Intrinsic Bubbles: The Case of Stock Prices

By KenNeTH A. FROOT AND MAURICE OBSTFELD*

Several puzzling aspects of the behavior of United States stock prices may be
explained by the presence of a specific type of rational bubble that depends
exclusively on aggregate dividends. We call bubbles of this type “intrinsic”
bubbles because they derive all of their variability from exogenous economic
fundamentals and none from extraneous factors. Intrinsic bubbles provide a
more plausible empirical account of deviations from present-value pricing than
do the traditional examples of rational bubbles. Their explanatory potential
comes partly from their ability to generate persistent deviations that appear to be
relatively stable over long periods. (JEL G12)

After a decade of research, financial
economists remain unsatisfied with simple
accounts of stock-price fluctuations. The
initial rejections by Stephen LeRoy and
Richard Porter (1981) and Robert Shiller
(1981) of a simple present-value model
based on constant discount rates and ratio-
nal expectations have not been reversed by
subsequent work. Although departures from
present-value prices appear to be large and
persistent, it has nevertheless proved dif-
ficult to find empirical support for parsimo-
nious alternatives to the simple present-
value model.!
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At one time, rational bubbles were viewed
as one such alternative. Interest in bubbles
has waned, however, in part because econo-
metric tests have not produced persuasive
evidence that rational bubbles can help ex-
plain stock prices. That is, no one has pro-
duced a specific bubble parameterization
that is both parsimonious and capable of
explaining the data.

In this paper, we propose and test empiri-
cally a new rational-bubble specification with
both of these properties. Our formulation is
parsimonious because it introduces no ex-
traneous sources of variability. Instead, the
bubbles we examine are driven exclusively
—albeit nonlinearly—by the exogenous
fundamental determinants of asset prices.
For this reason, we refer to these bubbles as
“intrinsic.” One striking property of an in-
trinsic bubble is that, for a given level of

econometric shortcomings of the original studies. John
Cochrane (1989) argues that, in principle, time-varying
discount factors could explain failures of the simple
present-value model. There is little positive empirical
evidence, however, that discount-factor variation alone
can explain these failures; see, for example, Shiller
(1981), Robert Flood et al. (1986), and Campbell and
Shiller (1988a). Robert Pindyck (1984) suggests that
low-frequency price fluctuations may be a result of
time-varying risk premia driven by changing stock-price
volatility. However, James Poterba and Lawrence Sum-
mers (1986) argue that volatility is not sufficiently per-
sistent to explain a large portion of low-frequency price
movements.
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exogenous fundamentals, the bubble will re-
main constant over time: intrinsic bubbles
are deterministic functions of fundamentals
alone. Thus, this class of bubbles predicts
that stable and highly persistent fundamen-
tals lead to stable and highly persistent
over- or undervaluations. In addition, these
bubbles can cause asset prices to “overre-
act” to changes in fundamentals.

Surprisingly, our parametric example of
an intrinsic bubble also appears to be capa-
ble of explaining long-term movements in
stock prices. It turns out that the compo-
nent of prices not explained by the simple
present-value model is highly positively cor-
related with dividends, as an intrinsic bub-
ble would predict. As a result, an intrinsic
bubble fits well both the bull market of the
1960’s, a period of high and rising real divi-
dends, and the market decline of the early
1970’s. We use our estimated model to sep-
arate out the present-value and bubble
components of stock prices and find that
the former implies a realized annual real
return on stocks of about 9.1 percent—very
close to the 9.0 percent average for this
century.

Of course, there are nonbubble hypothe-
ses that could in principle explain our re-
sults. It is often argued that stationary fads
or noise trading lie behind departures from
present-value prices.> Both fads and intrin-
sic bubbles can generate departures that are
highly persistent; but an important theoreti-
cal distinction between the two is that the
former entail short-term speculative profit
opportunities, whereas bubbles alone do not.
Because stock-market returns appear to
have a predictable component, our empiri-
cal tests are designed to separate the bubble
from possible sources of predictable re-
turns, such as fads and variable discount
rates. While this predictability ultimately
should be useful in explaining certain fea-
tures of the data, our results suggest that it

2For examples of models with fads or noise, see
Shiller (1984), Kyle (1985), Fischer Black (1986), Jef-
frey Frankel and Froot (1986), Summers (1986), Camp-
bell and Albert Kyle (1988), J. Bradford De Long et al.
(1990), and Froot et al. (1990).
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is not the main explanation for the simple
present-value model’s failure.

A second alternative hypothesis involves
possible future changes in regime. It is well
known that any bubble path is observation-
ally equivalent to a present-value path for
which the process generating fundamentals
may change in the future.> Our results
therefore could be interpreted as evidence
of such prospective changes. Indeed, pre-
sent-value pricing formulas similar in form
to the bubble formulas derived below arise
in asset-pricing models that assume stochas-
tic regime shifts. In this paper, we posit no
specific regime-switch model to explain the
apparently nonlinear relationship between
stock prices and dividends.*

Notwithstanding our empirical results, we
find the notion of rational bubbles to be
problematic. It is difficult to believe that the
market is literally stuck for all time on a
path along which price:dividend ratios even-
tually explode. If the market began on such
a path, surely investors would at some point
attempt the kind of infinite-horizon arbi-
trage that rules bubbles out in theoretical
models; and since fully rational agents
would anticipate such attempts, bubbles
could never get started. It seems to us an
empirical question, however, whether this
much foresight should be ascribed to the

3Flood and Peter Garber (1980), James Hamilton
and Charles Whiteman (1985), and Flood and Robert
Hodrick (1986) discuss this observational equivalence.

See Paul Krugman (1987) on regime switches in the
stock market; see Krugman (1987) and Froot and Obst-
feld (1991) on the foreign-exchange market. Krugman
suggests that trigger-price sell strategies can make the
price—dividend relation nonlinear. Results like those
we report below could be rationalized within a fad
model (without bubbles) in which investors perceive
“psychological barriers” to upward movements in stock
prices. When a price barrier is reached, a group of
noise traders might enter the market with some proba-
bility, in which case a new barrier is established, or exit
(“profit taking”). Speculation by rational investors
would, in this environment, create a nonlinear relation-
ship between prices and dividends. An alternative
model predicting bubble-like behavior is based on mar-
ket learning about managerial competence; see
Nobuhiro Kiyotaki (1990). Stephen Cecchetti et al.
(1990) study the empirical implications of particular
nonlinear fundamentals processes.
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market. Perhaps agents do not really have
as clear a picture of the distant future as
the simplest rational-expectations models
suggest. Stock prices and dividends might
follow a nonlinear relation such as the one
we estimate for some time before market
participants catch on to the unreasonable
implications of very high dividend realiza-
tions.

The paper is structured as follows. Sec-
tion I shows how intrinsic bubbles arise in a
standard present-value model. In Section II,
we compare some properties of intrinsic
bubbles and a more conventional extrane-
ous bubble whose explosive dynamics are
driven by calendar time. Section III then
turns to the data. We examine the univari-
ate and bivariate time-series properties of
United States stock prices and dividends,
and we argue that an intrinsic bubble is
broadly consistent with the results. In the
second part of Section III, we estimate our
model directly and test it against several
alternatives. Section IV concludes and of-
fers our interpretations of the results.

I. Intrinsic Bubbles in a Present-Value Model

Stochastic linear rational-expectations
models can have a multiplicity of solutions
that depend on exogenous fundamentals but
do not depend on extraneous variables such
as time.> In this section, we describe how
such rational bubbles arise as nonlinear so-
lutions to a linear asset-pricing model. Al-
though our choice of a specific model is
guided by the empirical application we have
in mind, solutions similar to those derived
below arise in a broader class of models.

SIncluded in the category of extraneous variables
are irrelevant fundamentals, such as lagged fundamen-
tals that play no economic role apart from their self-
fulfilling effect on expectations. The excessive variabil-
ity of an asset-price solution containing an intrinsic
bubble comes entirely from its functional form, not
from the introduction of extraneous state variables. An
intrinsic-bubble solution is a reduced-form expression
that depends only on the exogenous factors objectively
affecting the economy, not on extraneous noise. In
other words, every intrinsic-bubble solution is a
“minimal-state-variable” solution in the sense of Ben-
nett McCallum (1983).
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The model is based on a simple condition
that links the time-series of real stock prices
to the time-series of real dividend payments
when the expected rate of return is con-
stant. Let P, be the real price of a share at
the beginning of period ¢, let D, be real
dividends per share paid out over period ¢,
and let r be the constant, instantaneous
real rate of interest. The condition we focus
on is

(1) Ptze_rEt(Dt+Pt+l)

where E,(-) is the market’s expectation con-
ditional on information known at the start
of period ¢.5

The present-value solution for P,, de-
noted by P, is

(2)  PM= Y e CTPE(D,).

s=t

Equation (2) is a particular solution to the
stochastic difference equation (1). It equates
a stock’s price to the present discounted
value of expected future dividend payments.
We assume that the present value (2) always
exists, that is, that the continuously com-
pounded growth rate of expected dividends
is less than r.

The present-value formula is the solution
to (1) usually singled out by the relevant
economic theory as a unique equilibrium
price. It can be derived by applying the
transversality condition,

(3) lim e~"E,(P,) = 0

§ >0

and then observing that successive forward
substitutions into (1) converge to (2).
Equation (1) has solutions other than (2).
By construction, these alternative price
paths satisfy the requirement of period-by-
period efficiency, but they do not satisfy (3).
Let {B,};_, be any sequence of random vari-

°In our empirical implementation of the model be-
low we allow for errors in this equation, which does not
hold exactly for United States data (Flood et al., 1986).
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ables such that
(4) B, = e—rEt(Bt-H)'

Then, P,= PP+ B, is a solution to (1),
which can be thought of as the sum of the
present-value solution and a rational bub-
ble. Clearly, property (4) implies that P,
violates the transversality condition (3) if
B, #0.

Rational bubbles are sometimes viewed
as being driven by variables extraneous to
the valuation problem. However, some bub-
bles may depend only on the exogenous
fundamental determinants of asset value.
We call such bubbles “intrinsic” because
their dynamics are inherited entirely from
those of the fundamentals. An intrinsic bub-
ble is constructed by finding a nonlinear
function of fundamentals that satisfies (4).
In the above stock-price model with only
one stochastic fundamental factor (the divi-
dend process), intrinsic rational bubbles de-
pend on dividends alone.

To see how an intrinsic stock-price bub-
ble might look, suppose that log dividends
are generated by the geometric martingale,

(5) dt+1=l‘l‘+dt+§t+l

where u is the trend growth in dividends, d,
is the log of dividends at time ¢, and &, is
a normal random variable with conditional
mean zero and variance o 2. Using (5) and
assuming that period-t dividends are known
when P, is set, we see that the present-value
stock price in (2) is directly proportional to
dividends:

(6) PP =D,

where k = (¢ — e#*°°/2)~1 Equation (6) is

essentially a stochastic version of Myron

Gordon’s (1962) model of stock prices, which

predicts that PP'=(e" —e*)"'D, under

certainty. The assumption that the sum in

(2) converges implies that r > u + o2 /2.
Now define the function B(D,) as

(7 B(D,) =cD;

where A is the positive root of the quadratic
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equation
(8) No?/2+Au—r=0

and c is an arbitrary constant. It is easy to
verify that (7) satisfies (4):

(9) e "E(B(D,..))

= e_rEt(th/\e)\(l’v'*'thl))
:e—r(thAel\[L+)\20'2/2)
=e "(cD}e")=B(D,).

By summing the present-value price and
the bubble in (7), we get our basic stock-
price equation:

(10) P(D,)=PP" +B(D,) =kD,+ cD}.

Even though (10) contains a bubble (for
¢ #0) and thus violates (3), it is driven ex-
clusively by fundamentals: P(D,) is a func-
tion of dividends only and does not depend
on time or any other extraneous variable.
B(D,) is therefore an example of an intrin-
sic bubble.’

The inequality » > u + 02 /2 can be used
to show that A must always exceed 1. It is
this explosive nonlinearity that permits
B(D,) to grow in expectation at rate r. We
will assume from now on that ¢ > 0, so that
stock prices cannot be negative. Negative
stock prices would violate free disposability.®

"Thomas Sargent (1987 pp. 348-9) characterizes a
rational bubble as a function B(t, X,)=e"'X, of time
and a variable X, that obeys E,(X,, )= X,. However,
his definition does not imply that bubbles have to
contain deterministic time components. To write the
bubble B(D,) defined by (7) in Sargent’s form, simply
let X, =e "cD}.

8Let X be the negative root of equation (8). Then
the general solution to (1) [within the class of functions
P=P(D,)]is

P(D,)= PP +c,D} + c,D}.

We have imposed ¢, =0 in (10) on the grounds that
the stock price P; should go to zero (not to infinity) as
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FIGURE 1. INTRINSIC-BUBBLE PRICE PATHS

It might seem paradoxical that move-
ments in a bubble can be completely at-
tributed to movements in fundamentals.
Economists are accustomed to an almost
instinctive decomposition of asset prices into
two components, one dependent on market
fundamentals and a second reflecting self-
fulfilling beliefs and driven, at least in part,
by extraneous factors. In the context of lin-
ear models, for example, McCallum (1983)
argues that bubble solutions can be avoided
by restricting attention to ‘“minimal-state-
variable” solutions that depend only on fun-
damentals. The possibility of intrinsic bub-
bles reveals that McCallum’s approach does
not rule out multiple solutions unless some
additional requirement (e.g., linearity of the
price function) is imposed.

Like all rational bubbles, intrinsic bubbles
rely on self-fulfilling expectations. Instead
of being driven by extraneous variables,
however, these expectations are driven by
the nonlinear form of the price solution
itself. Figure 1 shows the family of solutions

dividends D, go to zero. The argument in the text
shows that any variable Y, whose logarithm follows a
martingale with drift x4 and variance o leads to a
bubble solution to (1), P(D,,Y,)= P + B(Y,). Thus, a
formula like (7) can be used to construct extraneous as
well as intrinsic bubbles.
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given by (10). The straight line PPYP* indi-
cates the present-value solution (6); this $0-
lution implies that E(P,,,/P,)=e**" /2
<e’. A point like 1 on the bubble path
satisfies rate-of-return condition (1) because
of Jensen’s inequality. At point 1, the next
innovation in log dividends is distributed
symmetrically around zero, but the market’s
belief that the relevant price function has
the shape shown means that the expected
rise in the stock price and, hence, the cur-
rent stock price itself are higher at point 1
than at the corresponding point 2 on
prpeY?o

II. Alternative Bubble Specifications: A
Partial Comparison

Why might intrinsic bubbles succeed in
characterizing stock prices when other bub-
ble formulations have failed? In this sec-
tion, we argue that intrinsic bubbles have
several empirically appealing properties that
the bubble parameterizations used in previ-
ous applied studies lack.

To begin, we need to know why bubble
explanations of stock prices have fared so
poorly. A first reason might be a belief
that prices simply do not diverge from their
present-value levels.!® There are strong
theoretical arguments behind this view.
However, while short-horizon excess-profit
opportunities are plausibly quite small, the
theoretical conditions required to rule out
rational bubbles assume substantial, per-

°1t is easy to check that various theorems used to
identify unique solutions of the form P(D,) to equa-
tions like (1) do not apply under this section’s assump-
tions. For example, (10) is not within any of the classes
of solutions considered by Robert Lucas (1978), Rusdu
Saracoglu and Sargent (1978), Christian Gourieroux
et al. (1982), or Whiteman (1983). The problem is not
that the process in (5) is nonstationary. Multiple solu-
tions analogous to (10) exist when (5) is a mean-revert-
ing Ornstein-Uhlenbeck process; see Froot and Obst-
feld (1991). Rather, the problem is that standard
uniqueness theorems impose additional restrictions,
such as linearity of the solution or the assumption that
all state variables are restricted to assume values in
compact sets. These assumptions rule out solutions
such as (10).

OFjood and Hodrick (1990) survey the empirical
literature on bubbles from this perspective.
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haps unrealistic, infinite-horizon foresight
on the part of economic agents.

A second reason for the poor empirical
track record of bubbles is that the specific
parameterizations that have been tested
have failed. These parameterizations gener-
ally assume that bubbles and, hence, stock
prices contain deterministic exponential
time trends.!! However, there is little evi-
dence of such behavior in U.S stock-market
data.

Some general specification tests have been
employed in the hope that bubbles can be
detected without the need to take a stand
on a specific bubble form. Even though these
tests may have low power, they nevertheless
reject the no-bubble null hypothesis fre-
quently. However, they cannot reveal the
precise source of rejection, so they yield no
hard evidence that bubbles really are the
culprits.’? The tendency to ascribe these
rejections to sources other than bubbles has
been strengthened both by the theoretical
arguments against bubbles and by the fail-
ure of the specific parameterizations men-
tioned above. However, consideration of
stochastic bubbles that look quite different
from the usual time-driven examples may
throw a different light on the specification-
test results.

How then do intrinsic bubbles behave,
and why might they do a better job of
tracking stock prices? First, intrinsic bub-
bles capture well the idea that stock prices
overreact to news about dividends, as ar-
gued by Shiller (1984), among others. Equa-
tion (10) implies that dP,/dD, = k +
AcD} !> k, so prices move more when div-

"'See Flood and Garber (1980) and Olivier Blan-
chard and Mark Watson (1982) for specific examples.
The general specification test for bubbles used by
West (1987) can alternatively be interpreted as a test of
model specification, the purpose for which it was origi-
nally proposed by Robert Cumby et al. (1983). A sec-
ond type of specification test for bubbles compares the
time-series properties of prices and dividends, which
should differ if condition (1) holds but stock prices
contain a rational bubble (see Hamilton and White-
man, 1985; Behzad Diba and Herschel Grossman,
1988a).
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idends change than the present-value for-
mula (6) would predict.

In addition, intrinsic bubbles are not ob-
viously inconsistent with the apparent time-
series properties of stock prices. Even
though the bubbles are expected to grow at
the rate of interest, specific realizations may
fluctuate within some limited range for
rather long periods. A given dividend real-
ization corresponds to a unique stock price
regardless of the date on which the dividend
is announced. Because dividends are persis-
tent, deviations from present-value prices
may also be persistent. An implication of
this property is that, even with a very long
data series, the fundamentally explosive na-
ture of an intrinsic bubble might be impossi-
ble to detect through diagnostic time-series
tests.

Some simulations illustrate these points
by comparing the intrinsic bubble in (10)
with a particular alternative bubble specifi-
cation. Each simulation experiment involves
three solutions to the difference equation in
(1). The first of these is the present-value
price PP’ given by (6); the second is a
purely stochastic, nonlinear intrinsic bubble
of the form (10), denoted by P,; and the
third is a bubble that depends on time as
well as on dividends:

(11)

The precise formulation in (11) is chosen
for two reasons. First, it makes the bubble a
function of dividends and thus allows stock
prices to overreact to dividend news, just as
the bubble in (10) does. Second, (11) follows
the majority of parametric bubble tests in
adopting a specification in which the extra-
neous variable ¢ affects prices.

Dividends are assumed to follow (5), and
in each experiment successive innovations
¢, are drawn independently from a normal
distribution. PP¥ is calculated using esti-
mates of r, w, and o2 implied by U.S.
stock-price and dividend data, and the val-
ues of the parameters «, ¢, and b are those
estimated below in Section III. The simula-
tions are run over 200 years. However, it is
important to note that there is little impor-
tance to these specific choices of parame-

B, = PP+ bD,eC 17"/,
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FIGURE 2. SIMULATED STOCK-PRICE PATHS

Notes: PP is the simulated present-value stock-price path assuming that log dividends follow a random walk with
trend. P, gives simulated stock prices under the intrinsic bubble in equation (10). P, gives simulated stock prices

under the bubble example in equation (11).

ters and sample size: the qualitative pat-
terns displayed in the following figures are
quite general.

Figure 2 shows a first run in which the
simulated intrinsic bubble, P,, does not pro-
duce noticeable explosive behavior within
the simulation sample. The percentage
overvaluation of stocks is not very different
at the end of the sample (the year 2100)
than it is around 1970 or 2015. In contrast,
the partially deterministic bubble P, ex-
plodes decisively.

The behavior of the time-driven bubble is
similar in Figure 3, but the underlying divi-
dend realization makes the explosive ex-
pected growth of the intrinsic bubble more
apparent. Figures 2 and 3 highlight the
sharply different paths for intrinsic bubbles
that different paths of fundamentals can

produce. (Of course, paths qualitatively sim-
ilar to the intrinsic-bubble paths could be
generated by purely random bubbles that
depend on extraneous variables.)

Diba and Grossman (1988b) have argued
on theoretical grounds that stochastic ratio-
nal bubbles cannot “pop” and subsequently
start up again. This feature, they assert,
makes rational bubbles empirically implau-
sible. Figure 4, however, shows an intrinsic-
bubble realization that falls over time to a
level quite close to fundamentals. Indeed, if
dividends follow a process like (5) but with-
out drift, the logarithm of dividends reaches
any given lower bound with probability 1;
we can therefore be sure that the bubble
term in (10) gets arbitrarily close to zero in
finite time. For practical purposes, this is
the same as periodically popping and
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FiGURE 3. SIMULATED STOCK-PRICE PATHS

Notes: PF¥ is the simulated present-value stock-price path assuming that log dividends follow a random walk with
trend. P, gives simulated stock prices under the intrinsic bubble in equation (10). P, gives simulated stock prices

under the bubble example in equation (11).

restarting with probability 1. Intrinsic bub-
bles allow stock prices to get very close to
present-value levels and then diverge. (They
also, however, allow arbitrarily large diver-
gences.)"?

BTo gain a sense of the likelihood with which an
intrinsic bubble such as the one in (10) is likely to
recede dramatically, we ran Monte Carlo experiments
on the future evolution of stock prices using stock
prices in 1987 as the initial condition. (These experi-
ments use the following parameters, estimated from
the data described in the following section: o = 0.122,
n=0.011, r=0.086, c=0.34). We found that the
probability that the bubble falls to a level one-half of
its size in 1987 in the next 100 years is 81 percent, and
the probability that it falls to a level one-quarter of its
size in 1987 is 53 percent. These results suggest that,
with moderate dividend growth rates, the bubble is
likely to appear to shrink substantially over longer
time-series samples.

Notice that all three simulations share
the feature that the intrinsic-bubble path
lies above the time-driven bubble in the
early part of the sample, but below it by the
sample’s end. This pattern in the early part
of the sample is merely a result of initial
conditions and is therefore purely
arbitrary.!* By contrast, the feature that the
time bubble eventually exceeds the intrinsic
bubble is more general. It is easy to show
that, as the sample size T grows, the proba-
bility that P, > P, goes to zero for any set

!4t turns out that, if model (11) is to have any hope
of fitting the data, the estimate of b must be very close
to zero, implying that P, is very close to P?¥ for the
first part of the sample; see Section III-B and Figure 7.
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FIGURE 4. SIMULATED STOCK-PRICE PATHS

Notes: PP is the simulated present-value stock-price path assummg that log dividends follow a random walk with
trend. P gives simulated stock prices under the intrinsic bubble in equation (10). P gives simulated stock prices

under the bubble example in equation (11).

of initial conditions.!® The intrinsic bubble
in P; ultimately exceeds the time-driven
bubble in P, very rarely in large samples,
but when it does, it does so by an amount

SPROOF: Define ¢y =r —pu—02/2 and assume,
without loss of generality, that the bubbles are equal at
t =0: bDy = cD}. Then,

Pr[ﬁr < IST] = Pr[bDre*" < cD} ]
—Pr[yT <(A-1)(nT +X7_,£)]
—Pr[r-au-o?/2<(A-1)(1_,8)/T].

Equation (8) implies, however, that r —Au—0o2/2
=022 -1)/2> 0 (recall that A > 1). Since
plim(X7_, £,)/ T = 0, the proof is complete.

large enough to equalize the two bubbles’
expected growth rates.

This latter property is important empiri-
cally. It implies that it would be unusual to
draw a long dividend series which yields an
intrinsic bubble that appears as explosive as
a comparable time-driven bubble. Even
though intrinsic and time-driven bubbles are
expected to grow at the same rate on aver-
age, a long intrinsic-bubble sample path is
very likely to appear less explosive than the
path a time-driven bubble such as (11) gen-
erates.

III. Application to the U.S. Stock Market

This section applies the model developed
above to U.S. stock-market data. The
model’s specification is generalized, how-
ever, to allow for errors in the difference
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equation describing stock-price movements,
equation (1). Now, time-t prices are given
by

(Y) P=eE(D,+P,)+e 'y,

where u, is a predictable single-period ex-
cess return. Equation (1) implies that (10) is
replaced by the statistical model,

(12) P,=cyD,+ cD} +¢,

in which ¢, =k =(e" — e#*° /%)~ and &, is
the present value of the errors in (1), g, =
>_,e "¢+ DE (y ). Estimation of (12) is

s=t
complicated by collinearity among the re-
gressors, but dividing by D, mitigates the
problem and leads to

(13) H’=c0+cD,H+n,

t

where m,=¢,/D,. The null hypothesis of
no bubble implies that c,=« and c=0,
whereas the bubble alternative in (10) pre-
dicts that ¢y =« and ¢ > 0.

The new error term,

n = Dt_l )::O=te_r(s_'+1)Et(us)

is assumed to be statistically independent of
dividends at all leads and lags and to have
unconditional mean zero. This assumption
is critical in the tests below.!® The error in
(13) could be interpreted, for example, as

16Independence is an unnecessarily strong assump-
tion for some purposes. The tests carried out in the
following subsections will produce consistent parame-
ter estimates provided only that E,(n,|D,)=0. As a
partial check on this weaker assumption, we formed an
estimate of u, /D, from equation ('): 6, ,=u,/D, +
w,,1=(P,/D)-1—-(P,,,/D,), where w,,, is
unforecastable given time-t information. We then re-
gressed 6,,, on actual log-dividend changes. The re-
sults show that Ad, has no statistically significant ex-
planatory power for 6, ;.

However, for correct statistical inferences, we must
make the stronger assumption that dividends and 7,
are independent at all leads and lags. Again, we exam-
ined this assumption by regressing 6,,; on changes in
log dividends (current, past, and future) and found no
significant explanatory power.
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the result of time-varying effective income-
tax rates or time-varying discount factors.
One could also think of 7, as partly reflect-
ing a fad—a shock to the demand for stocks
which is unrelated to efficient forecasts of
future dividends. For the latter interpreta-
tion, specification (13) allows separate iden-
tification of bubble and fad components in
stock prices.

Estimation is based on the Standard and
Poor’s stock price and dividend indexes from
the Securities Price Index Record, as ex-
tended backwards in time by Alfred Cowles
and Associates (1939). Following Robert
Barsky and De Long (1989), we examine the
period 1900-1988, using nominal stock
prices recorded in January of each year and
deflated by the January producer price in-
dex (PPI). Dividends are annual averages of
nominal data for the calendar year, deflated
by the year-average PPL.'” We would have
preferred data on beginning-of-period-¢ div-
idends to match the beginning-of-period-¢
stock price, P,. Because these are not avail-
able, we use the average of period-t divi-
dends as our measure of D,.’%1°

17Although the price and dividend series extend
back to 1871, we chose to begin our sample at 1900
because the composition of the market portfolio be-
comes increasingly restrictive as one goes back in time.
In 1871, the portfolio comprises only 47 stocks, of
which 31 are railroads. Because many other authors
(e.g., Campbell and Shiller, 1987) have used the longer
series, we also ran our statistical tests on the 1871-1986
sample. The results were qualitatively unaffected.

18A potential problem with this choice is that D,
may not be completely known at the beginning of
period t. Nevertheless, we see two reasons why D, is
likely to be a better measure of the dividend informa-
tion contained in beginning-of-period-¢ price, P,, than
is the average period-(¢ — 1) dividend, D, _,. First, P, is
not recorded on January 1, but is itself an average over
the period-t month of January. Second, to mitigate the
effects of any time lapse between the determination
and actual distribution of dividends, it is better to use
average period-t dividends than those from period
t—1. In any case, unless otherwise mentioned, the
results below are not importantly different when aver-
age period-(t —1) dividends are used to proxy for be-
ginning-of-period-¢ dividends.

19Applying the notion of intrinsic bubbles to aggre-
gate stock price and dividend data raises a question of
interpretation. One possibility is that each firm’s share
price equals the present value of its own dividends,
plus an intrinsic bubble on aggregate dividends. Such a
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TABLE 1 —COINTEGRATING REGRESSIONS OF ANNUAL REAL Stock PRICES
AND DIVIDENDS

Regression Cointegrating
Row equation coefficient (B) R? DW d.f.
1 P,=a+BD,+v, 36.65 0.85 0.57 87
2 D,=a+BP, +v, 0.023 0.85 0.69 87
3 po=a+pd, +v, 1.591 0.88 0.69 87
4 d,=a+Bp,+v, 0.556 0.88 0.70 87

Notes: Cointegrating regressions are estimated using OLS. The sample period for all

regressions was 1900-1988.

A. The Price-Dividend Relation

In deriving (13) we assume that the
log-dividend process follows a martingale
with trend. As an empirical matter, it seems
unreasonable to suppose that market partic-
ipants use only the information in past divi-
dends to forecast future dividends. In Ap-
pendix A, we argue, however, that the
stochastic process in (5) is a plausible ap-
proximation to the mechanism the market
uses to forecast aggregate dividends. Ap-
pendix A describes several univariate and
bivariate tests of the log-dividend specifica-
tion in (5). We find little evidence against
the martingale hypothesis: log-dividend
changes are essentially unpredictable when
conditioning on the lags of log dividends
and /or log price:dividend ratios.”® The data
estimate the parameters in (5) as u = 0.011
and o = 0.122.

A general implication of (13) is that stock
prices may appear to overreact to changes
in dividends. Also, (13) predicts that
price:dividend ratios are nonstationary and

formulation would remove the incentive for managers
to influence the market price of their firms’ shares by
altering the timing of dividend payments. However,
there is a semantic issue of whether the bubble is
extraneous to individual companies’ share prices.

DSome of this evidence may be controversial. We
have placed our discussion in Appendix A because the
controversial aspects are somewhat tangential to our
main argument. Provided one is prepared to accept (5)
as a reasonable approximation to the forecasting model
investors use, equation (13) will still approximate the
relation between the price:dividend ratio and divi-
dends.

positively correlated with dividends. This
subsection presents a brief empirical exami-
nation of these basic implications of intrin-
sic bubbles.

First, what does the simple present-value
model predict for the sensitivity of prices to
changes in dividends? From (6), a one-dol-
lar change in dividends should raise prices
by k dollars. Using the fact that the
sample-average gross real return on stocks
is e"=1.090 per annum, we have that «
=(e"—e* +¢72/2)—1 = (1.090—60'011+0‘1222/2)_1
=14.0. In general, if P, and D, are co-
integrated of order (1,1), then under the
present-value model the cointegrating co-
efficient should be approximately «. Equa-
tion (6) also implies that the elasticity of
prices with respect to dividends is 1. If log
stock price p, and d, are cointegrated, it is
also with a coefficient of 1.

The first row of Table 1 presents esti-
mates of «, obtained by regressing prices on
dividends. The coefficient is estimated to be
36.7—much larger than the value of 14.0
predicted by the simple present-value
model.? If P, and D, are cointegrated then
the ordinary least-squares (OLS) estimate
of the cointegrating factor, while consistent,
is biased in small samples. In order to bound
the cointegrating coefficient, we run the re-
verse regression (projecting D, on P,) in the
second row of Table 1. This produces a
larger estimate of «: 1/0.0233 =42.9. Even

ZSimilar estimates of the cointegrating factor are
obtained by Campbell and Shiller (1987), Diba and
Grossman (1988a), and West (1987), among others.
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TABLE 2—UNiT-RooT TESTS FOR ANNUAL PRICE:DIVIDEND RATIOS

B
Variable With time trend Without time trend
Spread, P, — 14D, —0.1355 —0.0702
(—-2.08) (-114)
Price:dividend ratio, P, /D, —0.2157 —0.1343
(=299 (-2.11)
Log price:dividend ratio, p, — d, —0.2122 —0.1315
(—=3.55%) (-255)

Notes: Values reported are the coefficients B; in the following regressions: with trend,
Ax,.1=Bo+ Bix, + Byt +v,,; without trend, Ax, ;= B,+ B,x,+v,,; Standard
errors are constructed allowing for an MA(4) process in the residual. The ¢ statistics,
reported in parentheses beneath the point estimates, are for the test B; = 0.

+ Statistically significant at the 5-percent level, using confidence intervals proposed
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by Phillips and Perron (1988) and Phillips (1987).

the lower of the two estimates would imply
that the required rate of return on stocks
less the expected growth rate of dividends is
an implausibly low 1/36.7 = 2.7 percent per
annum. (The actual value over our sample
period is 7.1 percent.) The third and fourth
rows of Table 1 perform analogous regres-
sions in logs instead of levels. Here, the
cointegrating coefficient predicted by the
present-value model is 1, but the estimates
are again much higher—bounded between
1.59 and 1/0.556 =1.80. These estimates
suggest that simple present-value models
cannot explain why price:dividend ratios are
so high given historical stock returns or,
equivalently, why returns have been so high
given price:dividend ratios.

To test whether these estimates are sta-
tistically incompatible with the simple pre-
sent-value model, we examine various mea-
sures of the price:dividend ratio, including
Campbell and Shiller’s (1987) spread, for
nonstationarity. Table 2 reports unit-root
tests for the theoretically warranted spread
(P,—14D,) as well as the price:dividend
ratio in levels (P, /D,) and in logs (p, — d,)
(see Peter Phillips and Pierre Perron, 1988).
Results of tests with and without time trends
are reported. Under the present-value
model, we should reject nonstationarity in
each of these regressions; yet in five of six

cases we cannot reject the unit-root hypoth-
esis.?

We question whether these tests can be
decisive, however, because of acknowledged
problems with both their size and power.?
One approach, exemplified by Campbell and
Shiller (1987, 1988a,b) and Campbell (1990),
is to assume at the outset that the price:di-
vidend ratio is stationary. This assumption
is important for their results; for example,
Campbell’s (1990) attribution of substantial
price volatility to predictable excess returns
relies crucially on the near-nonstationarity
of the price:dividend ratio. Our view is that
the ambiguous evidence on stationarity

22S0me of our results may be sensitive to the timing
of dividends. Diba and Grossman (1988a), for example,
use lagged dividends and deflate by the wholesale price
index (WPI). They find that the log price:dividend
ratio, p, —d,_, is stationary. Using lagged dividends,
but deflating by the PPI, Campbell and Shiller (1988a)
also reject nonstationarity. Campbell and Shiller (1987)
find results similar to those reported above for the
spread, P, — kD,, using data from 1871 to 1986.

For some Monte Carlo evidence on the size of
these tests, see G. William Schwert (1988). Tests using
lagged dividends (mentioned in footnote 22) may reject
too frequently under the assumption that p, — d, actu-
ally contains a unit root. On the power of unit-root
tests applied to price:dividend ratios, see Cochrane
(1989).
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TabLE 3—Estimates oF EquaTion (13), P, /D, =co+cD} "1 + 7,
Row Regression method o c A-1 F test (¢ =0) R? DW d.f.
1 OLS 12.24 0.34** 0.57 0.71 87
(1.149) (0.05)
2 Maximum likelihood 14.18 0.26%* 0.75 1.91 86
.77 (0.06)
3 OLS 14.63 0.04 2.61% 128.0** 0.57 0.71 86
(2.28) 0.12) (1.15)
4 Maximum likelihood 16.55 0.01 3.29% 9.62** 0.75 1.91 85
(2.02) 0.02) (1.45)

Notes: Standard errors are reported in parentheses; OLS regressions report Newey—West standard errors allowing
for fourth-order serial correlation and conditional heteroscedasticity. (Higher orders of serial correlation did not
yield larger standard errors.) Maximum-likelihood estimates specify the error term as an AR(1) process. The sample

period for all regressions was 1900-1988.

* Statistically significant at the 5-percent level; **statistically significant at the 1-percent level.

makes it worthwhile to move beyond simple
time-series diagnostics.

In sum, the evidence presented in this
subsection has three important implications
for our argument. First, prices are too sensi-
tive to current dividends to be consistent
with a simple present-value model. The im-
plication, of course, is that the portion of
stock prices unexplained by such a model
must be highly correlated with dividends.?*
Second this overreaction apparently cannot
be explained by other variables which are
incorporated into stock prices and help
forecast future dividends. If, for example,
when dividends are high investors tend to
get other reliable information that divi-
dends will grow more quickly than previ-

2This result is essentially a restatement of Shiller’s
(1981) volatility findings. West’s (1987) general specifi-
cation test and Campbell and Kyle’s (1988) noise-trad-
ing model also exploit the excess sensitivity of prices to
dividend changes. Stephen Durlauf and Robert Hall
(1988) find noise in prices that is more highly corre-
lated with prices themselves than with dividends. Their
definition of noise, however, is not the difference be-
tween prices and a multiple of current dividends, but
the difference between prices and an ex post measure
of the present value of future dividends.

ously expected, then this information is
likely to be incorporated in stock prices,
which therefore should Granger-cause divi-
dends. The results in Appendix A suggest,
however, that this is not the case. Finally, a
specification such as (13) has at least the
potential to explain these failures of the
present-value model.

B. A Direct Test for Intrinsic Bubbles

To see whether this potential is at all
realized, we turn in Table 3 to estimates of
(13) and several related expressions. Before
interpreting the estimates, however, some
discussion of econometric issues is in order.

The regressor in (13), D;}~!, presents
difficulties because it is explosive. Two as-
sumptions are necessary for valid statistical
inferences. If the ¢ statistic from testing
¢ =0 is to have a known distribution under
the null hypothesis, we require that: (i) the
residuals, 7,, are distributed normally and
identically—but not necessarily indepen-
dently—with unconditional mean zero; and
(ii) the dividend innovations, ¢,, are dis-
tributed independently of the residuals 7,
at all leads and lags. Appendix B provides a
proof that the standard ¢ statistic does in-
deed approximate a normal distribution un-
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der these assumptions, despite the presence
of the exploding regressor.?

A second aspect of estimation requiring
discussion is the effect of serial correlation
on the estimated standard errors of coeffi-
cients. Because theory offers no guide to
n,’s serial correlation, the usual standard
errors may be incorrect. We try to account
for this possibility in two ways. First, we
estimate (13) by OLS, but correct the resid-
uals using Whitney Newey and West’s (1987)
covariance-matrix estimator for serial corre-
lation of unknown form. This estimator al-
lows for conditional heteroscedasticity.?
Second, since the residuals appear to be
well described by a first-order autoregres-
sive process, we compute maximum-likeli-
hood estimates of the parameters under the
assumption that the residuals are AR(1).

Finally, there is the issue of how to esti-
mate the exponent, A, and the present-value
multiplier, x. In some of the regressions
below, we do not estimate A concurrently
with the other parameters. Instead, we use
the point estimates from the log-dividend
-process obtained earlier, together with the
mean return on stocks over the period, to
compute A =274 In other regressions,
we estimate all parameters simultaneously,
without imposing additional restrictions.
The restriction that ¢, = x = 14.0 is not im-
posed on the constant term in (13), even
though it holds under both the null and
alternative hypotheses. Instead, we use the
unrestricted estimate of c, as a kind of
sensibility check on our model.

ZThe assumption that 7, in (13) is normal must be
approximate because negative values of the price:di-
vidend ratio are excluded. However, the approximation
is likely to be accurate because the average value of the
price:dividend ratio is equal to more than five times the
estimated standard deviation of 7,.

51t is plausible to think of the residual in (12), &,,
as growing at a rate similar to that of dividends. In
such a case, we would not expect m, to exhibit much
conditional heteroscedasticity. Indeed, in our estimates
the heteroscedasticity-corrected standard errors were
similar to the uncorrected standard errors.

We tried a variety of parameter estimates for r, u,
and o 2. These do have a minor effect on the exponent
but are unimportant for the general regression results
reported below.
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The first two rows of Table 3 report esti-
mates of (13) using OLS and maximum like-
lihood. These two regressions constrain A to
equal 2.74. In both cases, ¢ is statistically
very significant. The estimates are compara-
ble in magnitude and significance for the
two estimation methods.?® In the third and
fourth rows, we estimate all of the parame-
ters of the model simultaneously. The point
estimates of c, are similar to those above,
although A is estimated to be larger and ¢
correspondingly lower.? The larger stan-
dard error for c is expected here because
the derivatives of the likelihood function
with respect to the parameters ¢ and A are
highly positively correlated [specifically,
these derivatives include the terms D}~!
and c,(A —1)D}~2, with A > 2]. Rather than
using a ¢ test to judge the importance of the
nonlinear term, it is therefore more appro-
priate to compute an F test of the no-bub-
ble hypothesis, ¢ =0, A = A, where A is the
unrestricted estimate of A. This hypothesis
is rejected strongly at any reasonable level
of significance.>*

2We also tried estimating an extended form of (13):

P, ,
H’=c0+c1D,*_1+c2D,‘_1+n,
t

where X is the negative root from equation (8). Our
estimates of r, u, and o2 suggest that X' =—4.22.
Be,cause X <0 and dividends have a positive trend,
D}~! will be of vanishing importance in explaining
prices. Indeed, when we included D;'~! in the regres-
sion, it had no effect on the estimate of c;. Further-
more, ¢, was imprecisely estimated and varied widely
across different estimation techniques. As we expected,
there seemed to be no evidence that the second nonlin-
ear term helped in explaining stock prices. We there-
fore do not report these results.

29Despite these differences in point estimates, there
is virtually no improvement in R2. A likelihood-ratio
test cannot reject the hypothesis that row 3 is no
improvement over row 1 of Table 3.

30We used the Newey-West covariance-matrix esti-
mator for this test. In nonlinear models, ¢ tests and F
tests are not equivalent, as the ¢ test is a Wald test
(i.e., it is based entirely on the unrestricted model)
while the F test is based on the likelihood-ratio princi-
ple (i.e., it explicitly compares the unrestricted model
with the restricted model in which dividends are un-
able to explain any movements in the price:dividend
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FIGURE 5. AcTUAL AND PREDICTED STOCK PRICES

Notes; P, is the actual real stock price; B = D,(&y + éD} 1) is the predicted stock price under the intrinsic bubble;
and PP = D,¢é, is the model’s predicted present-value stock price.

The finding that ¢ is statistically positive
suggests that prices become increasingly
overvalued relative to the nonbubble price,
PP, as dividends rise. Similarly, when divi-
dends are low, the bubble component of
price shrinks: P, approaches PP'. (Recall
the dotted curve in Fig. 1, which graphs the
relationship between fundamentals and
prices implied by ¢ >0.) The size of the
bubble (the distance between P, and PP')

ratio, ¢ = 0). We thank one of the referees for pointing
this out.

1 0ne way of checking the assumption that &, and
m, are distributed independently is to regress the esti-
mated residuals obtained from (13) directly on current,
past, and future changes in the log of dividends. In
doing so, we could not reject the hypothesis that leads
and lags of Ad, have no explanatory power for n,.

explodes as the dividend becomes large. Of
course, if realized dividends do not reach a
high enough level, the bubble component
will remain small.

Note also that the model’s estimates of ¢
are sensible. All four estimates from Table
3 imply that PP’ is measured on average to
be close to 14 times current dividends; in-
deed, each estimate is statistically indistin-
guishable from « = 14.0, the value predicted
by the simple present-value model set out
above. In our estimates of (13), P>’ = ¢,D,
turns out to be consistent with the long-run
average return on stocks, because the non-
linear dividend term soaks up a reasonable
amount of the excessive sensitivity of actual
prices to dividends.

The economic significance of the bubble
is, of course, another matter. How large is
the bubble component in prices, and how
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Notes: p,—d, is the actual log price:dividend ratio; p, —d, is the predicted log price:dividend ratio under the

intrinsic bubble; and pP¥ —

well does the model track actual price
movements? Figure 5 helps explore these
issues. It compares actual stock prices, P,,
with both PpV (the model’s estimate of the
nonbubble component of prices) and P (the
model’s estimated price inclusive of the
bubble term). Figure 6 presents comparable
graphs of log price:dividend ratios.>> The
figures are striking in two respects.

First there is the sheer size of the bubble
itself (the distance between P, and PP¥). It
has grown over time and has been particu-
larly large during the post-World War II

32Figures 5 and 6 use the estimated coefficients
from the third row of Table 3. However, this choice is
immaterial to the results: it is almost impossible to
distinguish visually among all the models estimated in
Table 3.

d, is the model’s predicted present-value price:dividend ratio.

period. Indeed, the estimates suggest that at
this writing the nonbubble level of the S&P
500 is less than 50 percent of its current
value! The difference P, — P?' is estimated
to be this large recently because the levels
of both dividends and price:dividend ratios
are historically high.

Second, Figures 5 and 6 indicate that P
explains a good deal of actual stock-prlce
movements. The sustained run-up in prices
from 1950 to 1968 appears to be captured
by the model, as does the post-World War
II tendency for stocks to sell at historically
large multiples of dividends.>> The model

3The model does a better job of explaining move-
ments in the price:dividend ratio in the postwar period
than in the earlier part of the century. This is evident
in Figures 5 and 6, which show that prices and divi-
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also does a plausible job of explaining the
year-to-year variability of stock prices. Note
from Figure 5 that the variance of dividends
appears to have fallen relative to the vari-
ance of prices over the sample. Stock-price
variability has been puzzling not only be-
cause it is so high, but also because it has
not declined over time as rapidly as has the
variability of dividends. Figure 5 and equa-
tion (13) together suggest a possible resolu-
tion of this paradox: stock-price volatility
has not fallen with that of dividends be-
cause the level of dividends (and therefore
the scope for volatility due to an intrinsic
bubble) has been historically high.**

Of course, the “fit” of P, in Figures 5
and 6 cannot be judged without a standard
of comparison. Because there are infinitely
many bubble specifications that depend on
time or other extraneous variables, suffi-
cient excavation would allow us in principle
to fit perfectly the actual price path.

One way of judging the model’s fit is to
try alternative specifications. Table 4 helps
to compare (13) to specifications in which
additional terms are included in the regres-
sion, sometimes instead of and sometimes
alongside D} ™. We start by examining the
effects of two alternatives, the time-driven
bubble term in (11) (divided by D,) and a
linear time trend. In isolation, either of
these regressors appears to be a statistically
significant determinant of the price:di-

dends moved strongly together prior to 1950. Tests for
subsample stability tend to reject the hypothesis: the
OLS estimate of ¢ in the postwar sample remains
statistically significant at about 0.34 but becomes indis-
tinguishable from zero prior to 1951.

3To see how much the estimated sensitivity of
prices to dividends has changed over time, recall that
dP,/dD, =k + cAD*~!. Using the estimates from
Table 3, we can compute rough estimates of dP, /dD,,
which can be interpreted as the model’s prediction of
the coefficient in a “cointegrating” regression of prices
on dividends. Using average dividends over the period
1951-1988, we find (using row 2 of Table 3) dP, /dD,
= 14.2 + (0.26)(2.74)(7.86' ) = 39.9. Similarly, over
the period 1900-1950, dP,/dD,=14.2+(0.26)(2.74)
X (4.3117%) = 23.2. The estimated sensitivity of prices
to dividends has therefore nearly doubled over the
post-World War II period.
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vidend ratio (see rows 1 and 3 of Table 4,
either estimation method). However, nei-
ther regressor remains statistically signifi-
cant when the nonlinear term in (13), D} "1,
is added to the regression (rows 2 and 4; as
in Table 3, we have set A at its estimated
theoretical value of 2.74). Note that in the
OLS estimates, the coefficients on the addi-
tional regressors become negative once
D}~ is added. The coefficients on the non-
linear term, however, remain statistically
significant and of the same basic magnitude
as in Table 3s.

To see whether the nonlinearity of the
dividend term in (13) is important, rows 5
and 6 of Table 4 add a linear dividend term,
D,, to the regression. As the earlier results
might suggest, D, is positive and statistically
significant on its own. However, once D} !
is also included, the estimated coeflicient on
D, becomes statistically insignificant, and in
the maximum-likelihood estimate its sign is
reversed. The signs and magnitudes of the
estimates of ¢ appear to be consistent with
the results of Table 3, but multicollinearity
raises the standard errors of the coeffi-
cients.

A second way of judging the model’s fit is
to compare visually the dividend bubble in
(13) with the time-driven bubble P, defined
in (11). Figure 7 graphs the predicted values
of the present-value price, PP, and the
bubble-inclusive price, P,, from OLS esti-
mates (row 1 for OLS estimates in Table 4).
In comparing Figures 5 and 7, it is evident
that the time-driven bubble, P, — P?', cap-
tures little of the post-World War 1I vari-
ability of the stock market. Correlation with
dividends, per se, is not enough to enable
this bubble to explain stock prices. This
result is not surprising: the presence of a
deterministic time component forces the
time-driven bubble to be essentially zero for
most of the sample period.

C. Tests of an Alternative Hypothesis:
Present-Value Prices under Variable
Dividend Growth Processes

In testing our bubble specification, we
assumed that ¢, in (5) and 7, in (13)
are independent at all leads and lags. While
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TABLE 4—ESTIMATES OF ALTERNATIVE MODELS, P, /D, = co+ cD} ~1 + gX, + 7,

Row X, Co c g R? DW d.f.
Estimation Method = OLS:
1 Time bubble, X, = er—r=c?/2n 18.28 0.030* 0.21 0.35 87
(1.47) (0.013)
2 Time bubble, X, = e~ # —o? /2 11.85 0.377** —0.008 0.57 0.75 86
(1.09) (0.060) (0.010)
3 Linear trend, X, =t 13.68 0.15%* 0.35 0.43 87
2.22) (0.05)
4 Linear trend, X, =1t 12.43 0.364* -0.019 0.57 0.75 86
(1.39) (0.066) (0.052)
5 Linear dividends, X, = D, 6.88 2.273%* 0.55 0.70 87
(2.02) (0.39)
6 Linear dividends, X, = D, 18.09 0.684 2.397 0.57 0.70 86
(8.62) (0.448) (3.32)

Estimation Method = Maximum Likelihood:

1 Time bubble, X, = etr—n=o?/21 18.34 0.0272 0.75 2.04 86
(2.16) (0.014)

2 Time bubble, X, = " ~#~o"/2x 14.48 0.223** 0.008 0.75 1.94 85
(1.86) 0.075) (0.012)

3 Linear trend, X, =1t 14.02 0.145** 0.75 1.99 86
(2.87) (0.055)

4 Linear trend, X, =¢ 13.19 0.190* 0.060 0.75 1.93 85
(2.16) (0.084) (0.056)

5 Linear dividends, X, = D, 11.39 1.530** 0.75 1.93 86
(2.76) (0.420)

6 Linear dividends, X, = D, 24.54 0.904* —4.372 0.76 1.91 85
(6.64) (0.404) (2.710)

Notes: Standard errors are reported in parentheses; OLS regressions report Newey-West standard errors, allowing
for fourth-order serial correlation and heteroscedasticity. (Higher orders of serial correlation did not yield larger
standard errors.) Maximum-likelihood estimates specify the error term as an AR(1) process. The sample period for
all regressions was 1900-1988. The time-bubble specification (lines 1 and 2) is derived by dividing equation (11)
by D,.

Statistically significant at the 10-percent level; *statistically significant at the S-percent level; **statistically
significant at the 1-percent level.

we have attempted to test this assumption tio.3> Such variation in dividend growth rates
directly, our failure to reject it does not could invalidate our independence assump-
mean that it is true. For example, if divi-

dends follow a more complex stochastic

process than (5), persistent variation in the

growth rate of dividends could lead to per- 35See Barsky and De Long (1989) for one such
sistent movements in the price:dividend ra- model of time-varying dividend growth rates.
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FIGURE 7. AcTtuAL AND PREDICTED STOCK PRICES

Note: P, is the actual real stock price; I;, is the predicted stock price under the time bubble in equation (11); and

PPY is that model’s predicted present-value stock price.

tion by creating a correlation between
price:dividend ratios and the level of divi-
dends, even in the absence of a bubble.

In order to explore this possibility in more
detail, suppose that the stock price does not
contain a bubble but that the growth rate of
dividends follows the autoregressive pro-
cess:

(14)

Ad, =71+ 7,Ad,+ ¢,y

If y, >0, a positive shock to the dividend
growth rate tends to increase both divi-
dends and the price:dividend ratio, tending
to give a positive sample correlation be-
tween D, and 7, in regressions such as (13).

To ascertain the importance of this effect,
we ran a set of Monte Carlo experiments.
We first estimated equation (14) in the data,
finding that y; = 0.008, v, = 0.1755, and o}
=(.122. Our Monte Carlo procedure was
then to draw 88-year paths of dividends,
generated randomly according to (14), with
¢, independently and identically distributed
normal. We then estimated PP', the mathe-
matically expected present value of divi-
dends in (2). We then defined P,/D,=
PP /D, +v,, where v, is independently and
identically distributed normal and cali-
brated such that simulated and actual
price:dividend ratios have comparable aver-
age variability. Finally, we regressed the re-
sulting price:dividend-ratio path on the as-
sociated path of D}, as in equation (13),
and computed the ¢ statistic for the test of
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Note: The estimates were made under the assumption
that dividends follow (14) and that stock prices do not
contain a bubble.

¢ = 0.3 This procedure was repeated 5,000
times.

Figure 8 shows the frequency distribution
of the ¢ statistics obtained from this proce-
dure. The distribution is essentially normal,
although upward-biased, with a mean of
047 and a standard deviation of 0.93.
Slightly fewer than 5 percent of the statis-
tics were greater than 2.0, and fewer than
0.3 percent were greater than 3.0. These
results suggest that time-varying dividend
growth rates could make our test of ¢ =0 in
(13) reject too often in favor of ¢ >0, but
the bias appears to be too small to explain
the large ¢ statistic in the actual data.

IV. Summary and Concluding Remarks

This paper has proposed a class of ratio-
nal bubbles that depend exclusively on ex-
ogenous fundamentals. The resulting class
of asset-price solutions has intuitive appeal
because it avoids the introduction of extra-
neous driving variables and captures the

%As in row 1 of Table 3, we used OLS and set
A=2.74.

DECEMBER 1991

idea that prices can overreact to changes in
fundamentals.

We applied a version of this model to
United States stock-market data. The esti-
mates reveal a strong nonlinear relationship
between prices and dividends, which can be
interpreted as a rejection of the hypothesis
that there is no bubble. The estimates also
help to reconcile the historical return on
stocks with the level of the price:dividend
ratio (and with its correlation with divi-
dends), something that simple present-value
models appear to be unable to do. In addi-
tion, the estimates imply that the bubble
component in today’s stock prices is very
large. Even if one is reluctant to accept the
bubble interpretation, the apparent nonlin-
earity of the price:dividend relation requires
attention.

The hypothesis tests reported above have
some desirable statistical properties. Unlike
general specification tests, for example, the
tests in this paper use estimates that are
consistent under both the null and alterna-
tive hypotheses (given our identifying as-
sumptions). The tight parametric form of
intrinsic bubbles allows us to offer an inter-
pretation of earlier specification-test results,
which often did not pinpoint the factors
causing model failure.

Our formulation allows variables such as
the price:dividend ratio to predict excess
returns. To carry out statistical inference,
we do require that dividends themselves
cannot be used to forecast returns, but in
any case there is little direct evidence to
the contrary. By relaxing the present-value
assumption, the tests allow the data to allo-
cate deviations from the simple present-
value model across a bubble term and pre-
dictable excess returns. Our interpretation
of Section III’s results is that, once intrinsic
bubbles are admitted as an empirical possi-
bility, the predictability of excess returns no
longer appears to be the only cause of the
simple present-value model’s failure.

It is hard not to be skeptical about the
long-run implications of any kind of rational
bubble. The fact that our identifying as-
sumptions (that log dividends follow a mar-
tingale and that dividend innovations
are unrelated to nonbubble components of
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TaBLE A1—UNrt-RooT TESTS FOR
ANNUAL REAL DIvIDENDS

B
With time Without
Variable trend time trend
Log dividends, d, —0.1644 —0.0545
(—2.56) (—1.40)

Notes: Figures reported are the coefficients B; in the
following regressions: with trend, Ax, ;= By + B1x, +
Byt +v,,q; without trend, Ax,,;=By+Bix,+v, ;.
Standard errors are constructed allowing for an MA(4)
process in the residuals. The ¢ statistics reported in
parentheses beneath the point estimates are for the
test B, =0.

price:dividend ratios) have not been re-
jected does not mean that they are true. In
fact, we suspect that the class of assump-
tions that cannot be rejected is sufficiently
large that, on the basis of currently avail-
able data, it may be impossible to determine
conclusively whether deviations from pre-
sent-value prices are nonstationary (i.e., ra-
tional bubbles) or stationary (i.e., fads) or
even whether such deviations exist at all
(i.e., time-varying discount factors or divi-
dend growth rates). Perhaps the results
above merely show that there is a coherent
case to be made for bubbles alongside these
alternative possibilities. If that is so, then
we should not feel too comfortable about
how well we really understand stock prices.

APPENDIX A
Time-Series Properties of Dividends

In deriving equation (13), we assumed
that the log-dividend process follows a mar-
tingale with trend. In this appendix we
briefly examine the time-series evidence on
the dividend-generating process to see
whether it is consistent with our assump-
tion.

Table Al reports tests of the null hypoth-
esis that the log-dividend process, d,, con-
tains a unit root.>” We perform the unit-root

3The tests are those proposed by Phillips (1987)
and Phillips and Perron (1988). We allow for fourth-
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tests allowing for alternative assumptions
about the presence of a time trend. Neither
version produces significant evidence against
the unit-root hypothesis at the 10-percent
level of statistical significance. As noted in
the text, the data indicate that w =0.011
and o =0.122.38

Of course, if the stock price in (10) is to
be a correct solution to (1), investors’ condi-
tional expectation of d,,, must equal u +
d,. It follows that the disturbance ¢,,; in
(5) must not only be unpredictable given the
past history of dividends, it must also be
unpredictable given any broader time-t in-
formation set that investors use. In particu-
lar, because investors’ forecasts of future
dividends must depend on current dividends
only, stock prices (which presumably reflect
investor information beyond that in divi-
dends) should not improve the accuracy of
dividend forecasts that are based on current
dividends alone. This is a strong assump-
tion, so we check to see how well it fares in
the data.

Table A2 reports tests for Granger-
causality from prices to dividends. In the
first row, we regress log-dividend changes
on a constant and the lags of both log-
dividend changes and log price:dividend ra-
tios. Because the price:dividend ratio should
in principle include all information relevant
for forecasting future dividends, it should
pick up any forecastable nontrend compo-

order serial correlation in the residuals, as suggested
by those authors. For similar tests, see Kleidon (1986),
Campbell and Shiller (1987) (who examine the level,
rather than the log, of real dividends), and Campbell
and Shiller (1988a).

There is some evidence that the residuals in this
regression are not white, indicating that a more com-
plex ARIMA process might perform better. The
Durbin-Watson statistic was 1.65, which is inconclusive,
but a Q(27) test rejects the hypothesis of no serial
correlation in the residuals at a 3.8-percent level of
significance. Using the 1871-1986 sample of S&P data,
Campbell and Shiller (1988a) reject (at the 5-percent
level) the hypothesis that the d, process contains a unit
root. This finding could in principle be due to struc-
tural instability over the sample. There is also some
evidence of kurtosis in the estimated residuals from
equation (5). This could be evidence of time-varying
volatility of log-dividend innovations.
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TABLE A2—TEsTs FOR WHETHER PRICES GRANGER-CAUSE DIVIDENDS
F test
Row Regression equation (P value) R? DW d.f. Lag length
1 Ad,,,=a(L)Ad, + B(L)p,—d)+v, 4 0.812 0.13 1.96 75 4
(0.52)
2 d,,1=a(L)d,+B(L)p, +v,,q 1.868 0.91 1.98 75 4
(0.12)

Notes: Granger-causality tests are based on OLS estimates and Newey-West standard errors. The sum of the
coefficients on the log price:dividend ratio and on the log of price are reported in rows 1 and 2, respectively. The
numbers in parentheses are probability values from F tests of the hypothesis that g; =0 V i. Alternative lag lengths
were also tried for these regressions, but they did not change the results. The sample period for all regressions is
1900-1988. Constant terms were included in both regressions.

nent of dividend changes. The table reports
the sum of the coefficients on p, —d, and
its lags, as well as an F test of the hypothe-
sis that these coefficients are jointly zero.
This test shows that we cannot reject the
hypothesis that p, —d, has no incremental
power for forecasting future dividend
changes.?® The test’s formulation is, how-
ever, unnecessarily restrictive. If log prices
and log dividends are cointegrated of order
(1,1) but with a coefficient other than 1, our
inferences may not be valid. In the second
row of Table A2, we therefore run a less
restrictive regression, which asks directly
whether log prices Granger-cause log divi-
dends. Once again, the data provide no
strong evidence that log prices have incre-
mental predictive power for future log divi-
dends.*

In their tests of the present-value model,
Campbell and Shiller (1987) report evidence
to the contrary: that the spread does
Granger-cause future dividend changes.
However, these rejections appear to depend

39We also ran this test in levels rather than logs,
using the Campbell-Shiller spread, P, —«D,, in place
of the log price:dividend ratio and using AD, in place
of Ad,. The results, using various measures of «, are
not importantly different from those reported above.

40Christopher Sims et al. (1990) and West (1988b)
give the asymptotic justification for this procedure. In
both regression tests, we used a lag length of 4. Similar
tests on alternative lag lengths yielded the same re-
sults. We also duplicated these tests on the 1871-1986
data set used by Campbell and Shiller (1987), with no
change in the results.

on a different convention for dating prices
and dividends: Campbell and Shiller use the
beginning-of-period price, P,, ;, and the av-
erage of the previous period’s dividend, D,,
to predict average period-(¢ +1) dividends,
D, , (Campbell and Shiller, 1987 p. 1074).*!
If P,,, contains cleaner, more up-to-the-
minute information about the beginning-
of-period-(¢ +1) dividend than does the
time-averaged variable D,, then one would
expect to find Granger-causality using the
Campbell-Shiller dating convention, even
when stock prices contain no information
beyond that in the past history of dividends.
Furthermore, as we have argued (see foot-
note 18), substantial information about the
current year’s dividends could become avail-
able during the month of January. We
therefore see little basis at present for re-
jecting the hypothesis that prices do not
Granger-cause dividends. While the view
that prices contain information beyond that
in current dividends is plausible, there just
is not much evidence in its favor in these
data.*> We conclude that (5) is a reasonable

“Following the dating convention described at the
beginning of Section I1I, we instead use the beginning-
of-period-t price, P,, along with D, to predict D, ;.
Robert Engle and Watson (1985) also use this conven-
tion and obtain Granger-causality results similar to
ours.

“2We ran the regressions in Table A2 using Camp-
bell and Shiller’s (1987) dating convention and found
results similar to theirs. If there is substantial addi-
tional information about future dividends in stock
prices, then one might nevertheless expect to find that



VOL. 81 NO. 5

empirical approximation to the true process
investors use to forecast dividends.

APPENDIX B

Derivation of the Finite-Sample Distribution
of the Test for ¢ =0 in (13)

Consider the model y, = cx, +n,, where
t=1,...,T, y,= P, /D,, c is a parameter to
be estimated, x, = D}, and the log of D,
evolves according to (5):

t
d,=ut+dy+ Y &,

s=1

(B1)

For simplicity, we assume that the constant
term in (13), ¢,, is known and has been
removed. Let X represent the random se-
quence of regressors from time 1 to 7, a
particular realization of which is given by x.
We wish to derive the distribution of the
test ¢ = ¢, where ¢ is the OLS estimate of c.
To do this, we require the following as-
sumptions.

prices Granger-cause dividends even when our dating
convention is used. The results in Table A2, however,
suggest that this is not the case. Campbell and Shiller
(1988b) present evidence that a 30-year moving average
of past earnings, deflated by the time-¢ real stock price,
helps forecast Ad, when added to a regression of that
variable on its lags and on current and lagged values of
p,—d,_;. Shiller (pers. comm.) reports that the ex-
planatory power of this equation declines (but still
remains highly significant) when the earnings and
spread variables are redefined using the average real
stock price for period ¢ —1. What is puzzling, if ratio-
nal expectations are assumed, is that the information
content of past earnings apparently is not reflected in
past stock prices. If it were, one would expect the
lagged stock-price variables in the Table A2 regres-
sions to pick up some of the ability of earnings to
forecast future dividends.

We tried regressing the change in log dividends on
lagged dividend changes and lagged values of p, —d,,
where p, is the year average price. We found that
lagged log price:dividend ratios had no predictive power
for changes in log dividends. However, if the level of
log dividends is regressed on lagged log dividends and
lagged log average prices, prices have predictive power
at the 5-percent (but not the 1-percent) level over
1900-1986.
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ASSUMPTION 1: The residuals, m,, are
normally and identically, but not necessarily
independently, distributed with unconditional
mean 0 and autocorrelation function 8(k).

ASSUMPTION 2: The dividend innova-
tions, &,, are independently distributed of the
residuals, m,, at all leads and lags and have
mean 0 and variance o>.

To proceed, note that the OLS estimate
of cis

T
Zitnt T i
(B2) éH-c="F—=1 |——|n
va o\ pa
t=1 s=1
T
Ezwmr

t=1

where the w, are a random set of weights,
which by Assumption 2 are independently
distributed of the u,’s. By Assumptions 1
and 2, the linear combination in (B2), for a
given sample path of the regressors, x, is a
weighted average of normals and is there-
fore normally distributed:

(B3) é(x)—c~A(0,(xx) 'x'Qx(x'x)"")

where (; ; = 8(i — j). Notice that since the
distribution of ¢ depends on the particular
realization, x, the unconditional distribu-
tion of ¢ will be a mixture of normals and
will therefore have fat tails. Nevertheless,
under both the null and alternative hy-
potheses, c is estimated consistently.

Even though the unconditional distribu-
tion of ¢ is not normal, the usual ¢ statistic
for é(x)=c is distributed .#710,1), even in
finite samples, provided that € is known.
To see this, note that from (B3) the ¢ statis-
tic is given by

é(x)—c

\/(x'x)-lx’ﬂx(x’x)"1

(B4) ~A4(0,1).

Because this distribution does not depend
on the sample realization, x, it holds uncon-
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ditionally. This is true under both the null
and alternative hypotheses.

Of course, (B4) assumes that () is known.
If ) must be estimated and if 7, is serially
uncorrelated, then the expression on the
left-hand side of (B4) has an exact ¢ distri-
bution in finite samples. If ) must be esti-
mated and 7, is serially correlated, then the
expression on the left-hand side of (B4)
does not have a ¢ distribution in finite sam-
ples but will converge to #1(0,1) in distri-
bution as T approaches infinity.
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