sectional dependence in these studies has previously
emerged.

In all of these situations, a richer characterization of cross-sectional depen-
dencies can be achieved only by imposing some restrictions on the data. We will
make the assumption that the researcher can identify groups of firms within the
cross section that exhibit little contemporaneous correlation in their residuals.
That is, we assume the cross-sectional correlation matrix of the residuals is block
diagonal. While this assumption is restrictive, it buys considerable freedom in
estimating intra-group (or intra-industry) correlations using method-of-moments
techniques. For example, even with a single time-series observation, it will be
possible to account for unrestricted intra-industry correlations in each industry,
provided a reasonable number of industries are used. Indeed, for any given num-
ber of industries, there is no fixed upper limit on the number of firms within each
industry.

The assumption that the error covariance matrix is block diagonal is com-
mon in a variety of contexts in finance. For example, several approximate arbi-
trage pricing models, which allow the pricing error covariance matrix to include
contemporaneous correlation across assets, require that the cross-sectional idi-
osyncratic covariances be ‘‘nonpervasive.’’ This slightly more general property
often comes down to assuming block diagonality in practice.? Also, empirical
evidence on block diagonality is supportive: Bernard (1986b) finds that, while
intra-industry correlations of market model residuals are quite large in quarterly
and annual data, the corresponding inter-industry correlations are near zero (the
correlation coefficient is, on average, 0.06) and have a small effect on the stan-
dard errors in regression. Thus, the block diagonality assumption may be useful
for studies in finance and accounting.

In addition to cross-sectional correlation, many financial data sets exhibit
conditional heteroskedasticity. In view of the large and predictable changes in
variance frequently observed in stock returns, conditional heteroskedasticity is
likely to be important. It is particularly relevant in event studies, in which the

3 See, for example, Ingersol (1984) and Chamberlain and Rothschild (1983).
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variance during event periods is likely to be systematically different from the
variance in nonevent periods. The ability to permit both contemporaneous corre-
lation and unrestricted heteroskedasticity is an important advantage of GMM
over feasible GLS estimators.

The remainder of the paper proceeds as follows. In Section III below, we
lay out the method-of-moments covariance estimator and prove its asymptotic
consistency. There we show that we can use the independence across industries
to increase multiplicatively the number of independent observations, thereby im-
proving the approximation to the asymptotic standard errors. In Section IV, we
consider an alternative two-step estimator that can increase the asymptotic effi-
ciency of the initial estimator. Section V then presents Monte Carlo simulations
of both estimators for a variety of sample sizes, levels of contemporaneous corre-
lation, and degrees of conditional heteroskedasticity. Last, Section VI offers our
conclusions.

lll. The Heteroskedasticity and Contemporaneous
Correlation-Consistent Covariance Estimator
Consider the linear model
(1) Ynt = FuP F By s
wheren = 1,...,Nandt = 1,..., T index a particular industry and time pe-

riod, respectively. Within each industry group are P firms, so thaty, isa P X1
vector and x,, is a P X K matrix,*

y 1nt xlnt

Yone Xont
[ ] L]
It = . Kt .
L] L]

Y Pnt, xPnt

We also make the following assumptions.

Assumption 1. (i) The pair (x,,,,, 1) is independently (but not necessarily identi-

cally) distributed over time, ¢, and industries, n. (ii) The regressors are taken to

be uncorrelated with their associated residual, so E(x},.,,) = 0, where i =
. K denotes the ith column of x,,,,. (iii) The P X 1 residual vector, p,,, has a

condltlonal expectatlon of zero, E(p.m | x,) = 0, and the P X P conditional co-

variance matrix given by E(W i | X, = 2

Assumption 2. (i) The second moments of the residuals are bounded, in the sense

that there exist positive constants, & and A, such that E(p, JITI<A, Also each

element of the K X K outer product of the regressors is bounded E(x)pxp 't

< A, foralli,j = 1,...K. (ii) The product of the second moments is assumed to

be bounded, E(3,.X pm)l +5 < A, as is the square of the product of squared

4 For notational convenience, we assume that the number of firms per industry is the same
across all industries. It is straightforward to relax this assumption in deriving the results below.
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regressors, E((x},) 2(x},) )2+ % < A. (iii) Myr = (NT) ~'E(X7Xyyp) is assumed
to be nonsingular for sufficiently large NT, whete x5y is a PNT X K vector of
stacked regressors. (iv) The average covariance matrix is

N T
- 1 ! !
(2) ®NT = (NT) E(Zl lent“‘nt“'ntxnt) :
n=1 t=

Given our assumptions, it is straightforward to show that the OLS estimate
of the unknown coefficient vector, ﬁNT = (XnyXn7) ~ 1Xp7YNT, COnverges almost
surely as NT — oo to the true parameter vector in (1), 8.5 The usual asymptotic
OLS covariance matrix, (PNT)~'Zf_ 2N ST E(p.2,)My;', however, will be
incorrect since we allow for contemporaneous correlation across firms in the
same industry and for heteroskedasticity. The correct standard errors come out of
a multivariate generalization of White’s (1980a) estimator of the covariance ma-
trix

3) V(Byr) = (ND)™ My O My

Under the assumption that the inter-industry cross-correlations are zero (As-
sumption 1(i)), the overall conditional error covariance matrix is Qy; =
E(unrienr | Xyp) (Where wyr is @ PNT X 1 vector of residuals). This matrix has a
block diagonal structure, with each block measuring the inter-firm contempo-
raneous correlations for a given industry at a given time

5, . 0 .. 0 .. 0

0 ... F, .. 0 .. 0
€] QNT= : : : : : : >

0 0 ENI 0

0 .. 0 .. 0 .. 3.

where %, ,,, is the P X P conditional covariance matrix given in Assumption 1(iii),
with (i,j)th element

i _ p o=
5) o, = E(p,imp.jm I xm) i,j=1,...,P.

The difficulty clearly comes in estimating the error covariance. matrix {2 ;.
With T large and under homoskedasticity, there is no problem; the industry co-
variance matrices, %,,, would then be independent of time and could be esti-
mated consistently from the OLS residuals,

. T
Al 1 ~ - ..
6) o, = thgluimujm. i,j=1,..,P,

where the ﬁ’s are the OLS residuals from (1).

5 For a proof under similar assumptions, see Lemma 2 in White (1980a).
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When T is not large in comparison with P, however, it would seem that
there are far too many parameters in the error covariance matrix ((P+ 1)P)/2
elements for each %, or ((P+ 1)PNT)/2 elements altogether) relative to the
number of residuals (PNT) to allow the asymptotics to apply. Due to the indepen-
dence of the regressors and disturbances across T and N, the number of parame-
~ ters in the error covariance matrix is irrelevant. We need be concerned only with
the ((K+ 1)K)/2 parameters in the average covariance matrix, O, This intui-
tion for handling contemporaneous correlation within a segment of the cross sec-
tion is precisely analogous to the treatment of heteroskedasticity in White
(1980a). To see this reasoning, note that the average covariance matrix can be
written

LI [E L
@ Oy = Nz [72 [Z ZE (ximxj{ntuintujnt)]jl :

Equation (7) says that we average over the N industries and T time periods
the outer products of the sums of intra-industry regressors weighted by the appro-
riate covariance. Thus, the average error covariance matrix depends only on the
number of regressors K. For the special case in which P = 1, (7) is the estimate
of the average covariance matrix proposed by White (1980a).

We can now state two propositions:

Proposition 1. Under Assumptions 1 and 2, the standard distribution of the OLS
estimate, ﬁ NT» 18

\/W@};T]/ZMNT(ENT_ B) 4 N(O’IK> )

Proposition 2. The OLS estimate of the coefficient covariance matrix converges
almost surely to the coefficient covariance matrix in (3),

’ -1 ’ -1
X X X X
NTNT\ & NT NT soag—1 -1
(—NT ) ®~r( NT ) MO, M

The Appendix contains the proofs of these propositions, which are similar
to those in White (1984), Chapter 7. Note that the asymptotics are conducted
over NT. By allowing the number of industries and/or the number of time-series
observations to become large while holding fixed the number of firms within an
industry, we get precise approximations to the asymptotic standard errors, even
though the number of elements in the error covariance matrix increases with N
and T. Note also that, while P cannot grow with the sample size, there is no fixed
upper limit to the number of firms per industry. As long as one can isolate a
reasonable number of groups of firms for which the maintained hypothesis of no
inter-group correlation is appropriate, consistent inferences may be drawn in the
presence of contemporaneous correlation and heteroskedasticity, and large cross
sections of data may be used.
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IV. More Efficient Estimation

A drawback of the estimator above is that it gives equal weight to each data
point. Ideally, we would like to form a more efficient estimator, one that weights
data according to their precision. A more precise data point, i.e., an observation
with a relatively small squared residual, deserves greater than equal weight. The
problem, of course, is that we have only a single estimate of the true squared
residual for each observation, ;Ipzm, and this is a biased and inconsistent estimate
of E(p.gn,). An instrumental variables solution to this problem in the presence of
heteroskedasticity alone has been proposed by Cragg (1983). Here, we show that
Cragg’s basic insight may be directly applied to improve asymptotic efficiency in
the presence of contemporaneous correlation as well.

Consider a PNT X R matrix of instruments (where NT > R > K) for the
regressors in (1), q = [x p], which includes the regressors, x, as well as other
variables, p. We make the following assumption concerning q.

Assumption 3. Let Assumptions 1, 2(i), and 2(ii) hold when x is replaced by q,
and define Ry, = (NT)~'E(q'x), which is of rank K for sufficiently large NT,
= (NT)~E(p'x), which is of rank R — K, and

@)}3) (NT>_ : Z Z Z Z ( intp;nt p’int p’jnt) ’

n=1t=1i=1j=1

which is of rank R — K for sufficiently large NT.
Next, consider the following transformation of (1),

®) y*¥ = x*B + p¥,

where y* = q'y, x* = q'x, and p* = q'.¢ The error covariance matrix for (8)
is now the R X R matrix E(n*p*’) = E(q'npn'q) = O*, which has uniformly
bounded elements by Assumption 3 and has full rank. Given our boundedness
and continuity assumptions, we can make the usual GLS transformation by
premultiplying (8) by (@*) —*, which then yields

(9) y** — x**B + F'***’

where y** = (@*)~%q'y, x** = (@%*)%q'x, p** = (@*)~%q'p, and
E(pu**u**") = I5. By running OLS on (9), we obtain the standard formula for
the two-step, two-stage least squares (2STSLS) estimator due to Cumby, Huiz-
inga, and Obstfeld (1983), '

~ -1
(10) B = ()~ sk yik = (x/q' (@) 'q'x)  x'q(@%)7'q'y .
Given that x** and p** satisfy the boundedness conditions in Assumptions

2(i) and 2(ii), we can apply Proposition 1 to get the asymptotic distribution of
B**,

(11) /NT(®*)~ ”ZRNT([?,** -B)4 N(O,IK) .

6 Where it will not create confusion, we drop the NT subscript for the remainder of the text.
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The 2STSLS estimator, E**, employs the average error covariance of the instru-
ments, ®*, which can be estimated consistently from the data. To see this, note
that we can use the estimated OLS residuals from (1) to form

(12) = wn! Z Z Z Z i D P Py

n=1lt=1i=1j=1

The assumption of independence across N and T implies that, for NT sufficiently
large, @} is of full rank for R < NT.

This leads to a third proposition.
Proposztzon 3. The OLS estimate of the coefficient covariance matrix in (9),
V(B**) converges almost surely to the true 2STSLS covariance matrix,

(B9) (@), (4825 Kty (O Ry

See the Appendix for the proof, which follows directly from Assumption 3
and Proposition 2. The important intuition is that we can use the independence of
the g,,,’s and p,,,’s over T and N to estimate consistently the average error co-
variance matrix of the instrumental variables.

Now that we have established that the 2STSLS estimator, ﬁ**, will be fea-
sible and provide consistent inferences, we consider the conditions for B** to be
asymptotically more efficient than the equally weighted OLS estimator from (1),
ﬁ. In other words, we ask when the difference between the asymptotic covari-
ance matrices,

~-1
-1 , ~-1
(13) MNT ®NTMNT - ( (91’57) RNT) ’

will be positive semi-definite. Cragg (1983) and White ((1984), proposition
4.49) show that, as long as q contains x and is of greater rank than x, the
asymptotic efficiency of B** is at least as great as that of B and strictly greater if
and only if

~ 1 xp ~1
(14) ® r Oy 7 #* My Py

The intuition behind this result can best be seen by rewriting (14) as
(15) EEpp ) E@ pp'p) % EE ) 'EXD) .

The left-hand side of (15) is roughly the coefficient in a regression of p.'p on p.'x,
and the right-hand side is the coefficient in a regression of p on x. The interpreta-
tion is that we seek instruments p that tell us something about the interaction of
the regressors with the error terms. A ‘‘good’’ instrument is not judged by its
high correlation with the regressors themselves; instead, it provides information
about the true underlying residuals and their interaction with the regressors—
information that cannot be obtained by looking at the correlations between the
regressors and instruments alone.
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Additional insight can be gained from considering more closely the case of
fixed regressors, as in Cragg (1983). The assumption of nonstochastic regressors
is sufficient to imply that GLS is asymptotically efficient. Cragg shows that the
preferred instruments are those that explain the greatest amount of variation in
the (inverted) GLS covariance matrix, x'{2x. Ideally, the instruments would be
chosen to minimize the mean squared residual in the OLS regression

(16) Q "x = @qy + €.

The estimated sum of square residuals from this regression, é'é, is a direct mea-
sure of the efficiency of the instrumental variable estimator since

17 v (Egls)_ 1_ 1% (g**)_l =x'Q7 'x-x'q(q' Q)" 'g'x=E(e'¢).

Equation (16) may be rewritten,

(18) 91/2(9_1)() — 0"qy+e.

Equation (18) says that good instruments are those that will explain the variation
in  ~Ix. To address the problem of heteroskedasticity in the n’s, Cragg treats
- Ix as an arbitrary function of x and suggests using a polynomial approxima-
tion. That is, the ith row of q, or g;, would contain the instruments x;, x;x;, etc.”
(see Cragg (1983) for more detail).

Our foremost concern in this paper is with the additional problems posed by
the presence of contemporaneous correlation in financial data. Fortunately, addi-
tional information on cross-sectional dependence is relatively easy to find. In
many finance and accounting studies, the dependent variable, y, is an asset return
or a suitably defined excess return. For this variable, there is usually a large
amount of data available prior to the period of estimation. So we might include in
p the variables (£2H)~Ix, where Q¥ is the historical correlation matrix of the
dependent variable calculated during an earlier period.

V. Simulation Experiments

In this section, we perform simulations of the estimators above. We try to
address three issues in these simulations. First, suppose we were to circumvent
the problem of cross-sectional correlation by aggregating the cross section over
intra-industry observations (so that the cross section would consist of only N
aggregated industries). We would like to know how much can be gained by using
the method-of-moments estimator on the entire cross section in comparison with
a naive OLS estimator on the aggregated sample. Second, how efficient are the
estimators presented in Sections III and IV in comparison with GLS, and how
sensitive is the efficiency differential to different levels of N, T, and P? Third,
can we hope to improve efficiency in small samples by using the 2STSLS estima-
tor in Section IV instead of the simpler method-of-moments estimator in Section

71If a constant is included in the columns of x, we assume that it is excluded in the higher
powers, so that q'q is not singular.
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I1I? Finally, since all of our results are based on asymptotic distribution theory,
we also wish to determine whether there are systematic finite-sample biases in
either of these estimators.

A linear model with a single exogenous regressor was chosen for the simu-
lations

(19) ypnt = B0 + Bxpnt + l“'pnt :
The x,,, were drawn randomly from a log-normal distribution, and are indepen-
dent across p, n, and ¢.8 In the simulation and the notation that follow, we treat
the regressors as fixed. A set of independently distributed primitive disturbance
terms, mp,,, was drawn from a standardized normal distribution, then modified to
generate contemporaneous correlation and heteroskedasticity in the residuals,
Kpn-® Contemporaneous intra-industry correlation was assumed to be identical
across industries, and was introduced by transforming the PNT X 1 column vec-
tor, m,

(20) w o= (L,®A)n,
where A is a nonstochastic P X P matrix,
I N ... A\
s,
NN

and X\ is a function of the correlation coefficient between firms in a given indus-
try, p, and the number of firms per industry, P,

_ 11— (@-pd+pP-D)"
@ N = P-Dp-1D+1 )

Note that this specification of the residuals implies homoskedasticity both
over time and across the panel. Since the error in estimating the parameters is not
a function of the parameters themselves, 3, and B can be chosen arbitrarily with-
out affecting the results. We selected B, = 0 and B = 1. For each experiment,
1000 draws of m were used to compute 1000 sets of dependent variables and,
using a single set of regressors, 1000 sets of parameter estimates were obtained.
Only the estimates for the slope parameter are reported in order to conserve
space.

Table 1 reports the results for the method-of-moments estimator in Section
III for a variety of sample sizes when the correlation coefficient in (21), p, is set
to one-half. For purposes of comparison, the variance estimates are reported as
proportions of the OLS asymptotic variance for the data set aggregated up to the
industry level,

(22) V<GZLS) = i;’NT(INT®A)iPNT(iII’(§'i)il’)_1’

8 The same vector, x, was used for all of the simulations that follow.
9 We use the fast acceptance-rejection algorithm proposed by Kinderman and Ramage (1976).
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where X is a NT X P matrix containing the elements of x, and i, is a k X 1 vector
of ones. 10 The column labeled ‘asymptotic’’ is the appropriate diagonal element
of the asymptotic method-of-moments variance divided by the corresponding
element of the aggregated OLS asymptotic variance,!!

(x'x)” Ix/ (INT®A)x(x’x)_ !

-1
(I ® ) (X',
Clearly, when the number of firms per industry, P, is equal to one, there is
no asymptotic gain from the method-of-moments approach, since the two estima-
tors are identical. Here the method-of-moments estimator is precisely that of
White (1980a). For completeness, the last column in Table 1 reports the
asymptotic GLS variance as a proportion of the aggregated OLS variance,

(x (L ®A " )x) "

. . o) soo )N e -1

ipny (INT® A) lPNT(lP (X'%) lP)

With P = 1 there is also no gain from using GLS since there is no cross-sectional
correlation or heteroskedasticity to exploit.

When P is increased to 5, however, substantial improvements in efficiency
from the method-of-moments estimator appear. For N = 12 and T = 1, the
relative asymptotic efficiency of the method-of-moments estimator falls to 0.037
and that of the GLS estimator falls to 0.027. This gain in efficiency over OLS
comes from two separate effects. The first effect is a result of aggregating the
data before running OLS. Since the cross section for OLS contains only %th of
the total number of observations, we would expect the disaggregated data to im-
prove the relative asymptotic efficiency by a factor of about 5.12 The second
effect, which explains the increase in efficiency from 0.20 to 0.037, is that the
method-of-moments variance exploits the cross-sectional dependence within in-
dustries. This second source of efficiency gain is positively related to the degree
of cross-sectional correlation, with no gains occurring in the complete absence of
cross-sectional correlation. It also becomes increasingly important relative to the
aggregation effect as P becomes larger. The degree of reduction in the relative
variance of the method-of-moments estimator attributable solely to contempo-
raneous correlation increases from a factor of approximately 5 (0.20/0.0364),
when P = 5, to a factor of approximately 25 (0.05/0.00193), when P = 20.
Finally, while GLS is most efficient in all cases, its additional efficiency is not
much greater when the industry groups are larger. Unfortunately, the gains in
efficiency from GLS are not generally feasible with so few time-series observa-
tions.

(23)

(24)

10 Under our extreme assumption that the regressors are independent across p, the usual OLS
variance of the parameters using the disaggregated data, 2’ (x'x) ~!, will be asymptotically con-
sistent. We use the OLS variance on the intraindustry aggregation of the data for comparison, how-
ever, since, in practice, this assumption is not likely to hold.

I To simplify the notation, we assume that the means of both x and y are zero, so that the
variance matrix of the parameters can be treated as a scaler.

12 This improvement in efficiency is a function of the cross-sectional correlation of the regre-
sors. If there is positive correlation across the regressors, the improvement factor will be less than 5,
and if there is negative correlation, the factor will be greater than 5.
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TABLE 1

Simulation Results: Variance of Method-of-Moments Estimator as a Fraction of Asymptotic OLS Variance
under Cross-Sectional Homoskedasticity

Time Series Observations: Time Series Observations:
T=1 T=10

Variance Measure

Number of
Obser-  Number
vations of Asymp- Esti- Asymp- Esti-

per Group Groups totic Simple mated GLS totic Simple mated GLS
N =12 1.0000 097359 0.79635 1.0000 1.0000 1.00438 0.87800 1.0000

(0.04328) (0.02029) (0.04886) (0.01190)
P=1
N=25 10000 0.99973 092386 1.0000 1.0000 1.00926 0.96258 1.0000
(0.04424) (0.01457) (0.04325) (0.00968)
N =12 003654 0.03689 0.03604 0.02743 0.05313 0.05391 0.05213 0.0333
(0.00169) (0.00060) (0.00228) (0.00051)
P=5
N=25 005912 0.05786 0.05504 0.03634 0.06573 0.06265 0.06284 0.0395
(0.00243) (0.00087) (0.00269) (0.00060)
N=12 000193 0.00193 0.00196 0.00129 0.00431 0.00421 0.00420 0.0023
(0.00009) (0.00003) (0.00019) (0.00003)
P =20

N =25 0.00242 0.00243 0.00244 0.00153 0.00377 0.00366 0.00374 0.0021
(0.00012) (0.00003) (0.00015) (0.00002)

Notes: The column labeled “"Asymptotic” reports the asymptotic method-of-moments variance divided
by the OLS asymptotic variance (see Equation (23)). The asymptotic OLS variance is constructed by
aggregating the data over the cross section into N groups. The column labeled "Simple™ gives the mean-
squared deviation of the estimated method-of-moments estimate scaled by the asymptotic OLS variance
(see Equation (25)). The column labeled "Estimated" reports the average estimated method-of-moments
variance divided by the asymptotic OLS variance (see Equation (26)). Cross-sectional correlation is
homogeneous across groups, and cross-sectional and time-series homoskedastlcny is assumed.
Standard errors are in parenthesis. All data are constructed using 1000 replications for given regressors.
The intra-group correlation coefficient = 0.5.

The second column for each set of simulation results in Table 1, marked
‘‘simple,”” gives the mean squared deviation of the estimated method-of-mo-
ments parameter (obtained by running OLS on the disaggregated cross section)
from the true value, scaled by the asymptotic OLS variance,

(B-1)
i (Tyr® A ) ipyr (i (X' %), ) 1

On average, the method-of-moments estimator appears to achieve asymptotic ef-
ficiency in our small samples, regardless of the relative sizes of P, N, and 7. All
of the estimates of the simple variance measure are easily within two standard
deviations of the asymptotic variances.

Finally, the third column in Table 1 reports ‘‘estimated’’ variance mea-
sures, which are calculated as the mean estimated method-of-moments variance
relative to the asymptotic OLS variance,

x'x)"! ( ( ®A)>}l{(x’x)_1

e (Lir ®A) by (i K B1)

(25)

(26)
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where A is the estimate of the P X P contemporaneous correlation matrix A.13

In the simulations with the smallest samples, the estimated variance
measure is significantly downward biased. Such finite sample bias occurs
because the average covariance matrix, 3N x;x/ .2 is a biased estimator of
SNEWAHI N x;x!, even when the residuals are homoskedastic. It may be cor-
rected using Rao’s MINQUE procedure. This bias in estimated method-of-mo-
ments covariance matrices when the residuals are heteroskedastic is well known.
The fact that the bias persists even under homoskedasticity reveals a hidden dan-
ger in the practice of reporting heteroskedasticity-consistent covariance estima-
tors without prior evidence that conditional heteroskedasticity is present in the
data. Thus, the White (1980a) correction for heteroskedasticity should be applied
only in those cases in which the null hypothesis of no conditional heteroskedas-
ticity is rejected. When the null hypothesis cannot be rejected, only the usual
OLS standard errors are both asymptotically valid and free of finite-sample bias.

The results in Table 1 suggest, however, that for any given number of inde-
pendent observations, the bias of the method-of-moments estimated variance is
actually smaller when P is larger. Indeed, the bias is more severe for the case in
which T = 10, N = 25, and P = 1 (with a total of 250 independent observa-
tions), than in the case in which7 = 1, N = 12, and P = 5 (with a total of only
12 independent observations)! The bias contracts when P is larger because of the
averaging over P of each of the NT independent observations used to construct
the estimated average covariance matrix. When P is raised to 20, the small-sam-
ple bias can no longer be detected in the simulations, even with a very low num-
ber of independent observations (T = 1, N = 12). These results suggest that
there is no reason to limit the number of firms per industry through aggregation
or preselection. The estimated method-of-moments variance seems to become
more reliable when it is most needed: in data sets with very large cross sections,
but not many industry groups or time-series observations.

Of course, the results reported in Table 1 are for the ideal case in which the
data contain no conditional heteroskedasticity across industry groups or over
time. While these assumptions may be a reasonable first approximation, in many
data sets they are likely to be rejected. We therefore relax these assumptions in
Table 2, where the simulated data contain cross-sectional heteroskedasticity.
Only this type of heteroskedasticity is analyzed here because its presence is ex-
actly analogous to heteroskedasticity in the time domain, under our assumptions
of independence across industries and over time. We add heteroskedasticity by
assuming that the residual variances are linearly related to the sum of squared
regressors in each industry group,

P
@7 oy = E(ny,) = 8+ 8, > x,, Vji= 1P, Vi=1,.T.
i=1

‘jnt

13 In computing (26), we do not impose the restriction that the A matrix is equal across indus-
tries.



346 Journal of Financial and Quantitative Analysis

In the simulations of Table 2, 3, is set equal to 1, and 8, = 0.2. Thus the
asymptotic covariance matrix of the residuals becomes

A, 0 ... 0
_ 0 A, 0

27" LOA = e | :
0 0 A,

where A is NP X NP, and A,, is the P X P contemporaneous correlation matrix for
the nth group. Since the asymptotic OLS variance employed in Table 1 is not
appropriate under these conditions, we use instead the White (1980a) asymptotic
correction for heteroskedasticity on the aggregated data as a scaling measure for
the method-of-moments variances.

TABLE 2

Simulation Results: Variance of Method-of-Moments Estimator as a Fraction of Asymptotic OLS Variance under
Cross-Sectional Heteroskedasticity

Number of Time-Series Observations: Number of Time-Series Observations:
T=1 T=10
Variance Measure
Number of
Obser- Number
vations of Asymp- Esti- Asymp- Esti-

per Group Groups totic Simple mated GLS totic Simple mated GLS
N=12 10000 1.01094 0.67817  0.90301  1.0000 1.06510 0.63808  0.0934

(0.04737)  (0.01949) (0.04748)  (0.01927)
P=1
N=25 10000 103679 086988 069589 1.0000 101401 086700  0.1555
(0.04838)  (0.01867) (0.04699)  (0.01702)
N=12 003928 004295 003662 001672 005615 005731 004950  0.0095
(0.00189)  (0.00086) (0.00266)  (0.00103)
P=5
N=25 005714 006077 003565 000276 006745 006650 005432  0.0051
(000273)  (0.00143) (0.00292)  (0.00118)
N=12 000181 000176 000159 000042 000438 000459 000421  0.0016
(0.00007)  (0.00004) (0.00020)  (0.00005)
P=2

N=25 000314 000333 0.00301  0.00073  0.00388  0.00369 0.00380  0.0009
(0.00015)  (0.00005) (0.00017)  (0.00004)

Notes: The column labeled “Asymptotic” reports the asymptotic method-of-moments variance divided by the OLS asymptotic
variance. The asymptotic OLS variance is constructed by aggregating the data over the cross section into A’ groups. The column
labeled "Simple” gives the mean-squared deviation of the estimated method-of-moments estimate scaled by the asymptotic OLS
variance The column labeled “Estimated” reports the average estimated method-of-moments variance divided by the asymptotic
OLS variance (see Equation (26)). Cross-sectional correlation is homogeneous across groups, and time-series homoskedasticity is
assumed. Cross-sectional heteroskedasticity is given by Equation (27). Standard errors are in parentheses. All data are constructed
using 1000 replications for given regressors. The intra-group correlation coefficient = 0.5.

Turning to the results in Table 2, note first that the asymptotic variances
yield similar improvements in efficiency over the White technique when they are
compared with the relative asymptotic variances reported in Table 1. Second, in
contrast with the homoskedastic case, GLS provides larger improvements in effi-
ciency in Table 2. Third, the simple variance measure in the second column is
consistently within two standard deviations of the asymptotic variances in all of
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the simulations. Even in small samples, the method-of-moments estimator ex-
ploits much of the information about the residuals. Fourth, the actual estimated
variance still contains a distinct downward bias. The heteroskedasticity makes
this bias somewhat more severe than that reported in Table 1. In the simulations
with larger data sets, a statistically significant bias of between 3 and 10 percent
remains.'4 The bias is inversely related to the size of P. Once again, the
MINQUE technique of Rao could be applied to eliminate the bias in the esti-
mated variance measure.

Table 3 is intended to help gauge the sensitivity of the results given in
Tables 1 and 2 to alternative assumptions regarding both the severity of the con-
temporaneous correlation within industries and the degree of heteroskedasticity.
Three different levels of contemporaneous correlation are considered, with corre-
lation coefficient, p, set to 0.1, 0.5, and 0.9. The degree of conditional het-
eroskedasticity is adjusted by allowing &, in (27) to take on the values 0.0, 0.2,
1.0, and 4.0 indicated by heteroskedasticity levels 1 through 4, respectively, in
Table 3. For purposes of comparison, a single sample size (I' = 1, N = 25, and
P = 5)is chosen.

Table 3 shows that the asymptotic gains in efficiency from the method-of-
moments approach do not increase substantially as the heteroskedasticity be-
comes more extreme, but that they do increase with the level of contemporane-
ous correlation. In contrast, the relative GLS asymptotic variance noticeably im-
proves when either contemporaneous correlation or the level of conditional
heteroskedasticity increases. The amount of bias in the estimated method-of-mo-
ment variance also displays a clear positive response to higher levels of het-
eroskedasticity and cross-sectional correlation. When the level of heteroskedas-
ticity is 4 and p = 0.9, the average estimated variance is only slightly more than
50 percent of its asymptotic value. Once again, this bias is less pronounced when
either the number of industries or the number of firms per industry is increased.

We turn next to simulations of the 2STSLS estimator. Here there is a pre-
liminary step in which instruments for {2 ~!x are constructed. Since in many fi-
nancial studies, additional observations of the dependent variable are usually
available, for each simulation we construct a fake set of ‘‘historical’’ observa-
tions on y,,, according to (19). As in the earlier simulations, the contemporane-
ous correlation in the historical disturbances is induced by using (20), and cross-
sectional heteroskedasticity is induced by using (27). We then form the historical
covariance matrix of the dependent variable for each of the industry groups,

H
(28) S = LSy Wn= 1N,
i
where TH is the number of previous time-series observations on the dependent

variable, and y, is a P X 1 vector. To be conservative, we assumed relatively few

14 This bias can be seen by comparing the numbers in the column marked *‘simple’’ with those
in the “‘estimated’’ column.
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TABLE 3

Simulation Results: Sensitivity of Method-of-Moments Estimator to Alternative Levels of Intra-Group Correlation and
Cross-Sectional Heteroskedasticity

Intra-Group Correlation = 0.1 Intra-Group Correlation = 0.5 Intra-Group Correlation = 0.9
Level of Cross-
Sectional
Hetero- Asymp- Esti- Asymp- Esti- Asymp- Esti-
skedasticity ~ totic  Simple mated GLS fotic Simple mated GLS  totic Simple mated GLS
1 0.1308 0.1231 0.1224 0.1270 0.0591 0.0546 0.0546 0.0363 0.0373 0.0343 0.0338 0.0048
(0.0059) (0.0018) (0.0025) (0.0008) (0.0016) (0.0055)
2 0.1231 0.1197 0.0749 0.0088 0.0571 0.0557 0.0339 0.0028 0.0371 0.0363 0.0211 0.0004
(0.0051) (0.0028) (0.0024) (0.0013) (0.0016) (0.0008)
3 0.1223 0.1222 00774 0.0034 0.0569 0.0548 0.0342 0.011 0.0370 0.0349 0.0208 0.0002
(0.0053) (0.0029) (0.0024) (0.0013) (0.0016) (0.0008)
4 0.1221 0.1248 0.0756 0.0024 0.0569 0.0566 0.0326 0.0008 0.0370 0.0358 0.0197 0.0001
(0.0052) (0.0028) (0.0024) (0.0013) (0.0015) (0.0008)

Notes: The levels of heteroskedasticity 1-4, are given by setting 8, in Equation (27) to 0.0, 0.2, 1.0, and 4.0, respectively. The
column labeled “Asymptotic” reports the asymptotic method-of-moments variance divided by the OLS asymptotic variance. The
asymptotic OLS variance is constructed by aggregating the data over the cross section into N groups. The column labeled “'Simple”
gives the mean-squared deviation of the estimated method-of-moments estimate scaled by the asymptotic OLS variance. The column
labeled “Estimated” reports the average estimated method-of-moments variance divided by the asymptotic OLS variance. All assume
N =25 P =5and T = 1. All data use 1000 replications for given regressors. Standard errors are in parentheses. All data are
constructed using 1000 replications for given regressors.

past observations are available, setting 7H = 2p + 1. The entire historical covari-
ance matrix is then

s 0 0
_H 0 i’: 0
(29) 0 =1®
H
0 0 sy

The PNT X 2 estimated matrix of instruments becomes
- ~H\"!
(30) q = [x(ﬂ ) x] .

Table 4 reports measures of the relative performance of the 2STSLS estima-
tor. We use the same levels of cross-sectional correlation (p = 0.5) and condi-
tional heteroskedasticity (8, = 0.2) as in Table 2. All variance measures are
reported relative to the asymptotic variance of the method-of-moments estimator.
Thus, the column marked asymptotic gives the ratio

(3’ (,9K)d) q'x

(3D < .
(x'x)” 'x’ (IT®A)x(x’x)_ !

Note that the asymptotic variance uses the estimated instruments (i.e., the esti-
mated historical covariance matrix of the dependent variables), denoted by q.
The results in Table 4 suggest that gains in efficiency may be obtained by using
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2STSLS even with relatively few industry groups and time-series observations.
For example, with T = 1, N = 12, and P = 5, the asymptotic 2STSLS estima-
tor is about 10 ((0.1022)~!) times more efficient than the method-of-moments
estimator. Indeed, these gains seem to be a substantial portion of the asymptotic
efficiency gains from using GLS, which are reported in the fourth column.

TABLE 4
Simulation Results: Variance of 2STSLS Estimator as a Fraction of Asymptotic Method-of-Moments Variance

Time Series Observations: Time Series Observations:

Variance Measure

Number of
Obser- Number
vations of Asymp- Esti- Asymp- Esti-

per Group Groups totic Simple mated GLS totic Simple mated GLS
N=12 09602 1.0768 0.5500 0.9030 0.1173 0.2005 0.1361 0.0935

(0.0478)  (0.0153) (0.0091)  (0.0018)
P=1
N=25 09682 10753 07525 06959 03357 04538 03152 01555
(00482  (0.0164) (0.0198)  (0.0031)
N=12 08166 08746 06242 04255 03081 03326 02911  0.695
(0.0404)  (00145) (0.0148)  (0.003)
P=5

N=25 01022 0.1805 0.1360 0.0484 0.1666 0.1561 0.1673 0.0769
(0.0080) (0.0032) (0.0074) (0.0014)

Notes: The column labeled "'Asymptotic” reports the asymptotic 25TSLS variance divided by the OLS asymptotic variance. The
asymptotic OLS variance is constructed by aggregating the data over the cross section into N groups. The column labeled “Simple”
gives the mean-squared deviation of the estimated 2STSLS estimate scaled by the asymptotic OLS variance. The column labeled
“Estimated” reports the average estimated 2STSLS variance divided by the asymptotic OLS variance. The 2STSLS estimator is
contructed using the historical covariance matrix of the dependent variable, as in Equation (29). Cross-sectional correlation is
homogeneous across groups, and time-series homoskedasticity is assumed. Cross-sectional heteroskedasticity is given by Equation
(27), with 8, = 1and &, = 0.2. Standard errors are in parentheses. All data are constructed using 1000 replications for given
regressors. The intra-group correlation coefficient = 0.5.

The ‘‘simple’’ variance measure is the mean squared deviation of the esti-
mated 2STSLS coefficient from its true value, (ﬁ** —1)2 divided by the
asymptotic method-of-moments variance. A two-step procedure is required to
calculate ﬁ** Consistent estimates of the residuals in (19) are obtajned by run-
ning OLS. A consistent estimate of the average covariance matrix, A, is formed
and then used as a weighting matrix to compute B**_ In about half of the simula-
tions in Table 4, simple variances are significantly greater than the asymptotic
variances.

The “‘estimated’’ variances in the third columns are given by

Ay -1
x’q(q’(IT®A>q) q'x

(32) .
&'x)"'x’ (IT®Z)x(x’x)_ !

In the smaller data sets, the reported values are significantly less than both the
simple and the asymptotic variance measures. It is worth pointing out that when
there is no contemporaneous correlation in the cross section (i.e., when P = 1),
we have the univariate case of the 2STSLS estimator investigated by Cragg
(1983). Cragg also reports that the estimated variances of the 2STSLS estimator



350 Journal of Financial and Quantitative Analysis

were significantly less than their asymptotic values. However, Table 4 shows
that when P is greater than 1, this downward bias is again reduced. The results
suggest that systematic downward bias is not a serious problem when the cross
section is expanded to allow for 5 or 10 firms per industry.

To see whether any of the conclusions one might draw from Table 4 are
sensitive to alternative parameter values, we report simulations for a single data
set in Table 5 (with T = 1, N = 25, and P = 5), using the same levels of
contemporaneous correlation and conditional heteroskedasticity as in Table 3.
The gains in efficiency provided by 2STSLS grow with both the degree of cross-
sectional correlation and heteroskedasticity. The estimated variances are often
significantly less than the simple variance measures for lower cross-sectional cor-
relation, but greater than the simple variance measures when p = 0.9. Also,
when more heteroskedasticity is present in the data, the estimated variances in-
crease relative to the asymptotic and simple variances. Table 5, therefore, sug-
gests not only that 2STSLS can provide efficiency gains over method-of-mo-
ments in small samples where both heteroskedasticity and cross-sectional
dependence are present, but also that the estimates of the parameter covariance
matrix will, on average, be reliable estimates of the asymptotic covariance ma-
trix.

TABLE 5

Simulation Results: Sensitivity of 2STSLS Estimator to Alternative Levels of Intra-Group Correlation and Cross-
Sectional Heteroskedasticity

Intra-Group Correlation = 0.1 Intra-Group Correlation = 0.5 Intra-Group Correlation = 0.9
Level of Cross-
Sectional . )
Hetero- Asymp- Esti- Asymp- Esti- Asymp- Esti-
skedasticity ~ totic  Simple mated GLS totic  Simple mated GLS totic  Simple mated GLS
1 1.0000 1.1000 0.7908 09710 09532 0.9546 0.7795 0.6146 04226 05812 0.4321 0.1312
(0.0507) (0.0127) (0.0412) (0.0124) (0.0278) (0.0064)
2 0.3734 03646 02762 0.0718 0.1299 0.2240 0.1506 0.0484 0.0292 0.0764 0.0984 0.0104
(0.0162) (0.0078) (0.0098) (0.0036) (0.0048) (0.0034)
3 0.1198 0.1743 0.1529 0.0279 0.0618 0.1116 0.1194 0.0194 0.0096 0.0600 0.0798 0.0042
(0.0082) (0.0049) (0.0055) (0.0037) (0.0036) (0.0034)
4 0.0488 0.1242 0.1082 0.0199 0.0242 0.0820 0.0873 0.0140 0.0076 0.0405 0.0718 0.0030
(0.0057) (0.0032) (0.0045) (0.0030) (0.0024) (0.0029)

Notes: The levels of heteroskedasticity 1-4 are given by setting 8, in Equation (27) to 0.0, 0.2, 1.0, and 4.0, respectively. The
column labeled “Asymptotic™ reports the asymptotic 2STSLS variance divided by the OLS asymptotic variance. The asymptotic OLS
variance is constructed by aggregating the data over the cross section into N groups. The column labeled “Simple” gives the mean-
squared deviation of the estimated 2STSLS estimate scaled by the asymptotic OLS variance. The column labeled “Estimated” reports
the average estimated 2STSLS variance divided by the asymptotic OLS variance. All assume N = 25, P = 5,and T = 1. All data
use 1000 replications for given regressors. Standard errors are in parentheses. All data are constructed using 1000 replications for
given regressors

VI. Conclusions

We have presented two method-of-moments estimators useful for conduct-
ing inference in finance and accounting studies with relatively large cross sec-
tions and few time-series observations. The important insight is that we can ex-
ploit cross-sectional dependence in the regression residuals without depending on
a great deal of time-series data relative to the size of the cross section. Instead,
we derive asymptotic results by letting the number of industries times the number
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of time-series observations, NT, become large while holding fixed the number of
firms within an industry, P. Under the assumption that the correlations across
industry groups are zero, completely unrestricted cross-sectional dependence and
conditional heteroskedasticity is permitted within each industry.

One obvious difficulty is that, in practice, our results may rely on the exis-
tence of a large enough number of industries or groups that do not exhibit con-
temporaneous correlation. There is some empirical evidence in stock market data
that market model residuals across industry groups are in fact uncorrelated. Nev-
ertheless, analysis on a case-by-case basis is needed, because more pervasive
contemporaneous correlation in the residuals can vitiate the validity of the above
approach. Clearly, the need to find uncorrelated industry groups is reduced in
cases in which sufficient time-series data are available.

Several conclusions emerge from the simulations presented in Section V.
First, aggregating the data in an attempt to avoid the issue of cross-sectional cor-
relation can be costly in terms of a loss in asymptotic efficiency. By contrast, the
cost of employing one of the above techniques is low, both in terms of additional
computational requirements and in terms of the reliability of the approximation
to the asymptotic standard errors. Second, additional efficiency gains can be
achieved in small samples using the 2STSLS estimator. Third, in the smaller
samples (N = 12 or 25, P = 1, and T = 1) the univariate estimated variances of
White (1980a) and Cragg (1983) are consistently biased downward. The multi-
variate extensions considered above actually mitigate the bias by taking averages
of disaggregated cross sections. Finally, there is a caveat. When correlation pat-
terns across the N groups are highly dissimilar, we would expect all of these
gains to materialize, but more slowly, as P is increased.

A topic left for future study is the determination of the relative performance
of the foregoing estimators versus GLS when the data are aggregated just enough
to make GLS feasible. The potential for greater disaggregation of the data and
the attraction of a linear estimator in small samples, may offset the greater
asymptotic efficiency of GLS over a comparable cross section, making the
method-of-moments technique above more desirable. Also, larger cross sections
may be used because the estimators above do not require inversion of the error
covariance matrix. All the offsetting advantages and disadvantages must be ad-
dressed on a case-by-case basis in simulation and bootstrap studies. From such
work, we might hope that rules of thumb will emerge to guide the choice of
alternative estimation strategies.

Appendix
Proposition 1. Under Assumptions 1 and 2

NTOL, My (Byr—8) S N(0.1)

Proof. By the Holder inequality, Assumption 2(ii) implies that for every i, j =
1,..., K, E(xixjm mp)) +3 < A (where a = (t—1)PN+(n—1)P+iand b =
(t— 1)PN + (n— 1)P +), and thus, for sufficiently large NT, @, will be positive
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definite. Given the boundedness conditions in Assumptions 1 and 2, White’s
(1980a) Lemma 2 may be applied directly, yielding our result.
Proposition 2. Assumptions 1 and 2 also imply

, —1 , -1
X X - [x_X
( NT NT) @NT( NT NT) as.-lg y-1

NT NT NT ' NT"°NT

Proof. This proof is similar to that of White ((1980b), Theorem 1). We first show
that Oy 45 Opr.

For each element Bi of the vector B, there exists B within a finite compact
neighborhood of Bi given by ¥, and there exists a finite element B, such that
B—-B)2< (ﬁi— Bi)2 for all Bi € ¥. Note that forallj, k = 1,..., K, and for all
a,b=1,...,PNT,

(ra=%8) (5 =5 B)xi% = (ko= *,(B=B)) (1, — 5, (B-B))xix,
is finite for all € ¥. By the Holder inequality,

| (k= x,(B=B))(1y—x,(B—B))xlx,]

(w24 () + (4)) (B8 )i
(w2 ug ()" + (1)) (B*- B )i

where the second inequality is given by the above assumption about B. From the
fundamental inequality, |c¢ +d|" < 27~ 1|c| + 27~ 1|d]", we have that

B(my) " < koE(([wl) ) + kE((|epsd]) )
K+1 2 2 ik 1+8, ; N20+2
+ ;kﬁ(’(xa) +(xb) xaxbl) (B —B)

o (7 A X (=)
20+2

() (E-8)

where the second inequality is given by the Holder inequality. By the fundamen-
tal inequality above, kj, k;, and k; are constants, and (Bi—Bi)? is finite by as-
sumption. In addition, Assumptions 1 and 2 in the text guarantee that
E((In2xixD1+®), E((ngxixf!*8), and E((xi)2+(xf)?)2+28 are bounded.
Therefore, E(m,)!*® must be bounded. Since m, weakly dominates

K
<2
i=1
K

<>

i=1

= mab’
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|v,—x.B)(y, —x;B)xix}|, and is independent over ¢ and n, we can apply the
strong law of large numbers, so that

Given that [§ ~ %3 B, the above equation and Lemma 2.6 of White (1980b)
imply

or @NT'_ @NT a;{' 0.
By the boundedness of the regressors given in Assumption 1, and their inde-
pendence over NT, we then have that

XyrXnr N
(T - MNTE) 0.

The continuity of the matrix inverse therefore implies

' -1
XNTENT —las.
NT -~ MNT Y

By continuity and the boundedness of each term, we have that
1

’ _1 ’ -
X! X x . X
NT'NT\ & NTNT soag—1 -1
(—NT ) ®~r< N ) M, OM!

This proves Proposition 2.
Proposition 3. The OLS estimate of the coefficient covariance matrix in (9),
V(B**), converges almost surely to the true coefficient covariance matrix

X\ 'q ~ —1[qX
'NT INT INTNT \ a.s. pr -1
( NT )(97\"T) ( NT ) a_s’ RNTG*NT RNT :

Part 1 of Proposition 2 implies that @NT as- @yr. By Assumption 3, the
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second moments of q and its cross products with the w’s are bounded in the sense
of Assumption 2. Part 1 of Proposition 2 therefore also implies that

@* a.s.

Since @ is of full rank, the matrix (@) ~* is defined such that (@) ~%)2 =
(@) ~1. Thus,

(@;}T)— 172 a_.s). (@I"\‘]T>_ 12 ‘

The boundedness of the instruments and their independence over N and T imply
that

qNT NT N
Thus, by continuity and the uniform boundedness of each term, we have that
Xyrlyr = 1{QurXyr R-l@+-1g-!
( NT )(G;\k'T> ( NT )a_x’ @ NT NT ’

which proves Proposition 3.
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