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Simple techniques of regulated Brownian motion are used to analyze the behavior of the 
exchange rate when official policy reaction functions are subject to future stochastic changes. We 
examine exchange-rate dynamics in cases where the authorities promise {i) to confine a floating 
rate within a predetermined range, (ii) to peg the currency once it reaches a predetermined 
future level, and (iii) to unify a system of dual exchange rates. Similarities among these and 
several related examples of regime switching are stressed. We also discuss how stochastic regime 
changes can affect some standard statistical tests of hypotheses about exchange rates. 

1. Introduction 

The typical forward- looking variable in an economist ' s  model is driven by 
a forcing process the form of which is fixed for all time. Yet, in the real world 
there are m a n y  examples in which the forcing process is subject to change 
once a certain event occurs. When  variables such as interest rates, current  
accounts,  inflation, or exchange rates reach certain values, authori t ies  may 
not only change their p o l i c i e s -  they also may change their policy reaction 

funct ions.  
A number of models examine the behavior of forward-looking variables 

when an otherwise passive policy-maker intervenes to keep the variables 
from moving out of a 0redetermined range. In this spirit, Bentolila and 

*The authors are grateful to Stanley Black, Bernard Dumas, Robert Flood, Robert Hodrick, 
and anonymous referees for helpful comments, and to the John M. Olin, Henry Ford, and 
National Science Foundations for generous financial support. 
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Bertola (1990) study hiring and firing costs in the labor market; Krugman 
(1991), followed by Miller and Weller (1988), studies exchange-rate target 
zones; and Dixit (1989a), Dumas (1989a), Krugman (1988), and McDonald 
and Siegel (1986) study the allocation of capital. In all of these models an 
authority takes actions that keep a relevant forward-looking variable within 
a desired range or band. These models also share a simple and intuitive 
analytical approach, namely, the technique of regulated Brownian motion. 

A related literature studies the effects on forward-looking variables of 
once-and-for-all changes in regime. Flood and Garber (1983) analyze a case 
inspired by Britain's 1925 return to the gold standard, in which the exchange 
rate floats freely until it reaches a preannounced value, and is then 
permanently pegged by the authorities. Because rational investors anticipate 
the transition to the peg, the dynamics of the exchange rate can differ from 
those under a permanent float. Another example of a permanent regime 
change, one of perennial importance in countries with exchange controls, is 
the unification of a system of dual exchange rates. 

In this paper we apply techniques of regulated Brownian motion to clarify 
the relationship between the newer target-zone results such as Krugman's 
(1991), the process-switching model of Flood and Garber (1983), and models 
of exchange-rate unification. We derive intuitive closed-form solutions for 
these (and related) problems. An advantage of having such solutions in hand 
is that they allow a precise description and calibration of statistical 
estimation problems caused by possible future regime shifts. We give an 
example of this type of empirical application below. 

The paper is organized as follows. In section 2 we lay out a general 
framework for analyzing exchange-rate models with regime shifts. Section 3 
contains the solutions to several specific examples of importance in the 
literature. Section 4 discusses some implications of stochastic regime shifts for 
econometric work on asset pricing. Section 5 concludes, t 

2. The model 

The analysis works with a two-country monetary model of the exchange 
rate, in which the (log) spot exchange rate at time t ,x( t ) ,  is defined as the 
price of foreign currency in terms of domestic currency. In equilibrium x(t) is 
the sum of a scalar index of macroeconomic fundamentals, k(t), plus a 
speculative term proportional to the expected percentage change in the 
exchange rate: 

x(t)  = k(t) + ~ E(dx(t)[ dp(t))/dt, (1) 

~Many closely related papers appeared after the research reported herein was completed. 
Rather than attempting to cite them all, we direct readers to the references contained in 
Krugman and Miller (1991). 
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where the parameter ~ can be interpreted as the semi-elasticity of money 
demand with respect to the nominal interest rate; E(.I. ) is the conditional 
expectations operator; and tp(t) is the time-t information set, which includes 
the current value of fundamentals, k(t), as well as any explicit or implicit 
restrictions the authorities have placed on the future evolution of fundamen- 
tals. For example, the authorities may have announced that they will keep 
the exchange rate from moving outside certain limits, or that they will fix the 
exchange rate once it reaches a certain level. Such information about future 
policies would be incorporated into ~b(t). Included among the fundamental 
factors that raise k(t) is a variable measuring the domestic money supply 
relative to the foreign money supply; that variable is assumed to be 
controlled directly by the national monetary authorities. Included as well are 
other, exogenous determinants of exchange rates that the authorities cannot 
influence? 

Exchange-market intervention by monetary authorities may change the 
stochastic process governing (relative) money-supply growth) This in turn 
will alter the process driving the fundamentals, k(t). We assume that under a 
free float the authorities refrain from intervening to offset shocks to 
fundamentals. The evolution of fundamentals under a free float is described 
by the process: 

dk(t)=qdt +adz(t) ,  (2) 

where r/ is the (constant) predictable change in k, dz is a standard Wiener 
process, and tr 2 is the (constant) variance per unit of time in the growth of k. 
All of our results, however, can be derived using more ,:omplex forcing 
processes. 4 Because the authorities can control k through intervention, k 
need not follow (2) under regimes other than a free float. 

If speculative bubbles are ruled out, the rational-e:=pectations assumption 
leads to a unique equilibrium exchange-rate path that satisfies (1). This path 
has the integral representation: 

2On the monetary model of exchange rates see, for example, Frenkel and Johnson (1978) or 
Flood and Garber (1983). We follow Flood and Garber (1983) in adopting a continuous-time 
stochastic model, which allows a neater characterization of solutions than comparable discrete- 
time formulations. No essentials of the results, however, depend on the continuous-time 
assumption. By restricting k(t) to be a function of money supplies and exogenous variables, we 
exclude sticky-price models such as the one analyzed numerically by Miller and Weller (198~). 
There, price levels, which are functions of past exchange rates, are among the fundamentals, and 
price stickiness induces mean reversion in fundamentals. 

3It is clear from the model that it does not matter whether it is the home or foreign 
government that manages the exchange rate (or a committee representing both governments). 

'*From and Obstfeld (1991) show how the exogenous mean-reverting process, 

dk(t) = (q - Ok(t)) dt + adz, 

can be handled in examples like those discussed below. 
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oo 

x(t)=ot -1 j" e"-~)/=E(k(s)l~(t))ds, (3) 
t 

a representation valid under any policy regime or sequence of policy regimes. 
In words, (3) equates the current exchange rate to the present discounted 
value of expected future fundamentals (the discount rate is 1/~). Below, the 
equilibrium exchange rate defined by the present-value formula (3) is called 
the saddlepath exchange rate. 

We assume that the saddlepath solution for the exchange rate can be 
written as a twice continuously differentiable function of a single variable, the 
current fundamental: 

x(t)=S(k(t)). (4) 

The assumption that the saddlepath exchange rate is expressible as a 
function of k alone is reasonable given (2) and the types of regime shift we 
will consider. Continuity of the function S(k) is also plausible, since it is 
necessary to rule out excess profit opportunities. The assumed additional 
smoothness of S(k) does not reduce significantly the generality of the 
analysis, and allows crucial simplification of the developments that follow. 

The precise form of the function S(k) depends, of course, on which regime 
shifts (if any) the market believes to be possible. A familiar special case is the 
one in which the authorities are committed to a permanent exchange-rate 
float, so that fundamentals are expected to follow process (2) forever. In this 
case, the conditional expectations in (3) are easy to evaluate, since they 
depend exclusively on current fundamentals, and not on possible future 
regime shifts. The saddlepath exchange rate, S(k(t)), for a free float is 

oo 

x(Z) =°t-I  S e"-')/=E(k(s)]k(t)) ds 
t 

'30 

= ~ - l j" eU - ~)/~( k( t ) + (s - t )~)  ds = k( t ) + oct/. (5) 
! 

If, however, there is a chance that the authorities will depart irom a free 
float in the future, fundamentals may not always follow (2), and the 
equilibrium exchange rate may not follow (5), even while (2) remains in effect. 
In such cases direct computation of the sequence of conditional expectations 
in the present-value formula (3) that defines S(k) is likely to be burdensome. 
We therefore follow an alternative, two-step approach to determine S(k) 
when a regime switch from (2) to some other process is possible. First, we 
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characterize the family of functions of the form x=G(k)  that satisfy the 
differential equation (1) so long as fundamentals evolve according to (2). 
Second, we find the member of this family that satisfies boundary conditions 
appropriate to the stochastic regime switch under consideration. As we argue 
in detail below, this last function is the saddlepath solution, S(k). 

Step one of the procedure outlined a b o v e -  finding the general solution 
x=G(k)  - uses ltb's lemma and eq. (1) to express expected depreciation while 
(2) holds as s 

E(dx I dp)/dt = E(dG(k) I dp)/dt = riG'(k) + ~ G"(k), (6) 

where we have assumed G(k) is twice continuously differentiable. Combining 
(1) and (6) yields a second-order differential equation that the exchange rate 
in (1) and (3) must satisfy: 

OtO -2 
G(k) = k + otrIG'(k) + - f  G"(k). (7) 

The general solution to (7) is 

G(k)=k + ~trl + A l e ~ k  + A2 e'~2k, (8) 

where 21 > 0  and 22 < 0  are the roots to the quadratic equation in 2, 

22~o'2/2 + 2 ~ - -  1 =0,  

and At and A 2 are constants of integration. Eq. (8) forms the basis of our 
analysis below: as just discussed, a single member of the family defined by (8) 

SWhere it does not create confusion, we drop the time-dependence notation. It is worth noting 
that while we refer to G(k) as a 'general' solution, it is general anly if attention is restricted to 
solutions that depend on current fundamentals alone. In tact, (1) has even more general 
solutions, for example solutions that are functions not only of current fundamentals, but also of 
variables extraneous to the model. Such solutions are not considered here, but their exclusion is 
not restrictive given the economic problems we are considering. 



208 K.A. Froot and M. Obstfeld, Exchange-rate dynamics 

will turn out to be equivalent to the present-value formula for x in (3). This 
is just the function S(k). 6 

There are two parts to the general solution (8), one linear, the other 
nonlinear, in k. The linear part, k+~r/, would be the standard linear 
saddlepath solution if no change in the fundamentals process (2) was 
possible, so that a free float was permanently in effect [see eq. (5)]. 

Although the nonlinear terms in (8) would represent deviations from the 
saddlepath under a permanent free float, we do not want to throw them 
away in solving for the saddlepath exchange rate under a free float that 
could ierminate. 7 When there is some possibility of regime change, funda- 
mentals may not remain permanently a random walk with trend, and the 
preseni-,alue formula (3) therefore need not equal the simple linear expres- 
sion (5). Under a possible regime change, the saddlepath value of the 
exchange rate prior to the switch will generally depend on the nonlinear 
terms in (8). Just which initial conditions At and A2 are appropriate depends 
on the boundary conditions associated with the regime switch, conditions to 
be determined in step two of the two-step solution procedure outlined above. 

Before proceeding to this second step in the next section, however, it is 
useful t~ inspect graphically the paths given by (8). Fig. 1 shows these paths 
in the symmetric case A l = -  A2, for r/>0. The line FF is the linear solution 
(5), which corresponds to the case AI=A2=0.  FF, once again, is the 
saddlepath under a permanent free-float regime. All the nonlinear paths in 
the figure are nonsaddlepath solutions to (1) under a permanent free float. 
These alternative solutions are supported by their different curvatures, which 
translate the expected growth rate of fundamentals into different expected 
rates of exchange-rate change. (The effect of nonlinearity on expectations 
reflects Jensen's inequality). The apparent asymmetry in the paths is due to 
the positive trend in the growth of fundamentals, ~/. 

3. Examples 

This .:ection carries out the second step of the solution method outlined in 

6Nt~,..': that all of our subsequent analysis extends immediately to a class of fundamentals 
processes somewhat broader than (2). Let f (k )  be any continuous function of fundamentals and 
suppose (1) is replaced by 

x(t) = f(k(t))  + ot E(dx(t)I O(t))/dt, (1') 

so that the fime-t fundamental is f (k( t))  rather than k(t) itself. The general solution to (1') is 

G(k(t)) - e"- s~/, E~.f(k(s))lk(t)) ds + A l ea'k"~ + A 2 e~2h~'~, (8') 
! 

where the integral is just the free-float saddlepath. The results developed below can be applied 
directly to show how various regime shifts induce departures from free-float exchange rates. Of 
course, the integral in (8') usually will be difficult to evaluate. 

7Froo'. and Obstfeld (1990) show why nonlinear terms such as those in (8) would describe a 
rationa~ speculative bubble if policy regime (2) were permanent. 
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Ir 

Fig.  1 

section 2. The discussion takes up sequentially the boundary conditions 
implied by several possible regime-switching scenarios. In terms of the 
mathematics, all that is involved is the appropriate choice of the two 
arbitrary constants in (8), A~ and A2. A single unifying principle leads to 
solutions for all of the problems considered. 

Before solving the model under alternative policy scenarios, we note that 
policy intentions regarding exchange rates can be conveyed to the market in 
several ways, not all of which lead to a determinate equilibrium exchange 
rate, or to a unique rule for managing the fundamentals. For example, the 
announcement, 'We will let the exchange rate float freely until it reaches g, 
and then peg it', leaves the market with too little information about future 
fundamentals to set a unique rate prior to pegging: various equilibria can be 
supported by suitable accommodating policies. Because announcing 
exchange-rate objectives without specifying the accompanying policies is not 
generally enough to determine a unique equilibrium, our examples always 
make explicit the policies on fundamentals through which the authorities 
manage exchange rates. 

3.1. Exchange-rate target zones 

Suppose the authorities want to keep the exchange rate from penetrating 
the lower and upper levels, x_ and ~. When the exchange rate reaches one of 
these boundaries, the authorities alter fundamentals so as to keep x from 
moving outside of its range. However, they do not prevent a movement of x 
back into the interior of the range. Exchange-rate behavior within such a 
target zone was first studied by Krugman (1991). 

How do the authorities defend the target zone? One way to think of this 
process is to imagine that they place lower and upper limits, k and [, on the 
fundamentals. If the fundamentals are prevented from moving outside the 
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range [k_,/~]~ and if (as will turn out to be true below) S(k) is monotonically 
increasing in k, the exchange rate will be confined between the lower and 
upper values S(k) and S(/~). [As usual, S(k) is the saddlepath value of the 
exchange rate within the target zone.] We will show below that by choosing 
[k_,/?] appropriately, the desired target exchange-rate zone, x=S(k), £=S(li), 
can be enforced. Since the exchange rate is free to move back within the zone 
after it has touched one of its edges, the bounds [k,k'] are essentially 
reflecting barriers on the fundamentals process. 

More precisely, one can think of the authorities as defending the target 
zone through infinitesimal interventions that alter k only when process (2) has 
brought k to k_ or to k. In other words, intervention at the margin is just 
sufficient to prevent fundamentals from falling below the lower bound k or 
rising above the upper bour~d E; but no intervention occurs when k is strictly 
within those limits. We emphasize that the infinitesimal character of the 
marginal interventions implies that k can never take a discrete jump. s 

The foregoing intervention policy can be formalized as follows (see the 
appendix for details). Define K(t) to be the unregulated fundamentals at time 
t, that is, the value of fundamentals kit) that would prevail under the 
counteffactual assumption that i~ervention never occurs. By (2), Kit) 
follows: 

dK(t)=rl dt + tr dz(t). (9) 

Let L(t) be the integral of all intervention purchases of foreign exchange up 
to t at the lower bound k_ (these are infinitesimal increases in k); and define 
U(t) similarly with respect to ~ [so that U(t) is an integral of infinitesimal 
decreases in k, which are intervention sales]. Then the fundamentals variable 
that enters (1)is given by kit)=K(t)+L(t)-U(t) ,  and by (9), this variable 
follows the process 

dk(t) =r/dt  + a dz(t) + dL(t)-dU(t), (lO) 

where dL(t) and dU(t) are the smallest interventions that confine k(t) to 

aFlood and Garber (1989) have examined an alternative fortaulation of target zop.es in which 
a noninfinitesimal jump in k does occur at the margins. In that setting, the saddlepath relation 
x =S(k) turns out to be nonmonotonic over [k,//]. Specifically, x is below its maximal value for 
k near k', and above its minimal value for k near k, a reflection of the discrete changes in k 
expected to occur at these boundaries. Although Flood and Garber do not emphasize this aspect 
of their results, their examples illustrate nicely the point made at the start of this section, namel7 
that the same target zone for the exchange rate can be supported by many different 
specifications of policy. In general, one cannot pin down the equilibrium relation between 
fundamentals and the exchange rate merely by assuming limits on the range of possible 
exchange-rate values allowed by the authorities. 
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[k,/~] These interventions are zero except at k_ and ~, so dk( t )=dK(t )  for 
k(t)e(k=, l~). 

It is assumed from now on that the chosen target zone, along with the 
intervention policies used to defend it, are fully and permanently credible. 
Such credibility is feasible if the central banks that maintain the zone are 
willing to adjust domestic credit appropriately. 

To determine exchange-rate behavior within a credible target zone, we 
solve for the exchange-rate path that satisfies (1) given that k evolves 
according to (10). The solution is a special case of (3): 

O O  

x( t ) = S( k( t ) ) = ~ - t ~ e ('-s)/~ E( k( s) l k( t ), k( s) ~ [k=,, J(,]) ds, (II) 
t 

where the 'r' subscript indicates that the barriers on fundamentals are 
reflecting. As noted in section 2, direct evaluation of the conditional 
expectation in (11) is much more difficult than in the case of a permanent 
free float [eq. (5)]: under (10), the saddlepath exchange rate, S(k), will no 
longer be a purely linear function of k. 

We have already taken the first step in finding S(k) by deriving the general 
nonlinear solution x=G(k)  given by (8). Some member of this family of 
solutions must characterize exchange-rate behavior when k is in the interior 
of  [k, ~], where (1) and (2) simultaneously hold. But eq. (8) remains relevant 

m 

at the boundary of this interval as well, that is, at the barriers k = k and k = k. 
The reason is the continuity of S(k), a property that precludes excess 
anticipated profit opportunities at k or/~. Because S(k) is continuous on the 
entire interval [k,/~], it cannot coincide with a function of the form G(k) on 
the interior of that interval unless it coincides with the same function at the 
edges. 

All that remains, then, is to determine the boundary conditions on G(k) 
implied by the reHecting barriers. These conditions deliver unique values for 
the undetermined coefficients At and A2 in (8), and therefore tie down 
uniquely the member of the class G(k) that coincides with S(k) when k lies 
between the reflecting barriers. 

The appropriate boundary conditions on G(k) are the value-matching 
conditions suggested by Krugman (1991): 

G'(k) =0  (12) 

and 

(13) 
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A formal proof that these conditions are necessary is given in the appendix. 
However, the following three-step argument clarifies the intuition behind the 
proof. 9 

(i) Consider, for example, condition (12). Let G(k) be a 'candidate' 
saddlepath solution; because the saddlepath S(k) satisfies (7) everywhere on 
[k_,/?], and in particular at k=k_, (1) and (6) imply that 

( o2 ) 
E(dG(k_)l~b)=~-~(G(k_)-k_)dt= r/G'(k_)+-~-G"(k_) dt 

if G(k)=S(k). In words, the point (k_, G(k_)) lies on a (nonsaddlepath) solution 
to (1) for the free-float case, in which the fundamentals follow (2). 

(ii) But (k_, G(k_)) is also an equilibrium peint under the target zone, so (1) 
holds there when x=G(k) on [k_,E] even though the fundamentals are 
generated in this case by a process different from (2). At k =k_, investors now 
have a one-sided bet on fundamentals: they know that because k follows (10), 
k can only rise from k_, and not fall. Under this condition, however, lt6's 
lemma, combined with (1), implies that 

E(dG(k_)14~) =~-l(G(k_)-k_) dt 

- -"  0 " 2  G"(k)) dt + G'(k_) dL, 

where we have used (10) combined with the fact that d U = 0  at k=k_. (See the 
appendix for the derivation.) In words, there is a positive expected interven- 
tion purchase dL when k=k_, and this raises the expected change in G(k) in 
proportion to G'(k_). 

(iii) The equations displayed in the previous two paragraphs, however, are 
mutually contradictory unless G'(k_)=0. Thus, the point (k_, G(k)) can lie on a 
solution to (1) valid under both a free-float and a target zone only if (12) 
holds. A similar argument completes the proof by establishing that the 
general solution G(k) corresponding to S(k) satisfies (13). 

Using (8), we can write the conditions (12) and (13) as 

1 + A121 e a'-k + A222 e~:- = 0 (14) 

9Conditions (12) and (13) are sometimes called 'smooth-pasting' conditions in the literature on 
target zones; but as Dumas (1989b) points out, the term is usually applied in the context of 
intertemporal maximization problems involving the costly regulation of state variables that 
follow Brownian motion. [See also Harrison (1985) and Dixit (1989b) on optimal regulation of 
Brownian motion.] Since (12) and (13) are entirely due to asset-price continuity (as the following 
proof Qemonstrates), we refer to them instead as value-matching conditions. 
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and 
1 + A12t e ;t'~ + A222 ea'~= 0. (15) 

Eqs. (14) and (15) yield the following solution for the saddlepath value of 
the exchange rate [formula (11)] under the target zone: 

x = S ( k )  

= k + 0it/+ ( 22 e~2~+ a,k _ ,~2 ea2-k + Ark .~. 21 e2,_k + ;t2k __ '~1 e'rt t/~ + 22k~ 
\ 2122 e a'-k + ~ '~-  2t22 e '~2/~+ 2tk_ ] 

(16) 

If we let the lower barrier, k_, go to minus infinity, (16) simplifies to 

x = k  + ~r/-  2/1 eattk-~). (17) 

If in addition we let the upper barrier, k, go to infinity, (17) becomes the 
linear saddlepath in (5): 

x = k + ctrl. (18) 

Only when both boundaries are infinitely distant is the exchange rate a linear 
function of fundamentals. 

Notice that the saddlepath solution given in (16) is of the form initially 
hypothesized: it is a function of the current state k and the two barriers. It is 
also straightforward to verify that S(k) is monotonically increasing over its 
domain of definition, as claimed earlier. Eq. (16) therefore implies that 
confining fundamentals to the zone [k_,/~], where the boundaries are reflect- 
ing barriers, restricts exchange rates to the target zone [x_, ~] = IS(k_), S(~)]. 

Eq. (16) generalizes the solution found by Krugman (1991) for the case 
r/=0. Krugman, however, assumes that the authorities announce directly the 
exchange-rate band Ix_, ~], and that they keep the exchange rate within these 
limits with infinitesimal interventions that occur only when x equals x_ or :~. 
His solution procedure and ours are equivalent because any reflecting 
exchange-rate zone determines a unique fundamentals zone, while any 
reflecting fundamentals zone determines a unique exchange-rate zone. In 
effect, Krugman assumes that the exchange-rate zone [x_,~] determines a 
corresponding fundamentals zone [k_,/~]; he then uses (14) and (15) (as we 
do) to solve for At and A2 in terms of k_ and r r, and then solves for k_ and 
in terms of x_ and ~ using (16). Under a policy of infinitesimal interventions 
at the margins, any target zone for exchange rates is supported by confining 
fundamentals to a uniquely-determined range. The resulting equilibrium 
relationship between fundamentals and the exchange rate is uniquely deter- 
mined by (12) and (13). 
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I 

2 

x ! : 

Fig. 2 

A policy of intervening infinitesimally when the exchange rate reaches 
limiting values is easily translated into the language we used above to 
describe formally the regulation of fundamentals [see eq. (10)]. For this 
purpose it is easiest to assume that the authorities announce they will buy 
any quantity of foreign exchange the market desires to sell when x = x_, and 
sell any quantity the market desires to buy when x=~. At any time t, the 
processes L(t) and U(t) are equal, respectively, to the cumulated intervention 
purchases of foreign currency at x and sales at ~.1o 

Fig. 2 illustrates two possible exchange-rate paths described by (16). The 
paths share a common upper barrier, ~, but differ with respect to the lower 
barrier. Path 1 in the figure, an 'S-shaped' curve, shows the behavior of the 
exchange rate when there are finite reflecting barriers at k and k. This path 
has several noteworthy features. First, its shape reflects the influence of 
expected policy changes at the barriers. In the neighborhood of [, for 
example, the exchange rate is below FF, the saddlepath under a hypothetical 
free float. This bending below FF near/~ reflects a lower expected increase in 
x compared with a situation without boundaries; and that expectation, in 
turn, reflects the local concavity of the saddlepath. Second, the equilibrium 
solution behaves much like the free-float path when the exchange rate is 
within the band but not close to either boundary. A wider band would leave 
the equilibrium solution closer to FF for a greater range of fundamentals. 
Path 2, for example, shows the case in which the lower boundary is infinitely 
distant [eq. (17)]. This graphical intuition is made precise in (18), which 
shows that the equilibrium solution converges to the saddlepath when both 

t°This equivalence shows, incidentally, that the authorities can oz',erate a reflecting barrier on 
fundamentals without being able to observe fundamentals directly; it is sufficient to observe the 
exchange rate and maintain fixed buying and selling rates for foreign currency. 



K.A. Froot and M. Obstfeld, Exchange-rate dynamics 215 

barriers are infinitely distant. For a narrow band, however, the free-float 
solution FF will usually not be a good approximation to the true equili- 
brium path. 

3.2. Stochastic exchange-rate pegging 

The target-zone system is a regime combining aspects of both floating and 
fixed exchange rates: the exchange rate is free to move within a band, but 
imperfectly flexible at the edges of the band. We now turn to a permanent 
change of regime, a stochastically-determined transition from freely floating 
to rigidly fixed rates. Flood and Garber (1983) originally studied this 
problem, but were unable to calculate a closed-form solution for the 
exchange rate. A solution is given below. To derive it, we initially set up the 
problem in a general manner that has no exact counterpart in reality, but 
that serves to clarify the solutions of more realistic special cases. 11 

Suppose now that authorities wish to let the exchange rate float until it 
reaches a lower or an upper level, x or ~, at which time they plan to fix x 
permanently. To keep the spot rate fixed at one of these levels, the 
authorities must hold the fundamentals constant at k_ = S - l ( x )  or k=S-1(~) ,  
respectively. This class of problems contains the one posed by Flood and 
Garber (1983), who consider the behavior of a floating exchange rate when 
the authorities plan to switch to a fixed-rate regime at a single, predeter- 
mined level of the exchange rate, ~. 

In order to avoid potential multiple equilibria, we assume that the 
authorities inform investors that fundamentals will follow (2) until k reaches 
k or/~. At that time the authorities will fix k, thereby fixing the exchange rate 
D 

at x_=S(k_) or ~=S(/?), respectively. Thus, k is not allowed to jump 
discontinuously at the moment the transition between regimes is made. ~ 2 

Given the boundaries, k_ and k, the saddlepath solution is 

o o  

x(t)= S(k(t))=ot- ' j e ('-~)/~' E(k(s)lk(t), k(s)~ [k_a,/~a]) ds, 
t 

(19) 

where the 'a' subscript denotes that the barriers on fundamentals are now 

~See Froot and Obstfeld (1991) for a more extensive discussion of stochastic exchange-rate 
pegging. Flood and Garber applied a first-stopping-time methodology to the regime-switching 
problem, but only recently has Smith (1991) produced a closed-form solution using that 
approach. The solution presented below naturally agrees with the one found by Smith. Smith 
and Smith (1990) present an interesting empirical analysis of the 1925 British return to the gold 
standard that illustrates the usefulness of closed-form solutions of the type derived by Smith 
(1991) and by us. 

~2For a detailed examination of multiple solutions involving discrete jumps in k, see Froot 
and Obstfeld (1991). The problem is briefly identified by Obstfeld and Stockman (1985, section 
2.3). 
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absorbing barriers. As before, direct evaluation of (19) is cumbersome. The 
methods used above apply directly, however, and lead to a simple answer. 

The first step once again is to examine the value of the exchange rate at 
the boundaries. Fortunately, the boundary values of the integral (19) are easy 
to evaluate. They are: 

oo 

S(k_)=ot - l  J eU-") / 'E(k(s ) lk ( t )=k_, )ds  
t 

oo 

- ]" d s  = k = x ,  
! 

(20) 

oo 
S( [i) -- ot - ~ ~ e~'- s)/" E( k( s) l k( t) - Iia) ds 

! 

oo 

=~-1 j" e(,-s)/,/~ds=~,=y. (21) 
t 

In words, once fundamentals are fixed permanently, the exchange rate is just 
the value of current fundamentals, either k or k. 

At the boundaries, (8) and either (20) or (21) must hold. Together they 
imply: 

c a l .  k cA2 k o~rl+ Al  + A 2 - - '0 ,  (22) 

ea'k+A ea2k=0. ~ q +  AI  2 (23) 

These two equations lead to a unique solution for the two constants in (8), 
and to the following saddlepath solutions for (19): 

eA2~+Alk eA2k_+Alkdt.e,idk.+A2kneAl~+A2k ) 
x = S ( k ) = k + ~ r l  1 + eA2k.+A,k_e~,k+~,k " . (24) 

If we let the lower bound, k_, go to minus infinity, (24) simplifies to 

x = k + ~q(1 - e~'~k- k)). (25) 

If, in addition, the upper bound, k, goes to infinity, we again get the linear 
solution in (5). 

Fig. 3 illustrates eq. (24). It shows two exchange-rate paths that share the 
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k / S  / i 
k 

Fig. 3 

same upper bound, but that have different lower bounds. Path 1 shows the 
behavior of x when the absorbing barriers are the points k_ and k in the 
figure. Path 2 is drawn to correspond to the extreme case in (25) where the 
lower bound is at minus infinity. It is clear from (20} and (21) that the 
exchange rate must lie on the 45 ° line through the origin at both absorbing 
barriers. When both boundaries are infinitely distant, the saddlepath is just 
the free-float saddlepath, FF. Notice also that if therc is no trend growth in 
fundamentals, r/=0, all solutions correspond to the 45 ° line (which then 
coincides with FF), regardless of the boundary values. This result seems 
paradoxical at first glance, but it is actually quite natural. At the absorbing 
boundaries of the interval [k_, ~], just as in its interior, the distribution of 
possible movements in k is symmetric upward and downward. (This is not 
the case when the barriers on k are reflecting.) 

Why does a nonzero ~ give a rise to a curved saddlepath solution in fig. 3? 
The saddlepath exchange rate is the present discounted value of fundamen- 
tals, and the evolution of fundamentals depends in part on their deterministic 
trend growth rate, r/. Suppose that r#>0 (the case the figure assumes). As k 
approaches either ~ or k, the probability that the exchange rate will still be 
floating on any given future date declines; and since r/is set permanently to 
zero at the moment of pegging, the expected rate of monetary growth on any 
future date also declines as either absorbing barrier is approached. As a 
result, there is a progressive currency appreciation relative to FF as k moves 
toward one of the barriers. For r/<0, FF would lie below the 45 ° line and 
the saddlepath solution would be the mirror image of the one in fig. 4. When 
r/=0 the bending effects are absent because absorption of k has no effect on 
the expected change in fundamentals (which remains zero). The saddlepath 
lies between FF and the 45 ° line, which coincide when r/=0. 
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Eq. (25) is significant because it is the closed-form solution for the problem 
raised by Flood and Garber (1983). Flood and Garber try to solve directly 
the integral repcesentation for the exchange rate under a single absorbing 
barrier at k: 

oo 

x ( t ) - ~ - '  ~ e~'-s)/'E(k(s)]k(t),k(s)<iia)ds. (26) 
t 

With a single absorbing barrier at ~, we know from (8) and (21) that the 
e~change rate must satisfy 

x =  k +0er/(1 --e a~lk-~) +Aa(e aak-e ta'-a'~+a'k)), (27) 

where A 2 is an arbitrary constant to be determined. Clearly, the unique 
choice of A2 that makes (27) equal to the integral (26) is zero. Note first that 
as k becomes infinitely small, the presence of the barrier/? has a negligible 
effect on the conditional expectation of future levels of k in (26). For such 
small k, the exchange rate should therefore be approximately linear in the 
fundamentals [as in the no-boundary solution, eq. (5)]. Next, note that (27) 
becomes linear in k as k - - , -  oo if and only if A2 =0. But setting A2 = 0  just 
gives solution (25), which was found by letting the lower bound on k become 
unboundedly negative. 

3.3. Unification o f  a dual exchange-rate system 

A final application of our approach is set in an economy the government 
of which maintains separate exchange rates for current- and capital-account 
transactions. Dual or parallel exchange-rate schemes are sometimes adopted 
when authorities wish to insulate cross-border trade flows from the factors 
that influence portfolio demands for currencies. Often the arrangements are 
temporary. Here we examine the effects of expected unification on a dual-rate 
system in which both rates float freely but clear separate markets. 13 

The model's equilibrium conditions turn out to be described by two 
differential equations rather than one, an equation for each exchange rate. 
The path of the commercial rate clears the economy's current-account 
balance, while the path of the financial rate depends on the domestic interest 
rate and the premium of the financial rate over the commercial rate. Because 
the two rates are simultaneously determined, the solution technique for the 
model is based on a multivariate extension of the methods used above. 14 

~3Flood and Marion (1983) develop a model quite similar to the one introduced below, 
simpler in some respects but more realistic in others. There are several types of dual exchange- 
rate regime, and most often the commercial rate is fixed. For a general survey, see Dornbusch 
(1986). 

14Klein (1990) applies a similar multivariate approach in a different setting. 
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An analysis of dual rates requires some changes in the model used so far, 
so we give a relatively detailed description of the economic setting now 
assumed. As usual, all variables other than interest rates are natural 
logarithms. We consider a small economy facing given and constant values of 
the foreign price level, p*, and nominal interest rate, i*. Along with domestic 
money, residents of the economy hold both domestic- and foreign-currency 
bonds, which pay interest at the rates i(t) and i*, respectively. Two key 
institutional restrictions support the dual exchange-rate system. First, the 
stock of foreign-currency bonds is frozen (through prohibitions on asset 
trade with foreigners) at some fixed level. Second, all foreign exchange 
receipts on current account must either be sold to domestic importers at a 
market-clearing price, or spent immediately on imports. 

The price of foreign assets in terms of home currency is x f, the financial 
exchange rate. All current-account transactions-  including, importantly, the 
repatriation of interest on foreign-currency a s s e t s -  take place at the 
commercial exchange rate, x ~. Under free capital mobility the financial and 
commercial markets would be unified, with x~= xf= x. 

Because domestic residents may trade foreign assets among themselves, an 
interest parity condition links the returns on domestic bonds and 
domestically-held foreign bonds. This condition is written 

i ( t )= i* - i* (x f ( t ) - x~( t ) )  + E(dxt(t)ldp(t))/dt. (28) 

Condition (28) differs from what would apply under a unified exchange 
market, because it recognizes that the difference xf( t)-xC(t)  acts as a tax on 
foreign interest. If no change in xf(t) is expected, (28) implies that financial 
foreign exchange sells at a premium relative to commercial foreign exchange 
when i(t)<i*, and at a discount in the opposite case. ~5 

Goods prices are linked internationally through an assumption of strict 
purchasing power parity. Since it is the commercial exchange rate at which 
goods are traded, that condition states that the domestic price level p(t) is 
given by 

p(t) = xC(t) + p*. (29) 

~For a detailed discussion, see Flood and Marion (1983). The commercial rate would not 
enter eq. (28) if foreign interest were repatriated at the financial exchange rate; but in this case 
that rate would be indeterminate ~n our model [see Dornbusch's chapter in Frengel and 
Johnson (1978) for a similar case]. Determinacy could be restored, as in Cumby (1984) and 
Lizondo (1987), by allowing money demand to depend on total domestic wealth in addition to 
the other factors listed below. 
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The price level therefore moves one-for-one with the commercial exchange 
rate. 

Money-market equilibrium determines the domestic interest rate. With the 
notation reflecting the assumptions that the money supply, m, and output, y, 
are fixed, the equilibrium condition is 

m - p ( t ) = ~ y - - ~ i ( t ) .  (30) 

Combining (30) with (28) and (29) leads to the differential equation 
governing the financial exchange rate: 

xf(t) = x +(1 - 1/(oti*))x¢(t)+(1/i*) E(dxf(t)ldp(t))/dt,  (31) 

where x=  1 + ( 1 / ~ i * ) ( m - p * - ~ y ) .  For simplicity, x = 0  is assumed. 
A current-account balance condition leads to the model's second differen- 

tial equation, which governs the commercial rate. The current account is a 
decreasing function of domestic real money balances, an increasing function 
of the expected real interest rate, and a decreasing function of a random 
trade-balance shock, ~'(t), which can be thought of as a shock to public 
spending. 16 Under capital controls and a floating commercial rate, and in 
the absence of direct government borrowing abroad, there is no channel 
through which the economy will change its net stock of foreign claims. The 
implied requirement of a balanced current account is written 

~(i(t) - E(dp(t) lck(t))/dt ) - y(m - p(t)) - ~(t) =0. (32) 

Let g=¢/((~/~)+~), x ' = ( m - p * ) - ( X ~ / ~ ) y ,  and k( t )=(g/Orr( t ) .  After substitu- 
tion using (29) and (30), (32) can be rewritten as 

xC(t) = x' + k(t) + g E(dxC(t)[dP(t))/dt. (33) 

This is the second differential equation describing equilibrium asset prices. 
(We will again simplify and assume x'=0.) 

The disturbance k(t) in (33) is approximated by the stochastic process (2), 
but with r/set at zero. Since (33) is of the same form as eq. (1), the general 
solution for the commercial exchange rate is 

x c = k + A 1 ePk + A 2 e -  pk, (34) 

where A1 and A 2 are  arbitrary constants and p=(2/x t r2)  1/2. 

t6Real balances affect the current account by reducing saving (a wealth effect). An increase in 
the expected real interest rate is assumed to raise saving. 
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Fig. 4 

Finding the solution to the financial exchange rate equation, (31), is not so 
straightforward, because its forcing variable is the endogenous price xC(t). I! 
is easy to check, however, that the following general expression for the 
financial rate satisfies (31): 

I ePk + A 2 e -  pk)) 
e6k 6k +A3 + A 4 e -  , (35) 

where A 3 and A4 are arbitrary constants and ~=(2i*/tr2) 1/2. 
The straight lines in fig. 4 show how the two floating exchange rates 

depend on the fundamental kit) when no regime change is possible. The 
upward-sloping one, FF ¢, graphs the linear part of (34). It shows that a rise 
in k (an exogenous incipient deterioration in the current account) causes a 
rise in x c which restores external balance by lowering real monetary wealth 
and raising the real interest rate. The downward-sloping line, FF f, graphs the 
linear part of (35), which is decreasing in k if the interest elasticity of money 
demand at i - i * ,  0ti*, is less than one. By raising x ¢, a rise in k raises the 
nominal domestic interest rate by dxC/ct. Since the domestic-foreign interest 
differential equals i* (xC-x f ) ,  x f must fall absolutely to maintain interest 
parity when 0ti* < 1. 

We can now consider how currency prices respond to the prospect of a 
stochastically determined unification of the exchange markets. In principle, 
there are several systems of unified rates that could be considered. Because a 
single basic solution principle applies in all cases, however, we consider only 
the case in which the authorities announce contingencies under which they 
will fix both rates at a given level, ~. 
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As has been emphasized abrve, however, some contingency plans simply 
do not give the market enough information to determine unique equilibrium 
exchange rates. For example, an announcement that the two rates will be 
pegged at their common level once both reach ~ results in indeterminacy. In 
addition, the authorities must, as a general rule, announce the level of the 
fundamental k, k say, at which unification will occur. 17 

Fig. 4 shows how solutions to this unification problem behave. The figure 
is drawn on the assumption that exchange markets will be unified at a 
fundamental k below the current value (and at an exchange rate ~). 
Intuitively, the authorities plan to unify once the exogenous component of 
the current account has improved to a prespecified level, and they will do so 
at an exchange rate that ensures an initial current-account surplus. This 
setup is a variant of the absorbing-barrier problem of the previous subsec- 
tion, and the exchange-rate solutions it yields are analogous. Because neither 
rate can take a discontinuous jump at the moment k reaches k, the functions 
SO(k) and Sf(k) must describe the commercial and financial rates prior to 
unification. These functions curve away from the linear loci to intersect at 
the unification point, but they are approximately linear when unification is 
distant. Intuitively, the approach of unification causes both rates to move 
closer to their unified level. Is 

Clearly a different choice of k, with ~ unchanged, would imply a different 
equilibrium configuration. This observation shows why the equilibrium will 
be under-determined if an absorbing exchange rate barrier is announced 
without the accompanying announcement of what is effectively an absorbing 
barrier for the current-account fundamental. 

An interesting implication of fig. 4 concerns the behavior of the two 
exchange rates for values of k above but close to k. Because of the shapes of 
the curves SO(k) and Sf(k) near k, insignificant changes in fundamentals can 
have large and seemingly perverse effects on exchange rates. 

4, Some empirical implications 

The nonlinearities induced by stochastically-triggered policy shifts have 
numerous implications for empirical studies of asset pricing. In this section 
we explore some empirical implicatiom of one of our exchange-rate 
examples, the target zone. Empirical studies of target zones have often relied 

l~An exception occurs when the current account does not depend on the real interest rate 
(4=0). In this case, x c does not behave like a speculative price, so its value always li~s along the 
linear locus FF c, even when regime shifts are possible. An announcement that unification will 
occur when xf=xC=.f therefore ties down a unique value [ = ~ , ( m - ~ - p * )  at which the switch 
will occur. 

~SExplicit solutions for A~, A2, As, and A4 are left to the interested reader. 
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on linear econometric methods, so we focus on the small-sample biases that 
such methods might entail when the true exchange-rate model is nonlinear. 

The first point to be made is that the presence of permanent exchange-rate 
bands induces an unconditional exchange-rate distribution that is covariance 
stationary. This property means that many standard inference techniques 
retain their asymptotic justification, despite the fact that the exchange-rate 
process may approximate a random walk near the center of the band. We 
can actually be fairly precise about the unconditional distribution of x when 
bands are in place. Consider, for example, the case in which fundamentals 
follow a trendless random walk within the band (r/=O). Then the uncon- 
ditional distribution of k is uniform over [k_, k?]. Reflection at the boundaries 
simply nudges k back into the range Ik_, El; and because there is no trend, k 
is equally likely to be in any two equally-sized subintervals. 19 The uncon- 
ditional distribution of the exchange rate is nonstandard, but just as easily 
understood. By the change-of-variables formula, the probability density 
function for the exchange rate will turn out to be bimodal, with modes at the 
bands. This bimodality is a direct result of the S-shaped saddlepath: near the 
bands there are a greater number of (equally likely) values ef k for any given 
interval of the exchange rate. 

What do bands imply about the properties of linear econometric methods? 
Consider a standard test for the presence of a unit root, in which the 
exchange rate is regressed on its own lagged value and a constant: 

xt+ 1 = c  + f i x  t +e,t+ 1. (36) 

If there are no bands present, and if fundamentals evolve according to (2) 
then f l = l  and the residual et+l is purely random. With bands in place, 
however, the exchange rate is statistically stationary, so the coefficient 
should converge to a value less than one. In an infinite-sized sample, the 
hypothesis that the exchange rate follows a random walk would be rejected 
with probability one. The question of practical importance concerns the 
amount of data needed for reasonably powerful tests. 

To answer this question we performed Monte Carlo simulations, assuming 
that fundamentals follow the random-walk process (2) within credible 
reflecting barriers, so that the exchange rate is given by (16). We chose four 
different sets of bands on fundamentals which, measured from the initial 
starting point, were 6, 18, 70 and 160 (log) percent in either direction. We 
chose the model's free parameters as: the annual st, mi-elasticity of money 

19For a formal proof, see Harrison (1985, p. 90), who also shows that the unconditional 
distribution of k for t /S0 is exponential. 
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Table 1 

Monte Carlo simulations of the power of unit root tests against an unspecified 
target-zone alternative. 

~o.,~mly data Daily data 

Time-series sample: ~00~years 25 years 10 years 10 years 1 year 

Exchange-rate band width 
_+ 2.25% 100 12.4 10.1 9.2 4.6 
_ 13.8% 9.6 5.5 34 3.0 2.6 
_+ 66% 2.7 2.7 1.9 2.6 2.6 
_+ 157% 2.5 2.7 i .9  2.6 2.6 

Notes: Figures reported in the first three columns are the percentage of 
rejections at a 2.5 percent level of significance of the hypothesis that the exchange 
rate follows a random walk, given that fundamentals evolve within the band 
according to eq. (2) in the text, and that the exchange rate evolves accordin, to 
(16). Simulation parameters are reported in the text. (Percentages are meas~, : !  as 
log differences.) 

demand, ~=4; annual standard deviation of k, a=0.1; and trend growth in 
relative fundamentals, r/=0. 2° These bands on k translate into smaller bands 
on the exchange rate of plus or minus 2.25, 13.8, 66 and 157 percent, 
respectively. The smallest of these corresponds to the bilateral band width for 
most currencies within the European Monetary System (EMS). 

Table 1 reports rates of rejection at the 2.5 percent level of the hypothesis 
= 1 in eq. (36). To construct confidence intervals we used the usual Dickey- 

Fuller critical values. The rejection rates are estimated using 1,000 
independently-drawn simulations of the model. In an infinite sample, in the 
absence of bands, we would expect to reject the random walk model 2.5 
percent of the time. We report results for three different sample periods using 
monthly data (100, 25 and 10 years), and two different sample periods using 
daily data (10 years and 1 year). 

There are several noteworthy aspects of the estimates. First, with a target 
zone of plus or minus 2.25 percent and 100 years of data, we reject the 
random walk hypothesis in every single draw. Second, this result is quite 
fragile: it disappears when we increase the width of the bands, or decrease 
the size of the sample. The second row of the table reports the rejection rate 
when the bands are set at plus or minus 13.8 percent. Even with 100 years of 
data, the rejection rate falls from 100 to 9.6 percent. Thus, the effects of 
moderately-sized bands could be hard to detect econometrically even in 
comparatively long time-series samples. The second and third columns report 

2°These parameter values are well within the range of previously published empirical 
estimates. As a check on their sensibility, note that they generate an annual standard deviation 
for the exchange rate of about 10 percent (when the exchange rate is far from both bands). This 
is close to the average standard deviation of the effective value of the U.S. dollar over the 1973- 
1988 floating-rate period. 
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results for shorter samples of 25 and 10 years, respectively. The rejection 
rates here are uniformly low, even with very narrow bands. In 25 years of 
data we can detect the presence of very tight bands (2.25 percent up or 
down) only 12.4 percent of the time. The power of the unit root test against 
the target-zone alternative therefore falls rapidly with increases in zone size 
or with decreases in sample size. Third, by comparing the results for I0 year 
sample periods using daily and monthly data, we can see that sampling 
frequency has no effect on the results. 2~ 

To sum up, the nonlinearities induced by prospective policy shifts have 
two main empirical implications. They obviously imply that standard linear 
models are misspecified. Perhaps more important, however, is the implication 
that the possible events causing nonlinearities (such as bumping up against a 
boundary) may occur only infrequently in time-series samples of the usual 
size. In sample of the size that have been used to study the EMS, say, it may 
be difficult to detect evidence of the covariance stationarity of the exchange 
rate induced by the target zone. Indeed, the Monte Carlo results reported 
above suggest that the exchange rate must run into its limits many times to 
generate detectable evidence that those limits exist. 

5. Conclusions 

This paper has shown how techniques of regulated Brownian motion can 
be applied to models of exchange-rate determination under a variety of 
possible future regime switches. The techniques used above are far simpler 
and more intuitive than the method of calculating exchange rates directly as 
expected present values of fundamentals. In this paper we restricted our 
attention to three examples of exchange-rate regime change, but there are 
clearly many other potential applications of the methodology, to exchange 
rates as well as to other asset prices. 

All the scenarios we examined above can introduce nonlinearities into 
relationships between exchange rates and fundamentals, and into those 
between current and lagged exchange rates. These nonlinearities may be 
difficult to discern empirically in small samples, but will nevertheless 
invalidate the asymr~otic distribution theory that econometric inference 
typically invokes. Evidence favoring particular nonlinear exchange-rate 
models is already accumulating, however. Engel and Hamilton (1990), for 
example, reject the hypothesis that the exchange rate follows a random walk 

2~We began each simulation with the exchange rate at the middle of the zone. This tends to 
lower the power of the tests. On the other hand, adding realistic probabilities of realignment 
would tend to make us reject less frequently. 
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against the alternative of stochastic shifts between two exchange-rate regimes. 
Whether stochastic regime shifts such as those studied above are responsible 
for these rejections can be determined only through additional empirical 
work. 

Appendix: Formalizing the target-zone model 

This appendix provides a more formal treatment of the target-zone model 
of subsection 3.1. The analysis draws on Harrison's (1985) discussion of the 
two-sided infinitesimal regulator. 

According to eq. (9) in the main text, the unregulated fundamentals 
variable, K(t), is generated by the stochastic process dK(t)=~dt+crdz(t), 
where dz is a standard Wiener process.  22 We define the lower and upper 
regulators, L(t) and U(t), such that: 

(i) L(t) and U(t) are increasing and continuous functions of time. 
(ii) The variable k(t)=K(t)+L(t)-U(t)is in [k_,~], for all t>0. 
(iii) L(t) increases only when k(t)=k_. 
(iv) U(t) increases only when k(t)=li. 

Initially, K(0)¢[k_,[] and L(0), U(0) are normalized to zero. 
Changes in L(t) and U(t), denoted dL(t) and dU(t), are interpreted as 

policy interventions that alter the fundamentals. Thus, the fundamentals 
process k(t) equals the unregulated process K(t), adjusted for the integral of 
past interventions, L(t)-U(t)=~to(dL(s)-dU(s)). Changes in L(t) and U(t) 
offset changes in K(t) that might otherwise take k(t) below k_ or above ~. 
They can be interpreted as marginal official purchases and sales, respectively, 
of foreign currency. The continuity requirement in (i) ensures that such 
interventions are infinitesimal, i.e. at the smallest level that keeps fundamen- 
tals from exiting the interval [k,~]. Harrison (1985, ch. 2) shows that 
functions L and U satisfying (i)-(iv) exist and are unique for any continuous 
stochastic process {K(t)}. 

The goal is to find appropriate boundary conditions for the saddlepath 
exchange rate, S(k(t)), given the joint dynamics of the exchange rate, x(t), and 
the regulated fundamentals, k(t): 

x(t)= f(k(t)) + ~ E(dx(t)]O(t))/dt, (A.1) 

dk(t) = r/dt + o dz(t) + dL(t)-dU(t), (A.2) 

eeThe argument presented below goes through, however, for a wider class of processes, 
including mean-reverting processes. 
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where f (k)  is any continuous function of the fundamentals. The key 
assumption we make is that S(k) is a twice continuously differentiable 
function. It6's lemma applied to (A.2) shows that 23 

t t 

S(k(t))=S(k(O))+a I S'(k(s))dz(s)+tl I S'(k(s))ds 
0 0 

°'i  ' i + 2 o S"(k(s)) ds + o I S'(k(s)) dL(s ) -  o S'(k(s)) dU(s). (A.3) 

Since dL( s )=0  unless k ( s )=k  and d U ( s ) = 0  unless k(s)=E, (A.3) can be 
expressed in the usual shorthand notation as 

( ) dS(k)=aS'(k)dz + rlS'(k)+-~ S"(k) dt + S'(k_)dL-S'(l~)dU (A.4) 

[see also Harrison (1985, p. 82)]. 
The value-matching conditions satisfied by S(k) at the boundaries of the 

fundamentals band can now be derived. 

Theorem. In the target-zone model with fundamentals bond [k_,~], the 
sandlepath exchange-rate function, S(k), satisfies the derit, ative conditions 

s ' (k_)  - -  S ' ( k )  = O. 

Proof Write (A.4) in integral form and take its t=O conditional 
expectation: 

i( ) E(S(k(t))ldp(O))=S(k(O))+ E riS'(k(s))+-2- S"tkts))ldp(O ) ds 
0 

+ S'(k) EtL(t) [ $ ( 0 ) ) -  S'(J~) E(Utt) [ ¢(0)). 

Because 

E(S(k(t)) i ~(0)) = S(k(0)) + 
t 

- '  I E(Stk(s))-k(s)ldP(b))ds 
0 

(A.5) 

23The continuous increasing functions L(t) and U(t) have zero quadratic variation over any 
finite time interval. As a result, their entire joint contribution to S(k(t))-S(k(O)) is given by the 
last two integrals on the right-hand side of eq. (A.3) below. 
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by (1), however, eq. (7), which S(k) must satisfy even at the boundaries of 
[k_,/~], leads to 

( ) E(S(k(t))l¢(O))=S(k(O))+ i E tlS'(k(s))+-~ S"(k(s))ldp(C~) ds. (A.6) 
0 

Together (A.5) and (A.6) imply 

S'(k_) E(L(t)Idp(O))-S'(F,) E(V(t)l ¢(0)) = 0. (A.7) 

But if k and ~ are finite, the regulators L(t) and U(t) can satisfy (A.7) for all 
initial information sets, and for all subsequent dates, only if S'(k_)=S'([~)=O. 
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